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Southern California Bight
Kenneth Schiff, Karen McLaughlin, Shelly Moore, Yiping Cao
Southern California Coastal Water Research Project, Costa Mesa, CA, United States

19.1 PHYSICAL AND ECOLOGICAL SETTING

The Southern California Bight (SCB) coastal environment is a unique ecological resource (Fig. 19.1). Extending >600 km 
from Point Conception (United States) to Punta Colonet (Mexico), the SCB is a dynamic subtemperate region where the 
cold, southward-flowing California Current mixes with the warm, northward-flowing California Countercurrent (Hickey, 
1993). Large variations of interannual average ocean temperature occur during El Niño and La Niña, ranging >10°C in
surface waters of the SCB.

The SCB borderland has relatively complicated geography (Dailey, Anderson, Reish, & Gorseline, 1993). Located at 
the margin of the North American and Pacific plates, this active tectonic region has a narrow continental shelf averaging 
5 km width. At the continental shelf break in roughly 200 m depth, continental slopes plunge to 1000 m depth forming deep-
water basins, only to rise again in a chain of nine offshore islands (Fig. 19.2).

The SCB’s heterogenous physical settings and dynamic ocean currents provide habitat for a large diversity of flora and 
fauna (Dailey et al., 1993). Cumulative across all habitats, >350 fish and 5000 invertebrate species are endemic to the SCB,
including over one dozen threatened or endangered marine mammals and seabirds. Biomes are generally spread across 
latitude which varies with ocean temperature—warmer species to the south and colder species to the north—and depth. 
Population recruitment and senescence are often coincident with El Niño when warm water species dominate and La Niña 
when cold water species dominate. Approximately 85% of the species in the SCB are at the extreme northern or southern 
end of their range.

The SCB has several ecologically critical habitats. One characteristic ecosystem in the SCB is subtidal rocky reefs 
dominated by the giant kelp Macrocystis (Fig. 19.3). These “kelp forests” are estimated to be among the most productive on 
earth, rivaling coral reefs (Claisse et al., 2014; Pondella II et al., 2015). The SCB has 331 coastal wetlands (Fig. 19.4), but 
only 23 are >100 HA and most are very small and fractured (<1 HA). The majority (57%) of the SCB coastal wetland area
has been lost to coastal development since the turn of the 19th century (Stein et al., 2014). The remaining coastal wetlands 
are critical habitat providing fish nurseries and overwintering stops for birds along the Pacific Flyway (Dailey et al., 1993).

19.2 HUMAN INFLUENCE

Perhaps because of its unique physical setting and ecological resources, the SCB is also a unique economic resource. 
Renowned for its beaches, the SCB hosts ~175 million beach visits annually, more than Florida, Hawaii, and New Jersey 
combined (Schiff, Morton, & Weisberg, 2003). The five coastal counties in the SCB generate an estimated $22 billion 
annually in gross revenue and support over 800,000 jobs from ocean-related tourism and leisure activities (Kildow & 
Colgan, 2005).

The intersection of biodiversity and economics means that the SCB is a coastal ecosystem vulnerable to the impacts of 
anthropogenic influences. More than 20 million people live within an hour’s drive of the SCB coast. It is home to the na-
tion’s two largest commercial ports (Los Angeles and Long Beach) and third largest naval facility (San Diego), as well as 
the world’s largest manmade small-craft harbor (Marina del Rey). There are 17 wastewater treatment plants that discharge a 
cumulative 4 × 109 L day−1 of treated effluent to the SCB (Lyon & Stein, 2009). While precipitation is relatively infrequent
in the SCB, averaging 12 storms that total 30 cm year−1 (Ackerman & Schiff, 2003), precipitation is frequently intense, with 
stormwater flows routinely increasing orders of magnitude in less than an hour (Schiff & Tiefenthaler, 2011). In total, there 
are 17 major watersheds that discharge largely untreated surface runoff from urban and agricultural land uses to the SCB.

Chapter 19

SCCWRP # 1051



466 World Seas: An Environmental Evaluation

FIG. 19.1 Map of the Southern California Bight.



FIG. 19.2 The offshore chain of islands.

FIG. 19.3 The giant kelp Macrocystis is a keystone species of the shallow rocky sublittoral zone.

FIG. 19.4 One of the remaining salt marches along the southern California coast.
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19.3 ASSESSING HUMAN IMPACTS IN THE SCB

When the status of the SCB was documented in the Seas at the Millennium (Schiff, Bay, Allen, & Zeng, 2000), impaired 
sediment quality from legacy contamination was a primary issue. State and federal agencies struggled with not just how 
to clean up contaminated sites, but also how to assess which sites needed clean-up and how clean SCB sediment should 
be. One outcome at the millennium was the adoption of sediment quality objectives (SQOs) by the State of California, a 
first-of-its-kind regulation anywhere in the United States (SWRCB, 2009). These precedent-setting regulations utilized a 
weight-of-evidence approach combining sediment chemistry, sediment toxicity, and benthic infauna to assess direct con-
taminant effects on sediment dwelling organisms (Bay & Weisberg, 2008).

The goal of this chapter is to update the status of the SCB, documenting where management actions have succeeded and 
uncovering new challenges facing SCB managers. To that end, the chapter is broken into four sections:

●	 Sediment quality
●	 Beach water quality
●	 Plastic trash and debris
●	 Ocean acidification (OA)

Each one of these issues are captured in the SCB Regional Marine Monitoring Program (Bight Program), which takes
a collaborative, integrated approach to addressing holistic questions about the SCB. The Bight Program was born from the 
frustration of environmental managers’ inability to answer simple, holistic questions about the SCB coastal environment 
(NRC, 1990). Initiated in 1994, the Bight Program has grown both in size and scope with each successive survey, which 
has been conducted about every 5 years (1998, 2003, 2008, 2013) (Schiff, Trowbridge, Sherwood, Tango, & Batiuk, 2016). 
By utilizing the Bight Program, the results described herein incorporate hundreds of sites and the collective conclusions 
of dozens of regulatory and regulated management agencies, nongovernmental organizations, and academic researchers.

19.4 SEDIMENT QUALITY

The SCB has a long history of sediment contamination (Schiff et al., 2000). A focal point has been on four large wastewater 
outfalls that discharge to the ocean. Cumulatively, these outfalls discharge advanced primary and secondary treated effluent 
through engineered diffusers at depths of 60–100 m to maximize dilution and keep the buoyant plumes submerged below 
the thermocline. Even with a rapidly growing population that has nearly doubled in the last 50 years, effluent volumes 
have decreased by 10%, and pollutant loading for most parameters has decreased by >95% (Lyon & Stein, 2009). The
dramatic reductions in large wastewater flows and pollutant loads are generally attributed to reclamation, source control, 
and improved treatment. The four large wastewater outfalls in the SCB are supplemented by 13 small wastewater outfalls. 
The small outfalls, which discharge in much shallower water closer to shore, cumulatively comprise <10% of the flow and
<5% of the pollutant loading of the large outfalls (Lyon & Stein, 2009).

While pollutant loading from wastewater effluent has been dramatically reduced, SCB stormwater has not experienced 
comparable declines in pollutant loading (Ackerman & Schiff, 2003). The Mediterranean-like SCB climate is arid, experi-
encing a long dry season from March to October that enables contaminant buildup in the region’s densely populated coastal 
urban areas. The SCB climate is punctuated by a handful of short but intense storm events during the winter season. To 
prevent flooding during these storm events, engineers have constructed a labyrinth of concrete culverts and lined-stream 
channels that prevents flooding by efficiently and rapidly transporting urban runoff to the coastal ocean. Because of the 
large increase in storm flows, there are no combined stormwater-sanitary sewer systems in the region. Thus, urban runoff 
receives no treatment prior to discharge into the SCB.

In this section, we present integrated findings from the Bight Program’s sediment quality monitoring element. For more 
than two decades, the Bight Program has addressed questions about the extent and magnitude of sediment quality impacts 
in the SCB. The extent and magnitude of sediment quality impacts is contextualized by comparing different habitats of 
interest, and by comparing changes in extent and magnitude dating back to 1998, just prior to the millennium.

19.4.1 Approach

A total of 385 sites were sampled for the Bight Program, encompassing approximately 15,911 km2. Sites were selected via 
a stratified, random sampling design to remove bias and ensure statistical representativeness (Stevens Jr, 1997). Sediment 
was sampled using a modified Van Veen grab from 12 different habitats that fall into two broad categories: embayment 
and offshore habitats. Embayments encompass habitats including estuaries (mouths of coastal streams and rivers), marinas 
(small boat harbors), ports (commercial, industrial, and naval activity), and other open bay habitats (i.e., open navigation 
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channels like the Los Angeles Outer Harbor and San Diego Bay). Offshore habitats include the mainland continental shelf 
(5–200 m depth), the northern Channel Islands (30–120 m depth), the continental slope and basins (200–1000 m depth), and 
submarine canyons (10–1000 m depth). All sediment samples were analyzed for 198 chemical contaminants and benthic 
infaunal community composition. A subset of sites was analyzed for sediment toxicity (B’13 Benthic Committee, 2013; 
B’13 CIA Committee, 2013a, 2013b; B’13 Field and Logistics Committee, 2013).

To provide a more comprehensive understanding of sediment quality in the SCB, sediment chemistry, sediment toxicity, 
and benthic community structure were integrated into a single sediment condition score and placed into one of five categories:

●	 Unimpacted. Confident that sediment contamination is not causing significant adverse impacts to aquatic life living in 
the sediment.

●	 Likely unimpacted. Sediment contamination is not expected to cause adverse impacts to aquatic life, but some dis-
agreement among the three different lines of evidence reduces certainty in classifying the site as unimpacted.

●	 Possibly impacted. Sediment contamination may be causing adverse impacts to aquatic life, but these impacts are ei-
ther small or uncertain because of disagreement among the three different lines of evidence.

●	 Likely impacted. Evidence for a contaminant-related impact to aquatic life is persuasive, even if there is some disagree-
ment among the three different lines of evidence.

●	 Clearly impacted. Sediment contamination is causing clear and severe adverse impacts to aquatic life.

This scoring system follows a framework adopted by the State of California to assess sediment quality in enclosed bays 
and estuaries (SWRCB, 2009); the State considers the first two categories (unimpacted and likely unimpacted) as healthy 
or representative of conditions undisturbed by pollutants in sediment. While the State’s regulatory framework only applies 
to embayments, the Bight program adapted the same approach for assessing sediment quality on the mainland continental 
shelf and offshore islands (B’13 CIA Committee, 2016).

19.4.2 Extent and Magnitude of Impacted Sediment Quality in the SCB

Overall, sediment quality in the SCB is good. A combined 93.8% of the seafloor area is clearly or likely unimpacted, and no 
site is in the most impacted category of clearly impacted (Fig. 19.5). The remaining 6.2% of area with impacted sediment 
quality is not dispersed evenly throughout the SCB. Impacted sediment quality disproportionately occurs in embayments, 
where 18% of area is impacted, compared to 5% in offshore habitats (Fig. 19.5). Nearly, half of the area in marinas (48%) 
and about one-third (35%) of the estuaries have impacted sediment quality, compared to less than one-seventh of the area 
in ports (13%) and bays (11%).

In general, sediment quality in the SCB reflects proximity to pollutant sources. For example, copper and other biocides are 
frequently used in vessel bottom paints to retard the growth of fouling organisms (Schiff, Diehl, & Valkirs, 2004). This likely 
result in marinas having the highest sediment copper concentrations of any habitat in the Bight (Dodder, Schiff, Latker, &  
Tang, 2016). Similarly, estuaries are a sink for untreated wet and dry weather discharges from urban runoff from contribut-
ing watersheds. As a result, some of the region’s greatest zinc, polynuclear aromatic hydrocarbon (PAH), and current- use 
pesticide concentrations are observed in estuaries (Dodder et al., 2016). Zinc, PAH, and current-use pesticides originate 
from land-based activities (i.e., automobiles or home applications) and are washed off during storm events (Schiff &  
Sutula, 2004; Stein, Tiefenthaler, & Schiff, 2006; Tiefenthaler, Stein, & Schiff, 2008).

FIG. 19.5 Extent of contaminant impacted sediments by habitat defined by multiple lines of evidence (sediment chemistry, sediment toxicity, benthic 
community structure).
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19.4.3 Trends in Extent and Magnitude of SCB Sediment Quality

Although embayments have the greatest relative extent of sediment contamination, this extent has been steadily decreasing 
since the turn of the century (Fig. 19.6). Between 1998 and 2013, the extent of contaminated sediments decreased from 55% 
to 18% of embayment area. Not only has the extent of sediment quality impact decreased over time, but the magnitude of 
impact has also decreased. In 1998, roughly 5% of the embayment area was classified as Clearly Impacted. In 2013, no site 
was classified as Clearly Impacted. Similarly, in 1998, 15% of the embayment area was classified as Likely Impacted; the 
extent of this impact has monotonically decreased, to 5% in 2013.

The 15-year trend of reduced sediment quality impacts in Southern California embayments reflects improvements 
within all three lines of evidence, which has provided additional confidence in the observed trends (B’13 CIA Committee, 
2017). The moderate and high disturbance of infaunal biological communities decreased from 14% of embayment area in 
1998 to 7% in 2013. Likewise, moderate and high sediment toxicity decreased from 30% of embayment area in 1998 to 4% 
in 2013. Meanwhile, the chemistry line of evidence showed the largest relative decrease of impacted embayment sediment 
quality, with the moderate and high exposure from sediment chemistry decreasing from 61% of embayment area in 1998 to 
28% in 2013. Further details can be found in Bight Program’s three final assessment reports for each line of evidence (Bay 
et al., 2015; Dodder et al., 2016; Gillett, Lovell, & Schiff, 2017).

19.4.4 Challenges for the Future

Environmental managers have been addressing sediment quality of the SCB for decades. Research into sediment quality 
effects dates to the 1970s, and this investment continues to pay dividends. The Bight Program finds signatures from both 
point sources including wastewater and stormwater, and nonpoint sources such as boats and atmospheric deposition (Schiff 
et al., 2000). Sediment quality near some point sources has been improving steadily over the same time period in which 
SCB management actions have occurred (Stein & Cadien, 2009).

Other sediment quality problems are not as easy to solve. Constituents of emerging concern (CECs) are a good example 
(Maruya et al., 2015). While the Bight Program measures sediment samples for nearly 200 chemicals, most of these are 
legacy constituents such as trace metals, polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), 
and dichlorodiphenyltrichloroethane (plus degradation products, DDTs). Tens of thousands of CECs exist that are rarely 
measured and the Bight Program is just beginning to address this need. For example, polybrominated diphenyl ethers 
(PBDEs, a fire retardant) and pyrethroid pesticides are now in common use and these CECs were widely detected during the 
Bight Program (Dodder et al., 2012; Lao et al., 2012). However, the use of PBDEs was discontinued in 2008 and the result 
of this source control was observed during the Bight 2013 Program (B’13 CIA Committee, 2016). Average sediment PBDE 
concentrations dropped by an order of magnitude between 2008 and 2013. In contrast, pyrethroids are still in common use 
and average sediment pyrethroid concentrations have changed little in this 5-year time span.

FIG. 19.6 Relative extent of sediment impact in continental shelf or embayment area between 1998 and 2013 based on by multiple lines of evidence 
(sediment chemistry, sediment toxicity, benthic community structure).
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19.5 BEACH WATER QUALITY

Beaches are a critical element of the Southern California lifestyle. Surfing, body surfing, swimming, sailing, and scuba 
diving draw hundreds of millions of beachgoers each year. To ensure that SCB beaches are “swimmable,” environmental 
managers monitor over 570 sites and 87,000 analyses each year (Schiff et al., 2003). This routine monitoring targets fecal 
indicator bacteria (FIB), including total and fecal coliforms and enterococci. Although none of these FIB are pathogenic 
and will cause illness, FIB are numerous in sewage and are much easier to measure than the pathogens themselves. Because 
routine monitoring in the SCB is focused on public health protection, the study design is focused on potential hot spots to 
uncover a problem early should it occur. In the SCB, these hot spots typically occur near flowing storm drains.

Managers face two significant challenges by relying on FIB for hotspot monitoring. First, FIB are not specific to humans 
or sewage; FIB can come from any warm-blooded animal (i.e., dogs, cats, birds, etc.) and can regrow in the  environment 
(Desmarais, Solo-Gabriele, & Palmer, 2002; Ferguson et al., 2016); nonhuman FIB sources do not carry the same pathogen 
load as human sewage (Soller et al., 2014). Thus, in the absence of human fecal sources, FIB may not translate to the same 
human health risk as FIB from human sewage. Second, the focus on monitoring hotspots makes it difficult to compile re-
gional FIB data for regional assessments; the entire region would look like a hotspot.

In this section, we present the Bight Program’s efforts to identify spatial and temporal patterns in SCB beach water 
quality. The Bight Program focuses on capturing a holistic view of beach water quality, and then uses regional assessments 
to determine pervasiveness of human sources. Human sources are quantified using molecular technology that targets the 
HF183 genetic sequence of 16S ribosomal DNA from Bacteroidales, a DNA fragment known to be specifically human as-
sociated (Boehm et al., 2013).

19.5.1 Approach

The Bight Program uses a stratified random sampling design to address water quality along SCB beaches, and focuses on 
multiple habitats, including all open coastal beaches and beaches directly in front of flowing storm drains (Noble et  al., 
1999). During summer 1998, 307 sites were sampled between Point Conception (United States) and Punta Colonet (Mexico). 
Samples were collected weekly for 5 weeks. This design was repeated during winter 1999 for 240 sites. During winter 2000, 
a one-time sampling event was conducted following a storm event that brought at least one in of rainfall to every area of the 
SCB coastline. Samples were analyzed for total coliform, fecal coliforms (or Escherichia coli) and enterococci using standard 
methods, and results were compared to their single-sample water quality objectives (Noble et al., 1999). These three integrated 
analyses allow for a comparison of beach water quality during summer dry weather, winter dry weather, and wet weather.

In 2013, a targeted sampling design was used to evaluate the contribution of human sources to 22 storm drains that 
discharge to SCB beaches (Cao et al., 2017). Fifty weekly samples were targeted during summer dry weather conditions be-
tween 2013 and 2015. A similar design was used specifically to collect samples during wet weather. Storm drains were se-
lected based on frequent historical enterococci exceedances at nearby swimming beaches for which the storm drains serve 
as important source water. Samples were analyzed for enterococci by EPA Method 1600 (US EPA, 2002) or Enterolert and 
the HF183 human fecal marker (Cao et al., 2017).

19.5.2 Extent and Magnitude of FIB Water Quality Exceedances at SCB Beaches

Beach water quality across the SCB is generally good in dry weather, unless the site is near a flowing storm drain (Fig. 19.7). 
Only 3% of the shoreline mile-days at SCB beaches exceed water quality standards for FIB, and these exceedances are 
 triggered almost exclusively by enterococci. However, the exceedance rate jumps to 38% for sites directly in front of 
 flowing storm drains during summer dry weather. Similar results are observed during winter dry weather.

FIB exceedances differ markedly following a storm event, with 65% of the SCB shoreline exceeding water quality stan-
dards for enterococci in wet weather (Fig. 19.7). Beaches directly in front of drains experience an even higher exceedance 
rate of 85%. In sum, enterococci levels at most SCB beaches look like the end of a storm drain following storm events.

19.5.3 Rate of Human Fecal Influence

The HF183 marker is ubiquitous in monitored freshwater outlets (Fig.  19.8). Although the frequency of human fecal 
contamination (as indicated by the presence of the HF183 marker) differs among sites and between dry and wet weather 
conditions, the HF183 marker is consistently detected during both dry and wet weather (at all but two sites in dry weather, 
and at all sites during wet weather).



472 World Seas: An Environmental Evaluation

Three results of interest emerge from this regional survey of human fecal influences. First, HF183 on average is detected 
at twice the rate in wet weather compared to dry weather, with HF183 quantifiable at 44% of drains in wet weather versus 
22% in dry weather. Second, the rank order of detection frequency by drain changes between dry and wet weather, suggest-
ing the sources of human fecal pollution change in most drains depending on weather condition. Third, enterococci con-
centrations do not correlate with HF183 concentrations in either dry or wet weather, suggesting that there may be sources 
of enterococci that are not of human origin in drain discharges.

19.5.4 Future Challenges

Bight Program findings indicate that water quality at the vast majority of SCB beaches is safe for water-contact recreation 
in dry weather; the one exception is sites near a flowing storm drain in dry weather. In contrast, water quality is poor in most 
SCB locations in wet weather. These findings are consistent with source tracking efforts that show human sources increase 

FIG. 19.8 Frequency of HF183 detection by site in wet versus dry weather conditions. Frequency of HF183 detection is defined as % samples that are 
positive for HF183, and a sample is deemed positive for HF183 if the HF183 marker was amplified in any of the three qPCR replicates. Sites are sorted 
from left to right by frequency of detection under dry weather conditions.

FIG. 19.7 Extent of water quality standard exceedances at all SCB beaches and those located directly in front of storm drains. Extent is compared dur-
ing dry weather and wet weather.
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in storm drain discharges following storm events. However, nonhuman sources of FIB are also detected in SCB storm drains 
that may contribute to exceedances of FIB water-quality objectives.

The differences in sources of FIB to wet weather discharges naturally lead some managers to the concept of health risk. 
There have been a number of epidemiology studies conducted in the SCB during both dry and wet weather (Arnold et al., 
2017, 2013; Colford et al., 2012, 2007; Yau et al., 2014). In each case during dry weather, where human sources of fecal 
pollution existed, there was an increased risk of gastrointestinal illness and this risk frequently was related to enterococci 
concentrations in beach waters (Colford et al., 2012). In wet weather, there was also an increased risk of gastrointestinal 
illness, and this risk was also related to enterococci concentrations (Arnold et al., 2017). A large difference between dry and 
wet weather at SCB beaches, however, was the larger fraction of nonhuman enterococci sources in wet weather discharges. 
This, in turn, changes the relationship between enterococci and gastrointestinal illness. Beach managers are now deciding 
what is an acceptable level of risk. Beach usage in wet weather, while still numbering 105 annually following wet weather, 
is a fraction of what beach usage is in dry weather. However, costs for cleaning up wet weather discharges are orders of 
magnitude greater than dry weather.

19.6 TRASH AND DEBRIS

Trash has emerged as a pervasive global concern in marine environments, impacting aesthetics and ecosystem integrity 
in not only populated coastal areas, but also the most remote parts of the ocean (Moore, Gregorio, Carreon, Leecaster, 
& Weisberg, 2001; NRC, 2009). Trash has become problematic across many discrete habitats, including estuaries, bays, 
shorelines, and open ocean waters, and has impacted the surface, the water column, and benthos. Sources of marine debris 
can be either ocean or land based, and are often attributed to illegal dumping, accidental loss, and natural disasters (EPA, 
2008; Sheavly, 2007). Marine debris can affect local economies through loss of revenue from decreased tourism (Leggett, 
Scherer, Curry, Bailey, & Haab, 2014), and it can harm marine organisms through ingestion and entanglement (Adimey 
et al., 2014; Anastasopoulou, Mytilineou, Smith, & Papadopoulou, 2013; Anderson & Alford, 2014; Boerger, Lattin, Moore, 
& Moore, 2010; Bond et al., 2013; Di Beneditto & Arruda Ramos, 2014; Goldstein & Goodwin, 2013; Lusher, McHugh, 
& Thompson, 2013; Waluda & Staniland, 2013).

Given the potential for marine debris impacts in the SCB, environmental managers have placed emphasis on controlling 
the amounts of debris in runoff from land-based sources to the marine environment. These include total maximum daily 
load (TMDL) regulations that set limits of zero for allowable trash discharges (CRWQCBLA, 2007, 2015), policies that call 
for installation of “full-capture” trash devices in urban areas (SWRCB, 2015), and statewide legislation that bans carry-out 
plastic bags and microplastic beads in personal care products (NCSL, 2017; NRDC, 2015).

In this section, we present spatial and temporal trends for debris on the SCB seafloor. Since the Bight Program’s incep-
tion in 1994, trawling has been used to evaluate the extent and magnitude of anthropogenic debris along the coastal margin. 
Because the Bight Program has been conducting these surveys consistently, it is now possible to examine temporal trends 
over two decades.

19.6.1 Approach

A total of 164 sites were sampled by trawl using a probabilistic design (similar to the sediment quality element of the Bight 
Program, above), enabling unbiased estimates of extent (Stevens Jr., 1997). Sites were sampled from open bays, the continen-
tal shelf and upper continental slope (1–500 m depth). Trawls were conducted using a semi-balloon otter trawl with a 7.6 m 
(25 ft) headrope and 1.3 cm (0.5 in.) cod-end mesh (B’13 Field and Logistics Committee, 2013). Trawls were towed along 
isobaths at a speed-over-ground of 1.0 m s−1 (or 1.5–2.0 knots) for 10 min. Trawl debris were sorted and quantified by record-
ing the specific types of material and the number of pieces of each type. Debris larger than 1.3 cm were quantified and placed 
into categories: plastic, glass bottles, cans, metal debris, lumber, and other (includes fishing gear, tires, cloth, tape, paper, 
fiberglass, clinkers bricks, and caulk). Bight Program trawl surveys were conducted comparably between 1994 and 2013.

19.6.2 Extent and Magnitude of Anthropogenic Debris in the SCB

An estimated 26% of the SCB contains anthropogenic debris, as measured during the 2013 regional survey of the coastal 
seafloor (Fig. 19.9). Plastic has the greatest extent (22% of the SCB). The “other” category has the second greatest extent 
(10% of SCB area), and includes items such as cloth, tape, paper fiberglass, clinkers, and caulk. Lumber and metal debris has 
the smallest extent (2% of SCB area). While plastic is the most abundant item sampled, overall abundance of trawl-caught 
debris has generally been low. One item per trawl is the average abundance for the vast majority of trawls in the SCB.
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19.6.3 Trends in Extent and Magnitude of Anthropogenic Debris of the SCB

The extent of anthropogenic debris in the SCB has increased over the past 20 years (Fig. 19.10). Between 1994 and 2013, 
there has been a nearly monotonic increase in the percent of area with anthropogenic debris on the SCB continental shelf 
(14% in 1994 to 23% in 2013). Much of this change is driven by plastic debris, which has increased in extent threefold over 
the two decades (6% in 1994 to 18% in 2013). Notably, this increase is not associated with changes in sampling frequency, 
techniques, or measurement, as each of these factors was held consistent during all regional surveys.

19.6.4 Future Challenges

The Bight Program’s regional surveys of marine debris show that the majority of trash on the near-coastal seafloor appears 
to be land based, not ocean based. This conclusion is also supported by a 2013 Bight Program survey of micro-plastics in 

FIG. 19.9 Extent of anthropogenic debris (% of area ± 95% CI) in 2013 in the Southern California Bight by debris type.

FIG. 19.10 Comparison of trends in extent of anthropogenic debris and specifically plastic debris on the continental shelf of the SCB between 1994 
and 2013.
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SCB seafloor sediments (Moore, Sutula, Von Bitner, Lattin, & Schiff, 2016). In the micro-plastics survey, micro-plastics 
embedded in seafloor sediment show clear spatial trends closest to land-based discharges, such as estuaries and embay-
ments near urban rivers and streams. Furthermore, regional surveys of trash in streams draining to the SCB are unambigu-
ous; nearly 100% of the roughly 5000 km urban stream-miles in the SCB contain trash (Moore et al., 2016). During one 
72-h SCB storm event alone, ~30 metric tons of plastic are estimated to have been discharged from the Los Angeles and 
San Gabriel Rivers (Moore, Lattin, & Zellers, 2011).

Because most of the trash found in the SCB is land based, the most effective solutions for remediating marine debris are 
likely to be land based. Despite relatively recent policy and legislative mandates to control trash entering streams and the 
coastal ocean, it is not yet clear if these actions have been effective. Initial evidence from the Bight Program suggests that 
municipal bans on carry-out plastic bags have reduced the abundance of plastic bags in nearby streams about three-fold, 
compared to municipalities without the bans (Fig. 19.11).

19.7 OCEAN ACIDIFICATION

Global increases in atmospheric carbon dioxide (CO2) have led to increases in oceanic dissolved CO2 concentration, as well 
as concomitant decreases in pH and the depth of aragonite saturation state (Ωarag), a condition known as ocean acidifica-
tion (OA) (Robbins, Hansen, Kleypas, & Meylan, 2010; Zeebe, 2012). These changes have been particularly substantial 
along the US West Coast (Feely et al., 2012, 2016; Feely, Sabine, Hernandez-Ayon, Ianson, & Hales, 2008; Leinweber 
& Gruber, 2013; McLaughlin et al., 2018; Turi, Lachkar, Gruber, & Münnich, 2016), where coastal upwelling frequently 
transports subsurface waters with high levels of CO2 and with low pH to surface waters nearshore (Fassbender, Sabine, 
Feely, Langdon, & Mordy, 2011; Harris, DeGrandpre, & Hales, 2013). Ship-based surveys along the West Coast routinely 
encounter OA hotspots, where large regions of the continental shelf are undersaturated with respect to aragonite (Ωarag < 1) 
in shallow nearshore waters (Feely et al., 2008, 2016). OA hotspots present a potential impairment to the ability of many 
marine organisms to form calcareous shells (Barton et al., 2015; Bednaršek et al., 2017; Fabry, Seibel, Feely, & Orr, 2008; 
Hofmann et al., 2010). Indeed, there is a growing body of evidence that OA may be affecting distributions of calcifying 
species and the health of nearshore marine ecosystems (Barton et al., 2015; Kroeker, Kordas, Crim, & Singh, 2010; Sato, 
Levin, & Schiff, 2017).

Measurements of aragonite saturation state have been conducted predominantly on cruises in deeper oceanic waters. 
However, in nearshore waters like the SCB continental shelf, there are multiple factors that have the potential to exacerbate 
acidification conditions (Duarte et al., 2013; Harris et al., 2013; Hendriks et al., 2015), including anthropogenic nutrient 
contributions from land that can result in eutrophication, which, in turn, can trigger production of CO2 during bacterial 
decomposition of the excess algal mass. However, comprehensive surveys of the SCB continental shelf are lacking, and the 
need for management action to control eutrophication is unknown.

In this section, we present the Bight Program's assessment of OA extent and magnitude on the SCB continental shelf. 
The primary study questions focus on evaluating the status of the carbonate system in the SCB continental shelf, which in-
volves comparing Ωarag in the water column at various locations, depths, and seasons. This assessment provides preliminary 
information to SCB environmental managers on the potential threat posed by OA in the SCB, and on the utility of exploring 
immediate future action as a reasonable next step.

FIG. 19.11 Number of plastic bags/pieces in rivers and streams in Southern California during 2011–13 study. Box plot represents median, 75th, and 
90th percentiles.
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19.7.1 Approach

Discrete water samples for spectrophotometric pH measurements and alkalinity were collected at 72 stations on 22 transects 
across the SCB continental shelf quarterly for 2 years beginning in May 2014. Sample stations ranged from 30 to 200 m 
depth. Samples were collected near the surface and at 2 m above bottom; a subset of 24 stations were limited to a maximum 
depth of 100 m. Water samples were collected using Niskin bottles and transferred into 500 mL Pyrex bottles overfilled by 
a minimum of 250 mL. Alkalinity and pH samples were collected in the same bottle, which was poisoned with ~120 μL of
saturated mercuric chloride solution, sealed with a greased glass stopper secured with a rubber band, and stored at room 
temperature until analysis. Field duplicates were collected for 10% of the samples. pH was quantified using the Carter, 
Radich, Doyle, and Dickson (2013) spectrophotometric pH technique, estimating pH at 25°C on the total hydrogen ion 
scale using purified m-cresol purple indicator dye and calibration equations developed by Liu, Patsavas, and Byrne (2011). 
CO2 reference materials were run for quality control. Total alkalinity was determined by open-cell potentiometric titra-
tion (Dickson, Afghan, & Anderson, 2003). Ωarag and dissolved inorganic carbon (DIC) were calculated from pH and total
alkalinity using the CO2calc Version 1.2.8 (Robbins et al., 2010). Program preferences were set to use carbonate system 
solubility products from Lueker, Dickson, and Keeling (2000), KHSO4 dissociation constants from Dickson, Wesolowski, 
Palmer, and Mesmer (1990), and total boron from Lee et al. (2010).

Although there is growing scientific consensus around Ωarag as a key indicator of OA (Boehm et al., 2016; Chan et al.,
2016), there is not yet a comprehensive Ωarag assessment framework. In the absence of such assessment tools, spatial and
temporal patterns in Ωarag were evaluated relative to three biological thresholds that are based on laboratory studies of spe-
cies known to be sensitive to acidification:

●	 Ωarag = 1.0, below which aragonite is undersaturated (commonly referred to as corrosive waters)
●	 Ωarag = 1.4, below which calcareous shells of pteropods exhibit dissolution (Weisberg et al., 2016)
●	 Ωarag = 1.7, above which oyster larvae grow well in hatcheries (Barton et al., 2015)

19.7.2 Extent and Magnitude of OA in the SCB

Based on the 2-year Bight Program synoptic survey, a substantial portion of the SCB continental shelf waters exhibits Ωarag

at levels critical for biological organisms (Fig. 19.12). For three quarters of the year, >80% of the upper water column at
depths below 80 m contains water with Ωarag low enough to trigger shell dissolution for sensitive calcifiers like pteropods.
Reduced Ωarag also occurs in depths of 0–80 m, but with much less extent, magnitude and frequency.

Aragonite saturation state values for the SCB continental shelf range from 2.99 (Santa Monica Bay, surface waters, spring 
2015) to 0.54 (northern SCB shelf, 19 m depth, spring 2015), with a mean of 2.00. The SCB continental shelf Ωarag average is
similar to the average for US Pacific Northwest coastal waters (2.2 ± 0.5, Harris et al., 2013), and lower than reported for the
North Pacific Ocean (3.3 ± 0.7, Feely, Doney, & Cooley, 2009). SCB continental shelf Ωarag is lower at depth, averaging 2.48
in waters above 100 m and 1.12 in waters below 100 m. However, the relationship between Ωarag and depth is not as strong
as the relationship between Ωarag and water density. All SCB continental shelf waters with density >26 kg m−3 were under-
saturated with respect to aragonite, similar to observations in the northern California Current System (Feely et al., 2016).

SCB continental shelf Ωarag is strongly correlated with dissolved oxygen (r2 = .816, P < .001) and DIC (r2 = .938, 
P < .001); both of these parameters are indicative of deep ocean water with organic respiration that has not yet degassed to
the atmosphere (Fig. 19.13). Corrosive waters (Ωarag < 1) in the SCB consistently exhibit dissolved oxygen concentrations
<4 mg L−1 (62.5 μM) (Fig. 19.13), indicating that organisms sensitive to changes in acidification may also be subjected to
the additional stressor of hypoxia.

The relationship between dissolved oxygen and Ωarag in the SCB remains consistent regardless of whether samples are
collected above or below the thermocline (Fig. 19.13), indicating that upwelling from the deep ocean is a probable cause of 
low Ωarag and low dissolved oxygen in upper surface waters. This finding is consistent with findings in other coastal areas
(Cai, Hu, Huang, Murrell, & Lehrter, 2011; Harris et al., 2013). Upwelling also explains the seasonal pattern of corrosive 
waters in the SCB (see Fig. 19.12). Upwelling in the SCB occurs most frequently in the spring and least frequently in the 
fall, which is a pattern that matches the increased frequency of low Ωarag in SCB waters at shallower depths during the
spring, followed by reduced frequency during the fall.

19.7.3 Future Challenges

The Bight Survey exposed the challenges facing environmental managers in the SCB. OA is a prominent feature of the 
region which will need to be included in future decision making. Two important decisions lie ahead. First, environmental 
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managers need to determine how much OA is too much OA, with the current focus directed at levels where biological 
effects occur. However, there are a wide range of biological effects that could be considered such as water column or 
benthic organisms, acute or chronic effects, among others. In this chapter, multiple assumed biological effects thresholds 
using Ωarag were utilized, taken directly from the literature and ranging between 1.0 and 1.7. However, other measures (or
measures in combination) could be used such as pH or alkalinity, among others. Finally, thresholds used herein utilized 
instantaneous measurements of Ωarag, but other measures of exposure need to be considered including duration, magnitude,
and/or frequency.

Second, environmental managers need to assess if any action they might take would ameliorate the effects of OA. 
Specifically, nutrient inputs have been identified as a potential exacerbator of OA effects (Boehm, Ismail Niveen, Sassoubre, 
& Andruszkiewicz, 2017; Chan et al., 2016). Anthropogenic nutrient inputs to the SCB can rival natural sources at the local 
scale (Howard et al., 2014). However, the effect of local nutrient controls on eliminating or minimizing global CO2 impacts 
is uncertain. Management strategies for coping with OA, including nutrient reductions measures by wastewater treatment 
facilities, are likely to cost billions of US dollars, so researchers are now developing coupled physical—biogeochemical 
models to “virtually” answer the questions about effective nutrient management strategies (Boehm et al., 2015).

19.8 SYNTHESIS

The SCB has exemplified success at addressing large, legacy environmental quality problems. Sediment quality impacts 
have been at the forefront of environmental management efforts for nearly five decades. The most recent regional assess-
ments indicated that the extent of sediment quality impact is small, accounting for about 6% of the SCB seafloor. Of course, 
these impacts are not evenly distributed and occur in those habitats closest to human activities such as small urban estuaries 
and small boat marinas. Yet, even in these habitats close to anthropogenic sources where mixing or dilution are minimized, 
sediment quality has been steadily improving. While there is work yet to be done, management actions are yielding positive 
outcomes to challenging issues.

SCB managers have begun addressing other difficult environmental problems, and the outcomes have yet to be fully 
realized. In this chapter, we describe two; beach water quality and plastic trash pollution. Management actions for en-
suring the public health of beach goers has taken a phased approach, starting with what appeared insurmountable in the 
1990s—reducing shoreline FIB concentrations during the busy summer swimming season. Yet, after two decades of ef-
fort, the vast majority of SCB beaches are “safe to swim.” Managers are now addressing the second phase of management 
actions—reducing shoreline FIB concentrations during the winter wet weather season. The advent of new technology 
such as human specific markers like HF183, is now providing tools to help chart a path forward towards success during 
wet weather.

Trash is the second vexing environmental problem managers are currently grappling with. Ambient monitoring of 
trash illustrated a doubling in extent of plastic pollution on the SCB seafloor over the last 20 years. Partly in response to 
this increase, managers are implementing regulatory and legislative source reduction mandates such as single-use plastic 
bag bans. The success of these measures, taken only recently, has yet to be determined. Future monitoring will show if the 
management actions taken today have stemmed the tide of plastic pollution emanating largely from urbanized watersheds.

The SCB stands on the brink of addressing a truly wicked problem, that of OA. Sediment quality and beach bacte-
ria problems were typically resolved by addressing local sources. Resolving trash problems were perhaps best resolved 
through regional source control measures, largely because of the persistence of plastic. OA, however, is a global problem. 
How do managers find solutions for which they have no local or regional control? In this case, SCB managers are determin-
ing what local solutions can be taken to slow the onset of global pollution impacts, or at least identify options for enhanced 
regional resiliency. Currently, SCB managers are trying to characterize the scope and scale of the problem before recom-
mending options and solutions. Undoubtedly, these managers will need the same critical and creative thought processes 
used to address sediment quality, beach water quality and trash, to successfully address OA.
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