marine Carbon Dioxide Removal as an ocean solution to climate change

Christina Frieder
Commission Meeting
September 2023

The ocean is being considered as a necessary resource in CO₂ removal from the atmosphere

- mCDR = human
 activities in the ocean
 that remove CO₂ from
 the atmosphere
- Current estimates are that mCDR needs to contribute 50% of required CO₂ removal

Source: IPCC

The mCDR field is upcoming and early scientific activities aim to address key research needs

- NOAA released a CO₂ Removal Strategy Report highlighting NOAA's potential contributions
- Federal agencies investing in new grants aimed at evaluation
 - NOAA \$30 million; ecosystem co-benefits and risks
 - Dept. of Energy, ARPA-E \$45 million; sensing and validation

A White Paper documenting a potential NOAA CDR Science Strategy as an element of NOAA's Climate Interventions Portfolio

Goals of this talk

- Introduce marine Carbon Dioxide Removal (mCDR)
- Identify science needs
- Describe SCCWRP's activities

There are 5 groups of mCDR technologies

Ocean Iron Fertilization

Alkalinity Enhancement

Artificial Upwelling

Electrochemistry

Seaweed Cultivation

The biological carbon pump is efficient at fixing carbon near the surface and redistributing that carbon into the deep

The first 3 groups of mCDR target the biological carbon pump

- Increase phytoplankton production with addition of limiting nutrients
- Enhance transfer of carbon to the deep sea
- These technologies likely to target oligotrophic regions of the ocean

- Targets macroalgae
- Sink biomass to deep sea

Southern California is already a test bed for seaweed farming

- Multiple DOE funded projects in SCB
- Pilot kelp farm off Santa Barbara
- Seed banks of giant kelp

Nuzhdin / AltaSeads

The other two mCDR groups target directed alteration of seawater chemistry

Alkalinity enhancement is achieved by adding large amounts of silicate or carbonate rock to the surface ocean

- This "locks" CO₂ into other forms of DIC (bicarbonate and carbonate)
- Promotes atmospheric
 CO₂ influx
- Leads to a temporary rise in pH; counteracting ocean acidification

Electrochemical approaches use electricity to either (a) extract CO₂ from seawater and/or (b) increase ocean alkalinity

Acidic Stream

- Degas CO₂ for storage, or
- Use to weather rocks and increase alkalinity

Basic Stream

- Used to absorb extra CO₂, or
- Precipitate
 minerals to
 store carbon as
 a solid

Pilot-scale projects of electrochemical technologies are underway in Southern California, and elsewhere.

Equatic

How much is pilot scale?

Scale	CO ₂ Removed
Lab	Demonstrated
Pilot	1 tonne CO ₂
Commercial	10 ⁴ tonnes CO ₂
Full	10 ⁹ tonnes CO ₂

Pilot-scale tests are operating under Vessel General Permit

SCCWRP is contributing to mCDR evaluation in three key areas

- 1. Pilot-scale evaluation
- 2. Regional-scale assessment
- 3. Unintended consequences

Our numerical ocean model is a key tool to evaluate the effectiveness of mCDR

- Existing observational assets are insufficient to capture the large scales over which CO₂ drawdown occurs
 - > 100's of kms; years
- ROMS-BEC allows us to assess the efficiency of the technology over required time and space scales

We have expanded our modeling capacities to represent different mCDR pathways within ROMS-BEC

There are anticipated environmental risks

Seaweed Cultivation

Alkalinity Enhancement

Electrochemistry

- Disease; genetics
- Marine mammal entanglement
- Competition with phytoplankton
- Deep-sea changes

- Dissolution by-products
 - Possible negative impacts
 - Change composition of phytoplankton communities

- Mortality of marine life from intake pipes
- Effluent characteristics could limit phytoplankton growth
- Dissolution by-products

There are anticipated environmental risks

Seaweed Cultivation

Alkalinity Enhancement

Electrochemistry

- Disease; genetics
- Marine mammal

- Dissolution by-products
 - ➤ Possible negative

 Mortality of marine life from intake pipes

However, there is no framework to evaluate these risks

phytoplankton

Deep-sea changes

phytoplankton communities

growth

Dissolution by-products

Engagement with and products for our member agencies

- A framework to balance the pros and cons of mCDR technologies
 - ➤ How efficient is the mCDR technology?
 - What are the environmental risk?

- An expanded toolkit of ocean solutions
 - ➤ Are there other options to reduce effects of eutrophication that are more cost effective than nutrient management?