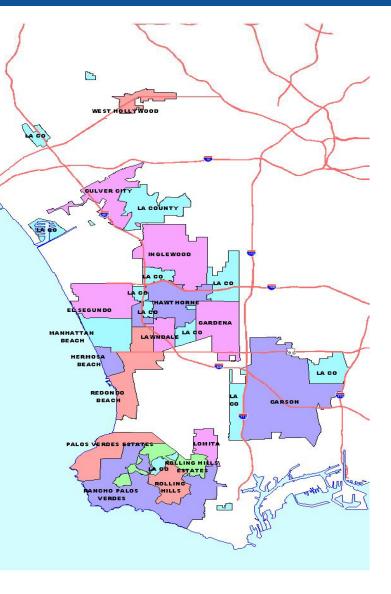


West Basin Ocean Water Desalination Program High Salinity Study Results


Management of Brine Discharges Science Advisory Panel Meeting December 8, 2011

Who is West Basin?

LA COUNTY

- Wholesaler of imported water
- Industry leader in recycling & conservation
- Serve 1 million people in 17 cities
- Provide enough water to fill Rose Bowl 850 times each year

Pilot Plant Desalination Background

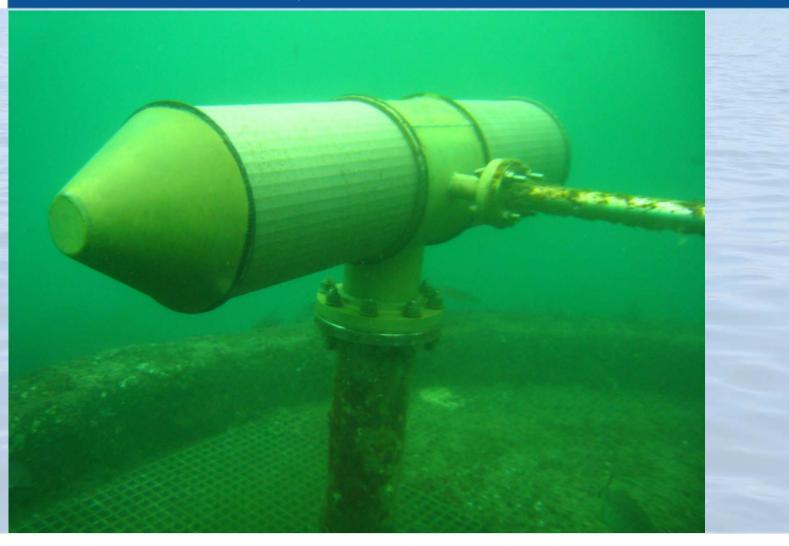
Project Objectives Demonstration Project

- Step of Due Diligence in Full-Scale Development
- Certify Processes at Full-Scale Level
 - Intake Study
 - Process Optimization
 - Energy Minimization
 - High Salinity Study
 - Regulatory Compliance
- Stakeholder Education

Quick Facts Demonstration Project

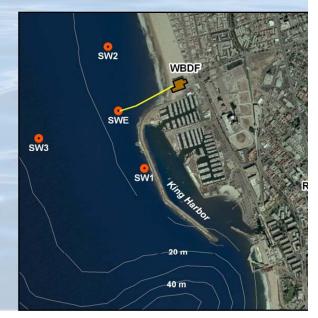
- Location: Redondo Beach, CA
- Intake:
 - Wedgewire Passive Screens (1mm & 2mm slot size)
 - Subsurface Infiltration Gallery Pilot
- Project Capacity:
 - 0.5 MGD (Intake)
 - 35 GPM (Product Water Production)

- Process:
 - Pretreatment/Ultra-Filtration (Zeeweed 1000)
 - Desalination/Reverse Osmosis (Hydranautics SWC5)



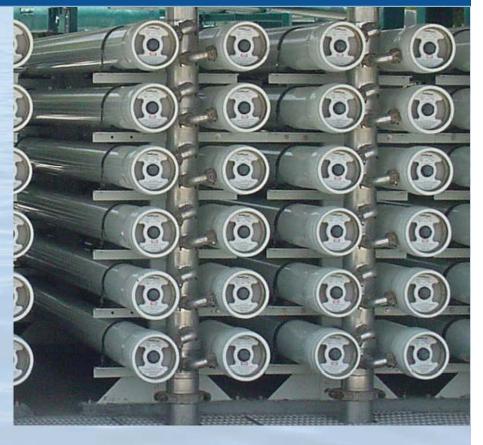
0.5 MGD Demonstration Project Demonstration Project Highlights

Wedgewire Screen Demonstration Project



Impingement & Entrainment (I&E) Study Demonstration Project

- Establish baseline characterization of fish eggs and larval stages of fish & invertebrates
- Evaluate operational effectiveness of intake technologies
- Model potential impacts to local fish and invertebrate populations
- Evaluate corrosion and biofouling of intake technologies



Process Optimization Demonstration Project

- Minimize Operational Costs
- Minimize Capital Replacement
- Minimize Energy Consumption

Regulatory Compliance Demonstration Project

Performing Extensive Water Quality
Discharge Compliance Test

• Performing Suite of DPH Water Qual Tests for Full-Scale Permitting

Evaluating CECs

Monitoring Harmful Algal Blooms

Stakeholder Education Demonstration Project

Project Objectives Demonstration Project

- Step of Due Diligence in Full-Scale Development
- Certify Processes at Full-Scale Level
 - Intake Study
 - Process Optimization
 - Energy Minimization
 - High Salinity Study
 - Regulatory Compliance

Stakeholder Education

Study Objectives *High Salinity Study*

- Research high salinity Impacts on local marine species
- Identify tolerance levels of indigenous organisms
- Identify salinity levels eliciting adverse effects on organisms
- Establish guidance on regulatory limits for concentrate discharge

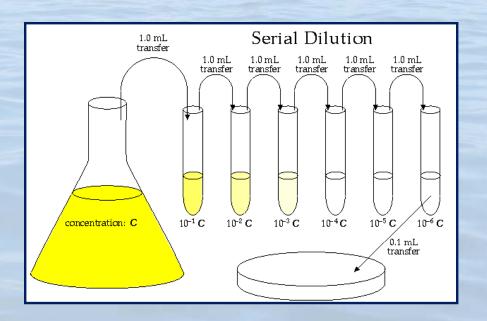
Biological Impacts Study High Salinity Study

Assess short & long term impacts of high salinity discharges

- Short-term: EPA Whole Effluent Toxicity (WET) methods
 - * Accute Toxicity
 - * Chronic Toxicity

- Long-term: On-site mesocosm exposures

- Organism Selection
 - Sensitive life stage
 - Trophic representativeness
 - Regional presence
 - Available protocols
 - Available organisms



- Chronic Toxicity Species
 - Larval mysid shrimp
 - Larval topsmelt
 - Giant kelp spores
- Acute Toxicity Species
 - Larval mysid shrimp
 - Larval topsmelt
 - Juvenile sanddabs

Three Episodes

Five or Six Brine Dilutions

- Chronic Toxicity Species
 - Larval mysid shrimp
 - Larval topsmelt
 - Giant kelp spores
- Acute Toxicity Species
 - Larval mysid shrimp
 - Larval topsmelt
 - Juvenile sanddabs

EPISODE 1 33, 42, 51, 60, 70 PPT

EPISODE 2

33, 36, 39, 41, 45, 50 PPT

EPISODE 3

33, 36, 39, 42, 45, 60 PPT

Acute Toxicity Results

		LOEC			NOEC		
SPECIES	MEAN LC50	E1	E2	E3	E1	E2	E3
Mysid shrimp	49.2	51	50	60	42	45	45
Topsmelt	50.4	51	>50	60	42	50	45
Sanddabs	55.5	60	NT	NT	51	NT	NT

Chronic Toxicity Results

				NOEC		
	SPECIES	LC50	Test	E1	E2	E3
	Mysid shrimp	49.0	Survival	42	42	45
			Biomass	42	41	41
	Topsmelt	50.4	Survival	42	50	45
			Biomass	42	50	45
	Giant Kelp	53.7	Prop Germ	42	41	39
			Growth	42	39	41

Short-term WET Study Conclusions High Salinity Study

- Acute Salinity Limit: 45 ppt
- Chronic Salinity Limit: 41 ppt
- Most sensitive effects levels substantially higher than conceptual COP salinity thresholds.
- Species with highest exposure risk (demersal fish) appear to be least sensitive.
- Existing discharge technologies (i.e., Dilution/Diffusion) can meet the proposed Chronic and Acute thresholds

Long-term Mesocosm Study High Salinity Study

- Long-term Component
 - 300 gallon aquarium divided into two compartments
 - 67 ppt RO concentrate and 33.5 ppt ocean water feeds
 - Carbon columns to remove chloramines
 - Stocked with species indigenous to Southern California
 - Three 2-week intervals at varying salinities: 40, 45 & 50 ppt
 - Three 8 week mesocosm iterations
 - Two sublethal endpoints measured at end of each iteration

Long-term Mescosm Exposure High Salinity Study

Long-term Mesocosm Exposure High Salinity Study

Long-Term Species List			
Rock Crabs	Kelp Perch		
Mussels	Sand Daps		
Splitnose Rockfish	Bat Stars		
Flag Rockfish	Red Abalone		
Shiner Perch	Purple Urchins		
04/22/20			

Long-term Mescosm Study High Salinity Study

- 1st Mesocosm Results
 - All species survived 40 & 45 ppt @ 2 week exposures
 - No observed adverse effects on any species
 - Observed effects on Urchins and Red Abalone @ 50 ppt
 - No statistical impact to Sanddap weights/lengths @ 50 ppt
- Next Steps
 - Mesocosm Trial No. 2 & 3
 - Salinity Intervals Considered: 36.5, 40, & 47ppt
 - Evaluate post-salinity Purple Urchin embryo development @

40

and 47 ppt

Suggested SWRCB Policy Considerations

- Regulations to be based of site specific species salinity tolerance
- Best available discharge technology identified by project proponer
- Use of dilution & mixing allowed to meet salinity objectives
- Policy should support the concept of a large ZID for energy mixing
- Provide credit for gravity energy potential for falling brine and slop bottom
- Acceptable brine models should be identified and standardized

Questions ?????