PFAS State of the Science and Research Directions

Charles Wong and Alvina Mehinto

Commission Meeting, March 1, 2024

Current knowledge and regulations for PFAS

Poly- and perfluorinated alkyl substances (PFAS)

- Large group (4700+) of synthetic chemicals containing multiple F atoms on alkyl chain
- Most common: 4-14 carbon-chain carboxylic & sulfonic acids, e.g., 8-carbon PFOS & PFOA
- Other common PFAS include precursor compounds (e.g., telomer alcohols, sulfonamides)
- Also replacement products (e.g., Gen-X) including shorter-chain compounds (e.g., PFBS)

Use of PFAS

 Wide range of uses due to resistance to oil, water, and heat

• Industrial: firefighting foams, chemical manufacturing, electronics, metal coatings and plating, textiles, etc.

 Consumer: food packaging, stain- and waterrepellents, household goods, personal care products, etc.

PFAS as an environmental contaminant

- Properties making PFAS desirable also makes them an environmental problem
 - Strong carbon-fluorine bond = stable and environmentally persistent ("forever chemical")
 - Very limited degradation, and that typically to other PFAS

- PFAS environmentally ubiquitous
 - Widespread use
 - Chemical persistence

PFAS management and regulations

- At federal level, EPA has several regulatory initiatives
 - Emphasis on research, restriction, and remediation
 - Current focus (e.g., thresholds, regulations) on drinking water
 - Proposed Maximum Contaminant Levels of 4 ng/L for PFOS, PFOA
 - Other ambient matrices not emphasized as much yet

- Approach in California is evolving
 - Current focus also on drinking water and its sources
 - Investigative orders on monitoring drinking water, groundwater near likely point-source contamination, wastewater
 - State Water Board issuing draft groundwater infiltration policy this spring
 - Focus may expand in future to other ambient matrices
 - CEC Expert Panels recommended PFAS in prioritizing CECs to monitor

Standardized methods are available

- EPA has several methods
 - 533 and 537.1 for drinking water
 - 8327 for non-drinking water (e.g., groundwater)
 - 1633 for ambient aqueous, porous media, biosolids, and tissue matrices
 - 1621 for screening total organic fluorine in water
- ASTM also has guidelines
 - D7979, D8421 for non-potable water (e.g., surface water, wastewater)
- While methods are mature, research continues
 - Lower detection limits
 - Less sample preparation
 - Identification (e.g., non-targeted) and quantification of new PFAS compounds

Exposure assessment

- Much data on PFAS environmental occurrence
 - Peer-reviewed literature and grey-literature reports
 - Publicly available interactive maps exist on a number of matrices

- Some data gaps exist
 - Compound (typically PFOS/PFOA and related acids, less other PFAS)
 - Spatial and matrix (uneven in coverage)
 - Data quality (bad data can spoil otherwise good data)

PFAS in surface ambient waters

- State Water Board CEC Program
 - https://www.waterboards.ca.gov/ water issues/programs/cec/cec datasets.html

Health effects associated with PFAS exposure

- Limited knowledge of PFAS effects
 - Evidence of bioaccumulation in blood and tissues
 - But limited understanding of adverse health effects for most PFAS compounds

- Research suggests some impacts on human health
 - Thyroid disease, high cholesterol
 - Testicular cancer
 - Developmental anomalies in newborns due to maternal transfer

Ecologically relevant health effects

- PFAS have been detected in tissues of various organisms
 - But the significance remains unclear
- Interpreting the impacts of PFAS occurrence in aquatic habitats remains challenging
 - Little to no toxicity data for most PFAS
 - Available data limited to a few species/taxa
 - Few field studies documenting PFAS related adverse effects
- Hence, not enough data to derive thresholds and interpret occurrence data

SCCWRP Research on PFAS

CEC conceptual framework

Opportunistic approach to assessing PFAS

- Not prioritized during the last intersessional
- Projects based on our skills and funding available

Tools to assess PFAS mixtures

 Bioanalytical screening tools for rapid evaluation of sublethal effects of PFAS mixtures

- Investigating commercially available cell lines responding to PFAS
 - Funded by State Water Board
 - Testing of different PFAS at environmental concentrations

PFAS occurrence in California aquatic habitats

- Freshwater habitats
 - Supporting SWAMP to measure CEC concentrations in surface water, effluents, sediment and fish tissues
 - PFOS and occasionally PFOA
 - Geographically limited to individual regional boards (RB4, RB8, RB1)
- Coastal and marine habitats
 - PFOS and PFOA included in Bight'23 sediment and shellfish
 - Collaborating NOAA Mussel Watch

Remediation

- Current emphasis is on stormwater runoff
- Quantifying PFAS removal (via sorption) by different media and building a model to predict BMP performance
 - In partnership with State Waterboard and SMC
 - Bench-scale study and field verification
- Evaluating potential for PFAS to infiltrate from BMPs into surrounding soils
 - Led by LACPW

Technology transfer

- Assisting CA laboratory accreditation program (ELAP)
 - Familiarize ELAP and third-party assessors on EPA PFAS methods
 - Including EPA 533 and 537.1 for drinking water

- Scheduled for May 2024 at SCCWRP
 - With participation of member agencies that have experience measuring PFAS

SCCWRP research on PFAS moving forward

CTAG members agree with our current opportunistic approach

SCCWRP will not actively seek out PFAS-related projects

 Instead, we will work on individual projects at the request of member agencies