Tracking Coastal Habitat Change Over Time: Considerations for Routine Mapping

Eric D. Stein, Biology Dept.

Presentation to SCCWRP Commission – Sept. 5, 2025

Monitoring **Trend** basemap assessment **Model inputs** Planning studies **Prioritization**

Importance of Accurate and Current Maps

Identify priority areas in need of management actions

Restoration or rehabilitation following impacts
Vulnerability to risk of future loss or
degradation

Track progress toward achieving stated management goals

Understand where actions are working and where adaptive management is needed

Provide up to date base maps to inform monitoring programs

Challenges

Rapid change in the coastal zone

Stochastic events

Data availability

Spatial and temporal resolution

Method selection

\$ Cost

Objectives

 Evaluate approaches for mapping habitat extent and tracking acreages <u>statewide</u> on a <u>regular basis</u>

- Provide considerations for each approach
 - pros and cons, level of effort, cost, etc.

 Summarize findings to inform agency decisions regarding future mapping efforts

Priority Habitats

Coastal

Beaches & Dunes

Rocky Intertidal

Eelgrass

Rocky Intertidal

Tidal Marsh

Dune

Beach

Eelgrass

Coastal Wetlands

Process

- Convene expert workgroups
 - Distinct workgroup for each habitat + overall discussions
- Explore data sources and mapping approaches

Review other programs

- Workgroups develop consensus considerations
 - Overall and by habitat

Report Contents

- Definitions
- Boundary demarcation
- Key mapping considerations
- Data types/sources
- Mapping approaches and tradeoffs
 - Data suitability for each mapping approach
- Considerations for implementation
- Topics for future investigation

Boundary Demarcation: Dunes

Toe: Inflection + Vegetation

Start: MLLW = MHW + slope

Boundary Demarcation: Eelgrass

Region	Upper (Landward) Boundary	Lower (Seaward) Boundary		
Coastal Channel Islands	+1m MLLW	-30m MLLW		
Coastal Mainland	+1m MLLW	-20m MLLW		
Embayments between Tijuana	+1m MLLW	-10m MLLW		
River Estuary and Point Conception				
Embayments between Point	+1m MLLW	-6m MLLW		
Conception and Point Ano Nuevo				
San Francisco Bay	+1m MLLW	-3m MLLW		
Embayments (excluding SF Bay)	+1m MLLW	-5m MLLW		
between Point Ano Nuevo and the				
CA-OR border				

Data Types Evaluated

Spectral imagery (satellite, plane, UAS)

Terrain and topography data (LiDAR, 3DEP)

Locally collected georeferenced data (e.g., RTK GPS)

Models (e.g., tide models)

Availability Considerations

Availability Metrics for COASTAL WETLANDS, ROCKY INTERTIDAL, AND BEACHES AND DUNES									
	Satellite			Plane			UAS		
Availability Metrics	LandSat	Sentinel 2	PlanetScope	WorldView - Maxar (fed access) - only coastal wetlands	Oblique imagery - only rocky intertidal	NAIP	Lidar	imagery	Lidar
Publically available	yes	yes	commercial	commercial	yes	yes	custom	custom	custom
Cost	low	low	moderate	moderate	low	low	high	moderate	moderate
Ease of data processing	moderate	moderate	moderate	moderate	moderate	moderate	high	high	high
Logistics of implementing	low	low	moderate	moderate	low	low	high	high	high
Availability of historical informaiton	1972	2015	RGB: 2014 Mutispectral: 2016-2018	2014	1989	2003	depends	limited/no	limited/no

Low utility	
Medium utility	
High utility	

Mapping Approaches

Satellite-based mapping

- Suitable for tracking statewide acreage change over time
- Limited spatial and temporal resolution

Plane-based mapping

- Supports more detailed mapping of sub habitats
- Can more readily capture seasonal changes and stochastic events
- Higher cost means less frequent mapping interval

Field-based remote sensing and surveys

- Suitable for mapping intertidal and subtidal habitat extent
- Most appropriate for mapping eelgrass but could be applicable to other coastal habitats

Key Findings

Boundary Attributes

- Vegetation boundaries are best characterized by spectral imagery
- Elevation based features are best categorized by Lidar data
- Multiple image types will typically need to be used to optimize mapping efforts.

Mapping Approaches

- Plane-based mapping is more appropriate for the scale coastal habitats
- Satellite-based approaches are useful for general low-resolution characterizations of large habitat patch area quantification, except for eelgrass
- For eelgrass, site-based (UAS) remote sensing combined with field surveys is likely necessary to capture the patchy distribution in both intertidal and subtidal habitats

Data Availability

- Moderate resolution satellite data (i.e., Sentinel-2) cannot reliably capture habitat features smaller than 5m² or narrower than ~5-10m, but is publicly available
- Higher resolution satellite imagery (i.e., PlanetScope) could discriminate smaller scale (1-2m)
 habitat features/boundaries and has higher temporal resolution, but is a commercial data
 product

Considerations for Future Implementation

- Use the report findings to solicit support for statewide tracking of trends and progress toward meeting multiple agency goals for coastal habitats
 - Explore joint funding opportunities
- Develop capacity for data management and dissemination
- Develop data visualization and interpretation tools
- Provide mechanisms to accommodate emerging technologies

Questions

