Molecular tools for bioassessment

Susie Theroux June 1, 2018

Background

- Bioassessment is an integral part of regulatory programs
 - Invertebrates in wastewater outfall assessment
 - Invertebrates and algae for stream biointegrity
- Sensitive/endangered species monitoring critical for protecting beneficial uses
- Invasive species monitoring

Problems facing bioassessment

Spatial/temporal resolution

- Rare species are difficult to detect
- Need to be in the right place at the right time

Accuracy

- Certain species are difficult to identify using morphology
- Ambiguous/cryptic species assemblages in algae, invertebrates, fish

Capacity

 Generating taxonomy data takes TIME (~6 months/sample) and MONEY (~\$1000/sample)

DNA-based solutions

Spatial/temporal resolution

- Able to detect trace levels of DNA
- DNA can persist after an organism is gone

Accuracy

- DNA sequencing can result in higher taxonomic resolution
- Can even detect sub-species populations

Capacity

 DNA sequencing has the potential to generate data up to 10x faster and 10x cheaper than morphological approaches

Goals of this talk

- State of the science: DNA-based approaches
- SCCWRP's role in advancing DNAbased bioassessment
- •How close are we to using these methods on a routine basis?

Six steps to generate taxonomy data for bioassessment

Six steps to generate taxonomy data for bioassessment

 Efforts focused on adapting for regulatory programs

Step 1: Sampling

- SCCWRP is developing DNA sampling protocols for multiple species in multiple habitats:
 - Stream algae
 - Steam invertebrates
 - Marine invertebrates
 - Ichthyoplankton
 - Fish

Sampling DNA DNA extraction DNA sequencing Bioinformatics Taxonomy ID Biological indices

Algal DNA sampling

Supplies:

47mm Whatman/Swinnex filter holders* -OR- Filter funnel* 47mm polycarbonate filter, 0.2µm pore size (Whatman Nuclepore Polycarbonate #111106) 47mm polycarbonate filter, 5µm pore size (Willipore Isopore Polycarbonate #11MTP04700) Sml screw cap tube pre-loaded with preservation solution (bead solution, Mobio #12855-50-BS) 60ml Syringe with luer lock* (for syringe filtering only) 25mm Swinnex filter holder with luer lock* (for syringe filtering only) 500ml of 11 bottle* 100ml deionized water (DI H2O) Latex gloves Tweezers/forceps*

 Items should be sterilized before use and between sampling sites to prevent cross-contamination. To sterilize, soak in acid wash (1% solution of hydrochloric or nitric acid), rinse in DI H2O, and autoclave OR soak in 10% bleach and rinse with DI H2O.

Figure 1. A: 47mm Swinnex, 25mm Swinnex. B: Assembled syringe, 25mm Swinnex and 47mm Swinnex. The 25mm Swinnex is used as a connector between the syringe and 47mm Swinnex. C. Filter funnel assembled.

Composite sample

Algal DNA sampling

Partner sampling:

- Perennial Stream
 Assessment (PSA)
- Reference Condition Monitoring Program (RCMP)
- Stormwater
 Monitoring Coalition
 (SMC)
- Regional Water Boards 2, 4, 9

Algal DNA sampling

	Time	Cost/sample
Morphology	6 months	\$1200
DNA	3 weeks	\$300

Cheaper! Faster! Better?

Algal DNA: bias and repeatability

Morphology-based taxonomy

Algae DNA sampling: cost/time

Take-home:

- Algae DNA sampling is easily integrated into existing protocols
- DNA results delivered faster and lower cost/sample
- DNA sequencing results have better repeatability than morphology-results
- SCCWRP also has DNA sampling protocols for other organisms in other systems (ichthyoplankton, invertebrates)

Sampling

DNA sequencing

> Bioinformatics

Taxonomy ID

Biological indices

Step 2: DNA extraction

- Many commercial DNA extraction kits available
- Taxonomy results can vary depending on extraction method

Sampling

extraction

DNA sequencing

> **Bioinformatics**

Taxonomy ID

Biological indices

Step 2: DNA extraction

- Use DNA standard to quantify DNA extraction efficiency
- Synthesized microbial community

Step 2: DNA extraction

Take-home:

- DNA extractions with defined synthetic communities can be used to set quality control thresholds
- Will ensure that program-wide methods yield comparable data

Step 3: DNA sequencing

- There are many popular DNA (meta)barcode regions for sequencing environmental communities:
 - 16S: bacteria

Sampling

- 18S: eukaryotic organisms
- **CO1**: eukaryotic organisms
- rbcL: phototrophs
- Algae DNA pilot studies: compare taxonomy results using different barcode regions

DNA

extraction

DNA

sequencing

Step 4: Bioinformatics

- Bioinformatics is a rapidly evolving field
- Many pipelines available to process raw DNA sequences and generate taxonomy data
- Every step in the bioinformatics pipeline can influence your end result
- SCCWRP is working to standardize these pipelines
- Create recommended pipelines that can be used by broader community

Example bioinformatics pipeline

Intercalibration study

- Setting standards for QA/QC helped resolve differences in pipeline output
 - Clustering method
 - DNA reference database
- **Take-home:** Bioinformatic QC guidelines will ensure results are comparable when generated by outside user community

Step 5: Taxonomy assignment

- Your DNA taxonomy is only as good as your DNA library
- The quality and completeness of your DNA reference database heavily influences the quality of resulting taxonomy data
- SCCWRP is spearheading the development of DNA libraries for:

DNA

extraction

DNA

sequencing

• Algae

Sampling

• Invertebrates

West Coast invertebrate DNA library

- Key partnerships to help create West Coast DNA library for invertebrates:
 - Bight program
 - WAML
 - Smithsonian Institution
- Coordinated sampling with member agencies and partner organizations to sample a broad geographic range

Western Association of Marine Laboratories (WAML)

West Coast invertebrate DNA library

- Smithsonian will identify and sequence DNA barcode of organisms
- This effort will help fill in the critical gaps in the marine invertebrate DNA library
- Building capacity to use molecular approach for marine invertebrate bioassessment

Western Association of Marine Laboratories (WAML)

Step 6: Biological indices

- Adapting existing bioassessment indices to be compatible with molecular data
- Creating new bioassessment indices from DNA sequence data
- State Water Board prioritizing the development of DNAcompatible algal index

DNA

extraction

Sampling

DNA

sequencing

Bioinformatics

Taxonomy ID

Valentine Vasselon

Biological

indices

eDNA sampling: the future of bioassessment

- eDNA = "environmental" DNA
- Excellent option for monitoring of sensitive, endangered, or invasive species
- Quantify DNA of interest using speciesspecific probes and qPCR

Understanding the fate of eDNA

eDNA "spiking" studies

- Use non-native DNA to track eDNA dispersal, degradation, and propagation
- Test under both "natural" and unnatural conditions

California mussel (Mytilus californianus)

Coyote Creek

Upper San Juan Creek

Understanding the fate of eDNA

eDNA "spiking" studies

- Use non-native DNA to track eDNA dispersal, degradation, and propagation
- Test under both "natural" and unnatural conditions

California mussel (Mytilus californianus)

Coyote Creek

Upper San Juan Creek

Implications of eDNA study

- 1. Standardized eDNA sampling protocols
 - Scalable
 - Consistent
 - Sterile
- 2. Guidance on predicting the fate of DNA
- 3. Recommendations regarding negative results
 - Setting confidence thresholds for nondetection

RB9 eDNA study

Holy Jim

Bluewater Creek

Arroyo Seco

Pauma Creek

W fork SLR Agua Caliente

Boden Creek

Cedar Creek

Boulder Creek 🤜

Sweetw

Oak Spring Canyon

Pine Valley

Airport Trib

Status: DNA-based bioassessment

Algal bioassessment

- State Water Board is moving forward with developing algae DNA for bioassessment
- Field collection methods established
- Refining sequencing approach and bolstering DNA libraries

Invertebrate bioassessment

- Nationally, many efforts to test barcoding in invertebrates
- Sequencing approaches are standardized
- DNA library development still needed
- More CA-based studies needed

eDNA monitoring

- Sampling methods are standardized
- Sampling programs are scalable and adaptable to a variety of settings
- Pilot studies across
 California
- eDNA modeling ongoing

How can SCCWRP support you?

Joint studies

- eDNA sampling for species of interest
- eDNA spiking studies in variable systems
- Paired morphology and DNA surveys for invertebrates, algae, ichthyoplankton
- Sampling for DNA library development
- Training in DNA sampling and computational analyses