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Abstract

1. While the number of environmental flows and water science programmes con-

tinues to grow across the globe, there remains a critical need to better bal-

ance water availability in support of human and ecological needs and to

recognise the environment as a legitimate user of water. In water-stressed

areas, this recognition has resulted in friction between water users in the pub-

lic and private sectors. An opportunity exists for practitioners to be on the

forefront of the science determining best practices for supporting environmen-

tal water regimes.

2. This Special Issue brings together a collection of environmental flows science

and water management papers organised around three major themes: (1) method

development and testing; (2) application case studies; and (3) efficacy evaluation.

Contents of this Special Issue are intended to foster collaboration and broaden

transferability of the information, technical tools, models and methods needed to

support environmental water management programmes.

3. The technical sophistication of methods and modelling tools, while important to

the advancement of environmental water science, may come at the expense of

easily interpretable outcomes that positively influence management decisions.

Researchers need to be more proactive in translating the results of advanced

modelling methodologies into user-friendly tools and methods. This will allow

stakeholders and water managers to proactively test alternative water allocation

scenarios to help address growing human water demands in the face of droughts

and changes in climatic patterns.

4. The application of environmental flows science and water management strategies

cannot be done in isolation. Implementation involves a complex decision-making

process that integrates ecological, hydrologic and social science across diverse

multifaceted governance systems and requires active stakeholder involvement.

Scientists and managers must strengthen partnerships at multiple scales to

develop sensible science investment strategies so that collective knowledge can

be translated into wise environmental water management decisions.
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1 | INTRODUCTION

The tension between consumptive water use and ecological needs

of rivers and estuaries has been a mainstay in the freshwater science

literature for nearly 30 years. Over the years, there have been syn-

thesis articles, journal special issues and books devoted to various

aspects of the science, implementation and management of environ-

mental flows to sustain species and ecosystems (Acreman et al.,

2014; Annear et al., 2004; Arthington, 2012; Arthington, Naiman,

McClain, & Nilsson, 2010; Hirji & Davis, 2012; Horne, Webb, Ste-

wardson, Richter, & Acreman, 2017; Kendy, Apse, Blann, Smith, &

Richardson, 2012; Novak et al., 2016; Poff & Zimmerman, 2010;

Richter, 2014; Webb, Watts, Allan, & Conallin, 2018; Webb et al.,

2013). Despite this attention, growing water demands, coupled with

recent droughts and changes in climatic patterns, have produced

increasingly widespread water scarcity in many regions throughout

the world (Dettinger, Udall, & Georgakakos, 2015; Estrela, P�erez-

Martin, & Vargas, 2012; Famiglietti et al., 2011; Meybeck, 2003;

Trenberth, Overpeck, & Solomon, 2004; Veldkamp, Eisner, Wada,

Aerts, & Ward, 2015; V€or€osmarty et al., 2010; Williams et al., 2015).

These shortages emphasise that there are critical limits on the

amount of water available to support human and ecological needs.

These shortages have motivated many federal and provincial govern-

ments (Figure 1a) to establish environmental flow rules and criteria

(e.g. instream or minimum flow requirements) for the protection of

biological resources and ecosystem integrity (Hart, 2016; Le Quesne,

Kendy, & Weston, 2010; Novak et al., 2016). The cumulative num-

ber of programmes establishing environmental flows and water man-

agement criteria in the U.S.A. and across the globe has risen

substantially just in the last decade (Figure 1b), emphasising the

importance of retaining water in streams, rivers, estuaries and lentic

systems for ecological use and ecosystem services. However, recog-

nition of “the environment” as a legitimate user of water has led to

legal confrontations among water users in the public and private sec-

tors (Capon & Capon, 2017; Poff et al., 2003) and increased scrutiny

of the methods used to determine, implement and evaluate environ-

mental water regimes.

Various approaches for assessing environmental flows and water

regimes have been developed over the past two and half decades,

including those based on species life-history requirements (e.g.

instream flow incremental methods; Bovee et al., 1998), flows that

determine requisite habitats (e.g. physical habitat simulations; Mil-

hous, Updike, & Schneider, 1989), holistic methods aimed at sup-

porting biological communities and ecosystem functions (e.g.

Ecological Limits of Hydrologic Alteration, ELOHA: Poff et al., 2010)

and targets based on deviation from unaltered hydrographs (e.g. pre-

sumptive standards approach, Richter, Davis, Apse, & Konrad, 2011).

Furthermore, the field of environmental flows is entering a transition
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phase from a focus on lotic waters to one that includes the water

requirements of all freshwater bodies. Accommodating this impor-

tant shift may require more flexible or new terminology as discussed

in recent synthesis works (Arthington, Kennen, Stein, & Webb, 2018;

Horne et al., 2017). This means that environmental water assess-

ment methods, as well as implementation approaches and strategies,

can differ with waterbody type and across political jurisdictions, con-

tinents and even across individual basins that traverse multiple

states, provinces or countries. These jurisdictional differences exac-

erbate the challenges of managing and regulating environmental

water regimes.

Moreover, as technical sophistication in the methods used to

assess and evaluate environmental water regimes increase, research-

ers need to be more proactive in translating the results of advanced

modelling methodologies into user-friendly tools. These may include

Web-based applications and decision support systems that provide

easily navigable graphical user interfaces, with options for flow sce-

nario testing and insight into the effects of climate change or

changes in water availability (e.g. Cartwright, Caldwell, Nebiker, &

Knight, 2017; Williamson et al., 2015). Such tools need to be adapt-

able to local conditions and needs, but also highly transferable across

river basins or political jurisdictions, thus allowing the broader

exchange of ecological and hydrologic/hydraulic information and

models to support the balancing of water management decisions for

human and ecosystem needs.

This Special Issue builds on previous work by providing broad exam-

ple applications and case studies that illustrate implementation of

ecohydrological approaches and provide empirical observations on

the efficacy of these approaches. The previous Special Issue on

“Environmental Flows: Science and Management” published in Fresh-

water Biology in 2010 strongly moved the field forward by introduc-

ing new methods and analytical techniques such as the ELOHA

framework, ecological trait analysis, Bayesian hierarchical modelling

and Integrated Basin Flow Assessment (Arthington et al., 2010). In

this Special Issue, we continue that legacy by including studies from

Australia, Europe and North America that cover the development of

novel technical tools, models and methods necessary for implemen-

tation of environmental water regimes, as well as examples of how

these tools can be integrated into water management programmes.

Papers in this Special Issue are organised around three major

themes:

1. Method development and testing. Research on the development of

methods used to support stronger flow–ecology relationships and

establish environmental water recommendations intended to

maintain ecologically sustainable flow patterns for diverse biologi-

cal endpoints. Papers in this theme explore the transferability of

flow–ecology relationships (Chen & Olden, 2018), advances in

assemblage-level assessments (Cuffney & Kennen, 2018), hydro-

logic modelling (Sengupta et al., 2018), development of hydraulic

habitat models (Mierau et al., 2018) and advanced analytical

methods (Webb, de Little, Miller, & Stewardson, 2018), and

development of biological response models that relate changes in

hydrology and hydraulics to an ecological outcome or effect

(Bond et al., 2018; Mazor et al., 2018).

2. Application case studies. Case studies that present application of

flow–ecology response models designed to help environmental

water science practitioners to better understand how alterations

in streamflow and increasing levels of water scarcity affect the

viability and integrity of aquatic ecosystems. Papers in this theme

discuss case study examples including assessment of snowmelt

conditions (Steel, Peek, Lusardi, & Yarnell, 2018), identification of

high-risk watersheds (Zimmerman et al., 2018) and tools with

improved capacity and diagnostic resolution (McKenna, Reeves,

& Seelbach, 2018; Monk et al., 2018) that can be integrated into

water resource management programmes at the local, state,

provincial, regional and national levels.

3. Efficacy evaluation. Research and case studies that evaluate the

effectiveness of environmental water programmes at achieving

their desired hydrological and ecological objectives or evaluating

complex scenarios with multiple interacting stressors. Papers in

this theme illustrate successes, challenges and provide evaluations

of how well current programmes have worked (Stewardson &

Guarino, 2018); how well conceptual models have performed rela-

tive to expectations (Gendaszek, Burton, Magirl, & Konrad, 2018);

the influence of drought on flow–ecology relationships (Lynch, Lea-

sure, & Magoulick, 2018); and recommendations for ways to

improve both the science and implementation of environmental

water practice (Wheeler, Wenger, & Freeman, 2018). This theme

also includes recommendations for refinements that can improve

the ability of flow–ecology tools to distinguish anthropogenic

effects from changes due to climate variability (Hain et al., 2018).

Also included are several conceptual papers that actively look to the

future of environmental water science and management, and provide

recommendations on how this discipline needs to evolve. Topics

covered include the challenges associated with evaluating legacy

effects and long-term trends (Thompson, King, Kingsford, Mac Nally,

& Poff, 2018); the challenge of incorporating non-stationarity princi-

ples into ecohydrological investigations, and therefore calling for a

fundamental shift in environmental water regime studies from

managing for variability (of historical conditions) to managing for

ecological resilience (Poff, 2018); and proposals for how scientific

research might better interact with aquatic ecosystem management

to more effectively translate knowledge into action and foster sensi-

ble scientific investment strategies so that collective knowledge can

be translated into wise environmental water management decisions

(Stoffels, Bond, & Nicol, 2018).

The Special Issue concludes with a synthesis of recent advances

in environmental flows science and water management and a look

ahead at some of the challenges still facing environmental water

science practitioners (Arthington et al., 2018). Not all the challenges

identified in the 2010 Special Issue of Freshwater Biology on environ-

mental flows science and water management (Arthington et al.,

2010) have been met. For example, “integrated water resource man-

agement” that incorporates ground- and surface-water regimes in
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support of river conservation and restoration or “adaptive environ-

mental management” approaches that address uncertainties and risk

and facilitate follow-up interaction among scientists and managers

are only beginning to emerge. However, as greater diversity and

transferability are achieved, environmental water science will con-

tinue to progress and support the needs of water managers and

decision-makers around the globe.
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