Using Flow-Ecology Relationships to Inform Watershed Management

Eric D. Stein
Biology Department

Hydrology is an Integrative Driver of Stream Health

If you can mitigate hydrologic alteration, you'll solve a lot of other problems

Flow Ecology is Typically Species-Specific

Setting Flow Targets to Inform Management Decisions

Why is it So Difficult?

Lots of different stream types

Many different methods to choose from

Statistical approaches

Mechanistic approaches

Literally hundreds of metrics that could be applied

Coordination Challenges

Statewide E-flows Framework

Statewide approach for setting coarse scale flow targets

Site specific e-flows where necessary

Data sharing (open data) + information dissemination to the public

Coordination at the Technical Level

Statewide Targets by Stream Class

Ecological Limits of Hydrologic Alteration (ELOHA)

- Estimate degree of hydrologic alteration
 - Calculate a series of flow metrics
 - Current vs. "natural" conditions
- Compare hydrologic change to response of the biological community
 - Based on benthic invertebrate CSCI
 - Establish thresholds of biological response
- Develop an index of hydrologic alteration based on <u>priority metrics</u>
- Apply index to evaluate management options in terms of their likely effect on biological communities

Estimating Hydrologic Change

Bin

Bin

Compare reference vs. current flow to produce measures of hydrologic change

Consider a Broad Suite of Flow Metrics

Magnitude

- streamflow (mean, max)
- median annual number of high flow events

Variability

- median percent daily change in streamflow
- Interannual variability (min, max, median)

Wet yearsDry years

conditions

Average years

All years

Evaluate for multiple climatic

- Duration
 - Storm flow recession
 - Duration above baseflow
- Timing
 - month of minimum streamflow
 - Frequency of high flow events

Establish Thresholds; example High Duration (days)

Logistic regression: <u>Likelihood</u> of healthy biology at each level of hydrologic alteration

Select Priority Metrics

Affects in-stream biology

Differentiate reference vs. non-reference

Non redundant, cover all aspects of flow

Amenable to management actions

Priority Metrics (expressed as CHANGE in metric value)

Hydrograph Component	Metric Definition	Critical precipitation condition	Decreasing Threshold	Increasing Threshold
Duration (days)	longest number of consecutive days that flow is between the low and high flow threshold	Average	-64	NT
	longest number of consecutive days that flow was greater than the high flow threshold	Wet	-3	24
Magnitude (cms)	Maximum mean monthly streamflow	Wet	NT	1.5
	streamflow exceeded 99% of the time	Wet	NT	32
Variability (unitless)	Richards-Baker index of stream flashiness	Dry	NT	0.25
Frequency (# of events)	number of events that flow was greater than high flow threshold	Dry	NT	3

Regional Hydrologic Condition

Map Hydrologic Alteration

Flow Management Zones

Scenario Analysis: Alvarado Creek Stormwater Management

Alvarado Creek Results

Metric	Units	Imperviousness			Target	
		2%	5%	10%	25%	Upper threshold
MaxMonthQ	cms	0.22	0.56	1.12	2.81	0.2
Q99	cms	6	31	69	71	70
RBI	unitless	0.15	0.25	0.33	0.41	1.4

- 85% capture produces hydrologic conditions associated with healthy invertebrates
- Must reduce effective imperviousness to 2-5% to provide optimal hydrologic conditions
- Flashiness not an issue for this site

Future Directions to Inform Water Resources Management

- Develop flow-ecology relationships for other biological endpoints in addition to benthic invertebrates
 - Algae, fish, riparian habitat
 - Framework to inform tool selection based on situation
- Improve ability to discern flow effects vs. habitat effects
- Investigate implications of "shifting baselines"
 - Changes in perenniality of streams
 - Drought and climate change
- Incorporate flow considerations into technical work on State's Biointegrity and Biostimulatory Policy
 - Case study applications in local watershed efforts

