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ABSTRACT

Statistical tests used to differentiate environmental impacts from naturally occurring changes should
ideally be based on pertinent data from before and after the onset of the impacting activity. Because it is often
difficult to obtain sufficient data before the impact, we explore methods that can be used to test for ﬁpacm when
only after-impact data are available. We first discuss how a proper statistical test needs to incorporate replicate,
spatial, and time by space interaction variance Components in the background error variance. In order to obtain a
background error variance containing these variance components, a sampling design with randomly located
reference stations is required. When there is no spatial autocorrelation in the indicator (dependent variable) values,
reference stations located systematically rather than randomly can also be appropriate.

The proposed tests are based on the assumption that, in the absence of an impact, the indicator values ata
potentially impacted station (an impact station) will appear as if they were indicator values drawn from the
population of reference stations. Two types of tests are proposed. The first type involves t statistics testing the null
hypothesis that the impact station mean equals the mean of the reference station distribution. The second type of
test defines a statistical interval where impact stations with indicator values outside the interval bounds are
considered as impacted. The null hypothesis for this type of test is that the indicator value at the impact station is
equal to a chosen percentile of the population of reference stations, and as such, allows for more conservative
assumptions regarding the relationship between the impact station and the population of reference stations. Here
we propose the use of a tolerance interval and a Hampel outlier identifier. We express both the first and second
types of tests as stati_sﬁcal interval bounds defining the edge of a “reference envelope”. Impact stations with
indicator values outside the edge of the envelope are considered impacted, and those with indicator values inside
the envelope are considered unimpacted. All the proposed tests are based on the assumption that the distribution of
reference stations approximates a normal distribution. Other critical assumptions are reemphasized in the final
discussion.

We used systematically-sampled marine benthic data from the Southern California Bight to compute the
values of 13 indicators that are sensitive to organic enrichment from sewage outfalls in the area. Using these

indicators, we tested for non-normality of the reference station distribution and for spatial autocorrelation. In



addition, variance components for the indicators were estimated for input into a simulation model used to evaluate
the performance of the tests. In the absence of spatial autocorrelaton, the simulation results showed that the actnal
type-1 error of the tests was generally close to the nominal type-1 error, indicating that the tests properly
incorporate the variance components. In the presence of spatial antocorrelation, the actual type-1 error tended to be
below the nominal type-1 error, indicating a loss in test sensitivity.

We applied the methods to the benthic data to detect impacts from the sewage outfalls. Two types of
results output are demonstrated. The first type displays, for all indicators and in 2 single figure, the position of all
stations in relation to the reference envelope edge for a single statistical test. The second type of display focuses on
a single indicator at a time, showing the envelope cdges from ail tests and the indicator values in a single table.
The problem of pseudoreplication with statistical tests detecting treatment effects in space is discussed, and it is
shown how the proposed tests avoid pseudoreplication by incorporating variance from spatial differences in the

background error variance.



INTRODUCTION

Often a primary objective of environmental monitoring programs is to estimate the environmental effects
of a particular anthropogenic activity. Fulfilling this objective requires the ability to differentiate naturally
occurring biological or physical changes from changes due to the activity in question. With this goal in mind, it_ is
important that the sampling and statistical designs of the monitoring program are up (o this task. Often, the
sampling designs include sampling locations close to the anthropogenic activity in question (e.g., a dump site or
sewage outfall), and one or more locations farther from the activity that are assumed to be unaffected (by the
activity). Here we refer to the potentially impacted sampling locations near the activity as impact stations, and
sampling locations in an area assumed to be unaffected by the activity as reference stations. We refer to the
pertinent anthropogenic activity as an impact, with the realization that we are only talking about a potential
negative impact, since often activities will bave no impact or at leastno negativé impacts. We refer to a parameter
measured to quantify the biological or environmental changes of interest as an indicator.

A direct comparison of indicator values at an impact station with the indicator values at a reference
station is not necessarily sufficient to differentiate changes due to the impact from natural changes, since the
indicator values at the two stations could differ naturally even without the pfescnce of the impact-in question
(Furlbert 1984). More complex monitoring designs, involving samples at reference and impact stations at multiple
times both before and afrer the onset of the impacting activity, are better able to differentiate among natural and
anthropogenic changes (Eberhardt 1976, Green 1979, Skalski and McKenzie 1982, Bemnstein and Zalinski 1983,
Stewart-Oaten et al. 1986, Millard and Lettenmaier 1986, Faith et al. 1991, Green 1993, Underwood 1994).

Obtaining sufficient data before the onset of the activity is often difficult (Osenberg et al. 1994) or
impossible, so other approaches utilizing only affer-impact data need to be developed. Methods commonly applied
to after-impact data include varioas types of pattém analysis where the patterns of changes in the indicator values
are correlated with proximity to the impact in spéce and/or time (Smith and Greene 1976, Stull et al. 1936,
Eberhardt and Thomas 1991, Osenberg et al. 1994). This approach has been very informative in understanding the
patterns of change in the vicinity of an impact, but with increasing distance from the impact, the indicator

gradients caused by the impact become more subtle, and it is not always clear at which point the impact disappears,



i.e., reference or natural conditions exist. In fact, for some monitoring designs, all the sampled locations are
potentially impacted, so there are no directly comparable data from the program indicating how the indicators
might appear in natural, unaffected Idcations.

Tn this paper, we suggest and evaluate statistical methods that may be useful in differentiating changes
due to an impact from changes due to natural backgrbund variability when no (or insufficient) before-impact data
are available. These methods require that the sampling design include an éffectively random sample of multiple
reference stations (from an underlying reference station population or distribution) that represent natural
conditions, and can be used as a basis of comparison with potentially impacted conditions.

Before describing the statistical techniques, we discuss the different sources of natural variability that can
contribute to the variance of the reference station distribution. This information is important, since valid statistical
tests must properly incorporate these sources of variability.

We then describe two categories of methods, each with different null hypotheses reflecting different levels
of assumptions concerning the relationship between the reference and impact stations. Methods in the first category
assume that all stations, including the impact station, originate randomly from the same distribution of reférencé
stations, Here we propose modified t statistics to test the null hypothesis that the mean indicator value at the impact
station is equal to the mean of the reference station distribution. The second category of methods allows for more
uncertainty concerning the relationship between the reference and impact stations. Here one can test for worst-case
scenarios in which the impact station originated from the tail (in the direction of impact) of the distribution of
reference stations. These methods include a tolerance interval and an outlier identifier, and evaluate the null
hypothesis that the impact station mean is equal to a particular percentile of the reference station distribution.

Methods in the second category directly define one-sided statistical intervals (Vardeman 1992). The t
statistics in the first category can also be expressed as a statistical interval, so with both approaches we reject the
null hypothesis of no impact when the mean indicator value at an impact station is outside the computed interval
bound for the particular test. Thus, each test defines what we call a “reference envelope”. Unimpacted stations and
reference station will tend to be found inside the envelope, and impacted stations will tend to be found outside the
envelope. The border between the inside and outside of the envelope (the “envelope edge™) is defined by the bound

of the statistical interval from one of the proposed tests.



To illustrate and evaluate the proposed methods, we utilize benthic marine data from the Southern
California Bight to compute parameters (variance components) for input into a simulation model that evaluates the
performance of the various statistical tests, We also use these data to demonstrate applications of the methods.

The techniques were developed as part of a project to consider possible approaches to the analysis of data
from a planned regional monitoring program in the Southern California Bight (EcoAnalysis et al. 1993, SCCWRP
and EcoAnalysis 1993). This motivated our choice of marine benthic monitoring data from this arca. We

emphasize, however, that the proposed techniques would be applicable wide range of environmental applications.

METHODS

Variance Components

To set the stage for the introduction of specific statistical tests, we first identify various sources of natural
background variability that need to be considered in designing and evaluating a proper statistical test. Each
different source of variability is called a variance component (S okai and Rohlf 1981, Seatle et al. 1992), If these
sources of natural background variability can be quantified, then the statistical test can compare the background
variability with the variability between reference and impact stations. The variability between the impact and
reference stations will need to be sufficiently greater than the expected 'uatm'al background variability for us to
confidently conclude that there might be actual changes due to the impacting activity.

To describe the sources of variance that are pertinent to the present situzation, we first focus on the
variance components. expected to affect the variance of the means of reference stations, since this variance
tepresents the natural background variability among unimpacted loctions. We define this variance of the reference

station means as S %, which actually is an estimate of the variance of the underlying distribution or population of

reference stations at a single point in time. For simplicity, we describe the variance components and use simulated

examples in term of reference station pairs, but the same concepts apply to more than two stations.



Replicate (small-scale spatial) variance comnponent {G; }

‘When sampling at a station with one or more'replicates, the measured indicator values will, of course,
usnally vary among the replicates. Thus, we would expect computed means for sets of replicates taken from the
same station at the same time to differ (Figure 1). The variance due to this replicate or small-scale spatial
varizbility will be referred to as G ?ia . The expected value of the variance in the reference station means due solely
to the rephcate variance is

2
E( S§)=%”-. N

where r is the number of replicates taken at a station, X is the mean indicator value {of the replicates) at a station,
and S ;— is the computed variance of the station means over multiple sampling events from the reference station
population. The expected value, signified by E(v), is the average value of the parameter v that would occur with 2
very large number of sampling events.

Figure 1 shows an example application of equation 1, where c‘i = I(0 with two replicateé at each
station, We would expect that the variance of the station means would approach 100 /7 2 = 50 over multiple
samplings or simulations. In fact, the average variance of the station means over the simulations in Figure 1 is
about 57, which is approaching the expected value. With 1000 simulations (instead éf the 5 simulations in Figure

1), the mean variance equaled 51, which is much closer to the expected value.

Spatial variance component (G g)

As the geographic positions of two reference stations diverge, we would expect the underlying mean
values for some indicators to differ at the two stations. We define the underlying value of a parameter as the actual
value the parameter would have if the entire population of interest were measured instead of being sampled. The
different underlying indicator values at separate locations will normally be associated with differences in habitat,

history, and proximity to conditions directly or indirectly affecting the indicator values.
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Figure 1. Results of five simulations with two stations with two replicates each, illustrating replicate variance. The

indicator values (number of species) for all replicates for all stations were drawn randomly from a normal distribution
with a mean of 50 and a variance of 100 ((5?e = 100 and r = 2). The small symbois represent the replicate values and

the large symbols represent the mean values of the replicates for each station. The variances of the two station means for
each simulation are shown immediately above the X axis. The average variance of the station means over the five
simulations is about 57, compared to the expected value of 50 '




Here we refer to 0_29 as the variance among station means due to geographic separation of the stations,

Figure 2 exhibits the results of simulations containing both 0“; and 0‘2. . The expected value of the variance of the

reference station means due to the spatial and replicate variances is

2
E(S;)=c§+9f—. @

In Figure 2, Gi =25 and Gi = 100, with two replicates at each station. Using equation 2, we would
expect that the variance of the station means would approach 25 + 100 / 2 =75 "over multiple simulations. The
average variance of the station means over the five simulations in Figure 2 is about 73, which is already close to
the expected value of 75, |

Thé analyst needs to carefully consider the contribution of varying habitat to the spatial variance
component. There are two considerations of importance here. The first is the sensitivity of the statistical tests. If an
indicator responds to a particular habitat characteristic that varies widely in the reference area, the spatial variance
component will be relatively high for that indicator. As the spatial variance component gets larger, the statistical
tests necessarily; become less sensitive, since the spatial variance is part of the background variability against which
the impacts will be compared. Therefore, if we want a sensitive statistical test, we could either choose an indicator
that does not respond to the habitat variability in the reference area, or we could choose reference stations that do
not vary much for the habitat characteristic in question.

The second issue related to spatial variability concerns the validity of the statistical tests. A statistical test
that confuses habitat differences with impacts may be sensitive, but it would be sensitive to- the wrong thing, and
would be invalid. To prevent this, we would at times want habitat differences to contribute to the background
variability of the statistical test, so that when we compare the reference stations to an impact tation, natural
habitat differences do not become confused with an impact. To include this contribution of habitat variability in the
spatial variance component, the reference stations should be sampled from an area that incl;zdes the amount of
habitat variability that we think might exist between our impact station and any of our reference stations.

The relative “amount” of habitat variability that should be included in the spatial variance component
should vary with the degree of uncertainty regarding the habitat differences between impact and reference

locations. If the habitat characteristics in the reference area and the impact area are similar, then we would want to
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Figure 2. Results of five simulations with two stations illustrating spatial and replicate variances. The underlying mean
values for each station were first drawn randomly from a normal distribution with a mean of 50 and a variance of 25

(0'§ = 25). Then the replicate indicator values for a station were drawn randomty from a normal distribution with a

mean equalling the underlying station mean from the first step, and a variance of 100 (O‘ZR =100 and r =2). The
small symbols represent the replicate values and the large symbols represent the mean values of the replicates for each
station. The variances of the two station means for each simulation are shown immediately above the X axis. The
average variance of the station means over the five simulations is about 73, compared to the expected value of 75.



minimize the habitat variability in the reference area to obtain the most sensitive statistical tests. Unfortunately, the
impacting activity often alters the habitat, so we cannot be sure the of the habitat characteristics of the impact area
that we are trying to match in the reference area. Or we may not be able to even find matching habitats in the
reference area, but are only able to sample a range of habitats that appears to “cover” the habitat in the impact area.
Finally, we may not have sufficient data or knowledge concerning the pertinent habitat differences in the impact
and reference areas, or we may not know the relationship between our indicators and habitat changes. The point
here is that as we become more uncertain about the relevant habitat differences in the reference and impact areas,

- we need to hedge against coﬁfusing habitat with impact by including more habitat variability in the spatial
variance component. This is accomplished by sampling reference stations from an area with habitat differences
covering the range of habitats that we think could differentiaté the impact area from the reference area.

In summary, we need to balance the needs for test sensitivity and test validity when choosing indicators
and reference stations. It should be noted that in this discussion, we are referrﬁg only to habitat characteristics to
which the indicator in question is sensitive, since habitat features that do not affect our indicator values are
irrelevant,

As we show in the results section, it is sometimes possible to mathematically remove the effects of a
habitat characteristic from the indicator data in order to increase the sensitivity of the statistical test, prevent the

confusion of impacts and habitat, and decrease violations of test assumptions.

Temporal variance components (Gi. + 0 s and ¢ i'xS)

As noted earlier, S %, is actually an estimate of the variance of the underlying distribution of reference

stations. When we consider temporal variance component, we need to distinguish between two types of temporal
variability. One type of temporal variance will increase the variance of the distribution of reference stations (an
interaction variance), and the other {a covariance) will “move’ the whole distribution in concert so that the mean
of the distribution changes without changing the variability of the distribution (at a point in fime).

The underlying mean indicator value at a reference station will tend to vary over time. We call this the

temporal variance O'f, . The effect of this temporal variability on the variance among the indicator means from a

pair of stations sampled at about the same time will vary depending on the extent to which the indicator means



covary over time at the two stations. For example, let’s say that a change of 10 indicator units occurs from time 1
to time 2 at two stations. If the direction of the change is the same for both stations, then the variance among the
two station means will be the same at both times 1 and 2 (adding a constant t0 two values will not change the
variance of the values), and the temporal variance will have no effect on the variance of the station means at time
2. On the other hand, if the direction of change of 10 units was in opposite directions at the two stations (indicator
value increased by 10 at one station and decreased by 10 in the other), then the variance of the station means at
time 2 would be increased by the temporal variance. The expected prdportion of the temporal variance that
contributes to the variance of two station means at any one time will depend on the similarity of the pattern of

temporal changes at the two stations. This similarity of magnitude and direction of changes over time at two

stations is quantified as the covarian;:e among the station means over time. We call this covariancg O ; , where the
ij subscript indicates that the covariance over time is for stations # and j.
The degree to which two stations do not covary over time is measured as
Crs=07—0, 3)
where 07;,3 is the time by space interaction variance associated with the two stations in question. For simplicity,
we are assuming that the temporal variance equals 0'; at both stations. Here we are subtracting O ; from the
temporal variance becanse a positive G ; moves the mean of the distribution of reference stations (i.e., stations

move in concert), but does not increase the variance of the distribution of reference stations. When considering the

replicate, spatial, and temporal sources of variability,

E(S.;_)=Gf'x$+ci+_r&' @

e 2 - - :
Thus, it is the G 7, component of the temporal variance that affects the variance of the reference station means at

one point in time. If the underlying mean indicator values at two stations track perfectly over time, then G ; = O ;

, and from equation 3, G'f,:s =0, i.e., the temporal variance will not affect the variance of the station means. Or, if
G ; =0, the indicator values at the two stations are independent, and from equation 3, O'f,.xs = Gf., ie., all the

temporal variance will contribute to the variance of the station means. Negative covariance will increase the station



variance to a degree even greater than the temporal variance, and positive covariance will affect the station
variance to a degree less than the temporal variance.

1t is interesting to note that some form of the time by space interaction variance is the proper background
error variance for the models that incorporate data both before and after the onset of the impacting activity (see
references in the introduction). The background error for the statistical tests proposed in this paper (see equation 4
and the tests below) includes the time by space interaction variance in addition to the spatial variance (both
models include replicate variance). This implies that that the proposed tests will tend to be less sensitive than the
tests utilizing before- and after-impact data, since the background error for the proposed tests will usually be
Targer. This is the price that we pay for not having before-impact data.

Figure 3 shows five simulations of station pairs sampled over time. The magnitude of O ; (and therefore
o} f,xs) varies for each simulation. The values of cf’s ) O'f. and O'f, are the same for each simulation, so the

decreasing variance of the station means from Figure 3a to 3e is partially due to the increasing value of G ; used in

the simulations. Figure 3 visually confirms the relationship between covariance over time and the variance of the

station means.

We use Figure 3d as an example of an application of equation 4. In the simulation,
67 =500,0% =400,6% =80, amd G ; =375
Using equation 3, we compute
G =G7 —0,; =500~375=125,

and from equation 4,

E(S§)2125+400+i—0m565.

10
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Figure 3. In a-e, simulations with increasing amounts of covariance over time are shown. For each simulation, the two underlying station
mean for all times were first established by drawing randomly from a normal distribution with a mean of 50 and a variance of 400

(C g = 40(0). The underlying mean for each station at each time was determined by drawing from 2 multivariate normal distribution, which
is characterized by the underlying station means {from the first step) and the values for & f. and G 5, for each station pair. In all simulations,
G ; =500,a0d G i (labeled Cov) is varied from zero in 3a to 499 in 3¢. Finally, two replicate indicator values were simulated for each

station by drawing from a normal distribution with an underlying mean as determined above, and 2 variance of B0 (O i =80,n=2). For
each plot, R is the correlation between the two stations over time, and Var is the average variance of the station means at one time for the
simulation. Note that as the covariance (Cov) increases, the variance of the means (Var) decreases, and the means of the two stations track
over time to a greater extent.




Statistical Tests

The objective of the proposed statistical tests is to evaluate the general null hypothesis that an impact
station could have originated from the population of reference stations. In other words, in the absence of
sufficient data at the impact station before the onset of the impacting activity, we are assuming that the impact
station, without the presence of any impact, would resemble a reference station. Given this assumption, it is
obvious that the reference stations should be chosen to represent or cover the conditions that would be present in
the impact area if the impacting activity had never occurred.

All the proposed tests are to be applied to data gathered more or less at the same point in time, although in
some cases it may be feasible to pool variances from data within different sampling times. The methods are
developed as parametric tests with distributional assumptions of normality where statistical inferences are madé.

To help clarify the computational formulae for the proposed tests, we will present sample computations

based on the data in Table 1. Table 2 summarizes the proposed statistical tests.

Table 1. Example data with four reference stations and an impact station. Some summary statistics (defined
betow) are X, =51.25,X, = 340,53 =6575,5; =475,8; =2,m=4,
MED =49, andr=r1r,=r, =2.

Station Replicate 1 Replicate 2 Mean (X)) Replicate X — MED
‘ of Replicates Yariance

Reference

1 50 48 49.0 20 0.0

2 40 44 42.0 3.0 7.0

3 60 63 61.5 4.5 12.5

4 54 51 52.5 4.5 3.5

Impact 35 33 340 2.0 15.0
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Table 2. Summary of the proposed statistical tests. We are assumning a one-tailed null hypotheses where the
indicator in question is expected to decrease with impact. Where the indicator is expected to increase with impact,
replace < with > in the null hypothesis. The assumptions fisted are not exhaustive, but include the assumptions
that differentiate a test from other tests.

Approach Test Null Hypothesis Assumptions
1. Comparison of means Test 1 Reference station 02 =0,0 ; s =0
(Standard t mean<impact station mean
test) ‘
Test 2 Mean of reference station Equal replication and equal replicate
distibution <impact station.  variance at all stations.
mean
Test3 Equal replication and equal replicate
“ variance at all reference stations.
Test4 * Equal replicate variance at all
- reference stations.
2. Comparison of impact station ~ Tolerance pth percentile of reference - Equal replication and equal replicate
mean with percentile (p) of Interval station distribufion <impact variance at all stations.
reference station distribution station mean
- Hampel
Qutlier
Identifier “ *

Approach 1 - Comparison of means

The four tests in this category all define t statistics of the general form

t=——"o0=L, 5)

where X, and X, are the indicator means representing the reference and impact stations, respectively, and
2 . - . . . . P
S ¥,-x, 18 the estimated variance of the difference in the means in the numerator when the null hypothesis is true.

For the reference station, we use the subscript C (for “Control”) to avoid confusion with the R subscript for
replicates. For the purposes of the discussion, we expect that the indicator values will decrease when an impact is
present, and we wijl want to perform a 1-tailed test, i.e., when the computed £ 2 £, ars we will reject the null
hypothesis. The Z,, 4 is the critical Smdent t value for anominél type-1 error level of O and df degrees of

freedom. The proposed tests vary in the manner in which the numerator and denominator of equation 5 are

computed.
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To define any one of the tests in this category in terms of a statistical interval, the lower bound of the
interval can be expressed as
L=X.—t, 8% 5 (6)
which is a rearrangement of equation 5 with the critical £, 4 substitated for ¢, and solving for X, ;- Bere L is the

maximum valge of X, ; that will fead to arejection of the null hypothesis, or in other words, indicator values less

than or equal to L will be outside the reference envelope. Equation 6 would be used when we expect the indicator

values to decrease with an impact. When the indicator value increases with impact, an upper bound (¥) would be
computed instead by replacing the minus sign in equation 6 with a plus sign. The values for X ¢ and fs ch_k_’ -

in equation 6 will vary for the different tests.

Test 1 - Standard t test contrasting a single reference station with an impact station
The common t-test or one-way analysis of variance comparing a single reference station with an impact

station is often applied to test the null hypotbesis of no impact. The value for S %c_f‘ is computed from the
replicate variances taken at the stations being compared, and the expected value for S %c _x, is assumed to be

26°
E(S,%c_f’)= I’R,

where O'i and r are the replicate variance gnd the number of replicates, respectively. This follows from equation
1 and the fact that the expected variance of a difference is the sum of the variances of the differenced values {when
the observations are independent). Here we are assuming that the undcrlyiné replicate variance is the same at both
stations being compared, so the sum will simply be twice the expected value for a single station. Thus, the final

test statistic is

{ = —p==", : @
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where X, ¢ is the mean of the replicates at a single reference station, X ; is the mean of the replicates at the impact
station, and G ; is a pooled estimate of the within-station replicate variance. A little “hat” (*) above a symbol

indicates that the value is an estimate,

. . - . . . . 2
‘When spatial and time by space interaction variance componenis are present in the data (ie., 65 >0

and/or © ;xs > (), the t ratio in equation 7 will be inappropriate. For a proper test, the expected value of the &

| ratio should be 1 when the null hypothesis is true. Since the numerator of thé {'ratio will contain all three variance
components, bat the denominator will only contain the replicate variance component, the expected value of the t*
ratio will be larger than 1 when the null hypothesis is true. In this case, the computed t value will tend to be
inflated beyond that expected by chance, leading to rejection of the null hypothesis when the null hypothesis is
actually true at a rate well above the nominal type-1 error of the test. The type-1 error is the rate at which we
expect to falsely reject the null hypothesis when it is actﬁally true. For example, when we choose 00 =05 forthet
test, we only expect to falsely reject the null hypothesis about 5% of the time, but as we will demonstrate in the

results, our actual rate of false rejections could be much higher.

Test 2 - t statistic assuming equal replication and equal replicate variances at all stations

This test and subsequent tests incorporate all the pertinent variance components described in equation 4.
This particular test assumes equality of the underlying replicate variances at all stations, and also equal number of
replicates at each station. To obtain variances with the proper variance components, we will need to sample at

least two reference stations along with the impact station. From the means of the reference stations, we directly
compute S %C as the variance of the station means. This computed value of S%c will contain all the variance
components described in equation 4 (since 21l these variance components rpotemially contribute to the variability of
the reference station means). We want to compare the impact station mean with the mean of the reference station

distribution (vather than any particular reference station as with test 1). Such a test would generally be described

as
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f —ff

i= c

=L, ®
V5%.-x,
where the double bars above X indicate that we are comparing the mean of the reference station means with the
mean of the replicates at the impact station. To derive the denominator of the test, we first note that
2 2
E(S%c_z)=E(S:t_-«c)+E(Sfr). 9)
The expected value of the first term on the right of equation 9 is

E(S7
E( S,%c)=——-——-~(mx‘:), (10)

where M1 is the number of reference stations, This leaves us-to estimate.S % , the second term on the right in

equation 9. We are treating the impact station as if it were randomly drawn from the population of reference
stations, and when the null hypothesis is true, the impact station would continue to appear as a reference station as
far as indicator values are concerned. If this is the case, the expected variance of the impact station mean would be

the same as the expected value of the variance of a reference station mean, which is E( S ;.- ), described in

equation 4. From this assumption and equations 9 and 10, we obtain

) E(S%)

E(Sfc—f.)zTJ“E(S;'c)* an

where E( .S %c )=E(S % ), with the C subscript added to emphasize that the variance is estimated from the

reference station means. Given equation 11, our test statistic becomes

f=——=5 L (12)
X
mn

2
+ 5 X,
As noted above, S%c is simply the computed variance of the reference station means. The degrees of freedom

used to obtain the critical £, 4 vatue from the t distribution is m-1. Applying the data in Table 1 to equation 12,

we have
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_ 51.25-34.00
\fﬁf‘?——+ 6575

With £ ;5 ;=2.353, we accept the null hypothesis of no impact. From the perspective of the reference envelope, we

=190.

compute L = 51.25 - 2.353(9.0657 ) =29.92 as the edge of the reference envelope {equation 6). Since the
impact station mean (34.0) is greater than L, we conclude that the impact station is within the reference envelope
and not impacted as far as this indicator is concerned.

The following two tests, tests 3 and 4, are modifications of test 2 that allow for varying levels of
replication among the stations and different replicate variance at the impact station. In principle, the tests are the
same as test 2, so the reader not interested in the tedious details of the test modifications should skip over the

sectioné_ for tests 3 and 4.

Test 3 - t statistic assuming equal replication and equal replicate variances at the reference stations

This test simply extends test 2 by relaxing the requirement that the replication and replicate variance at

the impact station match the replication and replicate variances at the reference stations. The test statistic is

~-X
t= S , (13)

S2 Sz
R
m r

|

where S ;: is the computed replicate variance for the impact station, and 7 is the number of replicates at the

impact station. S ; Txg 15 an estimate of the sum of the spatial and time x space variance components, which,

following equation 4, can be computed as

SZ

2 —~2 ~2 2 R,
SSqs =Ops+0s =8y ——F, 14

4 rC

where S fzc is the pooled within-station replicate variance for the reference stations, and 7 is the number of
replicates at each reference station. What we are doing with this test is breaking down the variance of the impact

station mean (which is S %c in equation 12) into its separate variance components, and substituting the replicate
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variance from the impact station for the replicate variance from the reference stations. The degrees of freedom nsed
to obtain the critical £, 4 value from the t distribution is #2 —-1.

Applying the data in Table 1 to equation 13, we have

,o 51253400
(6—5—75-&65.75———4‘75 +2
4 2 2

and we reach the same conclusion as with test 2.

=192,

Test 4 - t statistic with variation in replication level at the reference stations

This test is an extension of test 3 in that the number of replicates at the reference stations can vary. The
test is more complicated because we need to adjust the reference station variances and mear of means for the

unequal replication at the reference stations. The test statistic is

t= X=X, —, (15)
1 2 R
S5 g T

m 1 5.Tx8 '}

where

N(m—1)(MST -5} )

N’mzr‘:

i=1

2 _=2,=2
Ssns =05 +03g =

, (16)

with MST as the between-reference station nean square in a standard unbalanced one-way ANOVA, N is the total

number of replicates at all reference stations, and g, is the number of replicates at the ith reference station. The

computational formula for MST is

irc,(f; “i:c Y

MST =L — , an

with f, as the mean of reference station i. Equation 16 is derived from the fact that
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~2  =pm2 =2
MST =G4 +F(05+01s).
where T is the effective mean number of replicates at the reference stations, computed as
= 2
P 2.7,

F= N - . 18)
d m—I( N ) ¢

-

The adjusted estimate of the variance of the mean of reference station £ is computed as

SZ
St =88 s +—= (19)
c;

Finally, the weighted mean of the reference station means is

S(%/S%)
X =8 —— (20)
2.(1/5%,)
i=I

with X as the mean of reference station i, Here we are giving more weight to the reference stations with lower

variance of the mean, The approximate degrees of freedom for the critical £, 4 is

_ (Sg,sxr""slzz, /rz)z
Stz /(m—1)+S; [(FF(r;=1))

df @1

Applying the data in Table 1 to equation 15, we have MST = I31.5 (equation 17),

2 =3(3)(1315"475)=63375, (from equation 16)

8,57 64—16
and
4
S %' =63.375 + ? =6575 (from equation 19)

for all four reference stations (all ), since there are the same number of replicates at each station. With equal

replication at all reference stations X, = X = 51.25 (cquation 20). Finally,
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51.25-34.00

t= 5 =192,
J 1 +63.375+—
06084 2
and
2 .
df=(63.375-§2/2) ~3.093~3,
63.375 +_{
3 4

leading us to conclusions similar to tests 2 and 3.

Approach 2 - Comparison of the Impact Station Mean With a Percentile of the Reference Station
Distribution

The null hypothesis for the methods in this n;:ategory is that the meaa indicator value at the impact station
is within a chosen percentile (p) of the distribution of reference stations. The direction of change that an indicator
is expected to take in the presénce of an impact will determine whether we will choose a p on the lower or upper
tail of the reference station distribution, For example, if we expect an indicator value 0 decrease with an impact,
we might choose p=10, in which case our null hypothesis would be that the impact station mean is greater than or
equal to the 10tk percentile of the reference station distribution, Similarly, if we expect the indicator value to
increase with impact, we might choose p= 90, and our null hypothesis would be that the mean of the impact
station is less than or equal to the 90¢A percentile of the reference station distribution.,

With approach 1, we treated the impact station as a random selection from the reference station
distribution, and due to the shape of the normal curve, it is more likely that the impact station mean is closer to the
mean of the reference distribution and Iess likely that it is from the tails of the distribution. Tests with approach 2
allow for a weaker set of assumptions regarding the relationship between the reference station distribution and
impact station. We may want to assume a worst case scenario where the impact station originated from a particular
percentile in the taif of the reference station distribution (in the direction of impact), and the methods in approach
2 allow for this weaker assumption. The more extreme the chosen percentile, the weaker or more conservative the

assumption about the original state of the impact station will be. This is because when we choose an extreme
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percentile, we are allowing for the fact that the impact station might bave originated as an outlier member of the
reference station distribution (in the direction of impact), and for this reason alone the station might appear
impacted when in fact there is no impact. At times, the consequences of identifying an impact can be ominous

ee cleanup costs, litigation, etc.), so a regulator might want only to identify impacts for which a strong case can
be made. The argument for impact will be strongest when an impact is detected even when a very conservative
assumption has been made (by choosing an extreme percentile). It could be argued that a test from the first
approach could be used here instead, with an O¢ level adjusted to suit how strong an assumption we are willing to
make. The methods from approach 2, on the other hand, may be more defensible and comprehensible, since the
level of conservatism of the test is an explicit part of our null hypothesis.

Both tests in this category directly compute statistical interval bounds that we will use as edges of the
reference envelope, where impact stations with indicator values outside the envelope edge (interval bounds) will be
considered impacted. Besides épecifying a percentilff value p, we also specify a nominal type-1 error rate 0L, which
is the proportion of the time that we expect an impact station originating from the pth percentile of the reference
station distribution to appear by chance outside the computed interval bound. The intérval bounds for both tests
have the general form

U=M+g,, .V
for an upper interval bound when we expect the indicator to increase with impact, or

L=M-g,,.V
for a Jower interval bound when we expect the indicator to decrease with impact. Here, 3 is a measure of centrai

tendency (mean or median) of the reference station distribution, V is a measure of the variability (standard

deviation or median deviation) of the reference station distribution, and g, ot is a critical table value that

provides U and L with the expected statistical properties for given n, p and O values. Note that these equations
are similar in form to the familiar confidence intervals of the mean from a sample, where, for example, the lower
bound i3

sz—t S}—:'.

o df
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Here X is the sample mean, S ¢ 1s the standard deviation of the sample mean (standard erron), and £, o is the

critical Student t value, The following methods all assume that the underlying replicate variances and the numbers

of replicates at all stations are equal.

Tolerance Interval

When we expect our indicator values to decrease with impact, and we choose the pth percentile (O<p<50)
for our null hypothesis, we compare the mean indicator value at the impact station with the lower bound of a one-

sided tolerance interval, which is computed as
L=X;.- 81-a100-p.mO %, (22)

{Hzhn and Meeker 1991, Vardeman 1992). We reject the null hypothesis when the impact station mean is less
than L. When we expect our indicator values 1o increase with impact, and choose a p value (50<p<100) for the
null hypothesis, we compare the mean indicator value at the impact station with the upper bound of a one-sided

tolerance interval, which is computed as

U=Xc+80pmS, @3)

where we reject the null hypothesis when the impact station mean is greater than U/ . f ¢ is.the mean of the
reference station means, S ¥, is the standard deviation of the reference station means, O is the nominal type-1
error of the test, and mz is fhe number of reference stations. The vatues for g, e, 100—p,m and &1-ct,pm CAL be found
in Hahn and Meeker (1991, Table A.12) or Gilbert (1987, Table A3). (Both tables use p/700 instead of ?). The g
values, derived in Odeh and Owen (1980), are based on the noncentral t distribution. Since we are using .S . in

the tolerance interval computations, the tolerance interval bounds should incorporate all the pertinent variance
components (equation 4).

When applying the data in Table 1 to equation 22, we use p=10, (=05, &;_ 45 10_10,4 =%-162, and

L=5125—-4162-/6575 = 17.50.
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The impact mean (34.0) is greater than L, so we accept the null hypothesis that the impact station is not impacted
and is within the reference envelope. Note that the interval bound for the tolerance interval (17.50) is a fair amount
lower than that for test 2 (29.92). This is due to the more conservative assumption associated with a tolerance
interval with p=10, i.e., with the tolerance interval, we are assuming that the impact station originated from tenth
percentile of the reference distribution, but with test 2 we are assuming that the impact station originated as a
random selection from the reference station distribution, where it is Iess likely that we would obtain an observation

as marginal as the tenth percentile by chance.

Hampel outlier identifter - standardization 3

Davies and Gather (1993) propose techniques for identifying outliers in a data sample. An outlier is
defined as a data observation that appears to be ai:exrant given the assumed properties of the distribution from
which the observations were drawn. In a sense, our comparison of the impact station with the distribution of
reference stations is an exercise to see if the impact station i3 an outlier to the reference station distribution. Davies
and Gather (1993) proposed a technique, based on ideas in Hampel (1985), that performed well as an outlier
identifier in their simulations. The method, called the Hample identifier, standardization 3 is conceptually similar
to a tolerance interval. When we expect the indicator to decrease with impact, a lower bound of an interval is

defined as

L=med(X)~g,,,, mad(X), o)

where we declare sample means less than L as outliers, or in our application, impact station means less than L
are outside the reference envelope and assumed impacted. Here, med( X } is the median of the sample, which

includes the reference station means plus the impact station mean, p is a percentile used in the same manner as

with the tolerance interval, m is the number of reference stations, O¢ is the nominal type-1 error with the same

meaning as with the tolerance interval, and mad( X ) is the median absolute deviation of the sample, defined as
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mad(X )=med(1X, —med( X )),| X, —med(X )\,...,\ X, —med(X)}). @5

X ; represents the mean of the first reference station, X , the mean of the second reference station, and so on, with

X being the mean of the impact station. For a few € and p values, Davies and Gather (1993) give formulae

mid
for computing the g,,,; , . . We have written a computer program that will estimate a g, 5.0 for any
combination of ¢ and p. The program, written in C++, is available from the author upon request.

When we expect the indicator values to increase with Impact, an upper bound of the interval is defined as

U=med(X)+8,.,med(X). 26)

Sample means greater than U/ would be considered outliers outside the reference envelope.

Equations 25 and 26 are similar m form to the tolerance interval bounds. Using medians and deviations
instead of means and standard deviations provides a certain amount of “robustress” to the method in that the '
outlier vatues will not distort the computations so their identification becomes more difficult. This method is
designed to detect multiple outliers, so in a typical application, one would input a sample of data, and observations
not fitting the dominant distribution would be identified as outliers. Here we are proposing a mose restricted use of
the method, mainly, we use it as a more robust alternative to a tolerance interval. Rather than testing for multiple
outliers in a single test, we use the reference station indicator mean values plus a dummy indicator mean value for
a hypothetical impact station, and compute a single interval bounds that will apply to all the impact stations. If we

expect the indicator value to decrease with impact, the dummy indicator value at the impact station is less than
med( X ), or if we expect the indicator value to increase with impact, the dummy indicator value is greater than

med( X ). Beyond this, as long as the duminy indicator value is not too close to the median, the exact value

chosen for the dummy indicator value will not affect the computations.

It should be pointed out that we have changed the terminology of Davies and Gather (1993) to be

consistent with our terminology. Specifically, p = 2o n» m+l=N, X=X v and & =20, in this paper and
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Davies and Gather, réspectively. Davies and Gather proposed a two-tailed interval, which we have converted to
one-tailed intervals by using 20y and 20 instead of 0L and O,

When applying the datain Table 1 to equation 24, we use p=10, Ol=. 05, &441.10,05 =27, MED=49,
MAD=3, and

L=49-97(3)=139.

The impact mean (34.0) is greater than L, so we accept the null hypothesis that the impact station is not impacted
and is within thé reference envelope. Note that the interval bound (19.9) is closer to the tolerance i:xtcfval bound
(17.5) than to the test 2 bound (29.92). This is expected, since the_ tolerance interval and the Hampel identifier are

associated with the same more conservative null hypothesis.

Test Evaluations and Applications
We use a simulation model to evaluate the proposed statistical tests and illustrate their properties. The
input to the simulation model includes variance components estimated from real-world test data. The same test

data are also used to demonstrate the use of the methods to detect impacts.

Test data

The emphasis of the application with the test data is the detection of impacts on benthic communities by
sewage outfglls. In the Southern California Bight, sewage outfalls have been one of the more important human
;cﬁviﬁes as far as potential environmental impacts are concerned. The most extensive benthic sampling in the
Southern California Bight has occurred at around 60 meters in depth, due the fact that the major sewage outfalls in
the area discharge at this depth.

In addition to the dischargers’ monitoring programs, the Southern California Coastal Water Research
Project (SCCWRP) has on three occasions sampled the benthos outside the areas covered by the outfall monitoring
programs. In 1977, the 60-meter Control Survey (Word and Mearns 1979) included 71 benthic stations from Point

Conception to the Mexican Border ( Figure 4). In 1985 (Thompson et al. 1987), a subset of these stations were
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sampled (stations 4, 5, &, 11, 13,15, 50,52,54,57,60,61, and 71), and in 1990 a smaller subset of the 1985 stations
was sampled (stations 13, 15, 50, 52,60, 61, and 71).

The data used to estimate the variance components included all three SCCWRP surveys plus the available
outfall monitoring data for 1985 and 1990. From the SCCWRP surveys, we only utilized stations that we
considered good reference stations, given previous analyses of the data. The stations eliminated due to possible
impacts from nearby outfalls, harbors, or oil seeps were stations 1-3, 6, 9, 10, 23-49, 63-69. The outfall monitoring
programs contributing data included the City of Los Angeles (Hyperion outfall), the County Sanitation Districts of
Los Angeles County (Whites Point outfall), County Sanitation Districts of Orange County, and the City of San
Diego (Figure 4). The exact positions of the outfall monitoring stations, not shown in Figure 4, can be found in
EcoAnalysis et al. (1993). We confined our analysis to data taken from between 50 and 70 meters depth, since
almost all the replicated data occurred in this depth range, and replicated data was required to estimate the
replicate variance component. All replicated stations had five replicates, and were from tixc ou_tfall monitoring

programs. None of the SCCWRP survey stations were replicated.

Indicators

Thirteen indicator parameters were computed for each station replicate (Table 3). All these indicators can
be sensitive 1o organic enrichment and associated effects produced by sewage outfalls. Prior to ail analyses, some of
the indicators were transformed to remove dependence between the station mean and the replicate variance (Table
3). If this dependency were not removed, assumptions of equal replicate variance and additive effects in the

proposed methods would be seriously violated.



L. A. Gity Outfall 1626
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Figure 4. Station locations for the SCCWRP reference surveys (after Figure 1 in Word and Mearns, 1979)



Table 3. The thirteen indicators computed for each station replicate. Taylor’s power law was used to determine
power transformations (last column) for indicators showing dependence between the station mean and the station
replicate variance (Elliott 1977). For example, for 2 power transformation of .4, y=x", where y is the transformed
data value used in the analyses, and x is the raw data value. '

Tndicator Symbol Reference Power
Transformation

Gleason Richness Diversity D Margelef (1958)
Shannon-Wiener Diversity T’ Pielou (1969)
Index 5 I5 Smith and Berastein (1985)

Bemstein and Smith (1986)
Infaunal Trophic Index IT1 Word (1978, 1980)
Evenness Diversity T Pielou (1969)
No. of Crustacean Species N_CRUS .6
No. Species in ITI groug 1 N_ITI1 Word (1980) i
No. of Species NSPEC Pearson and Rosenberg (1978)
Total Abundance of Amphiodia T_AMP Word (1980) A4
Total Abundance of Echinoderms T_ECH Word (1980) 1
Total Abundance of ITTI gronp1 T_ITI1 Word (1980) 4
Total Polychaete Abundance T_POLY 2
Total Abundance TOTAB Pearson and Rosenberg (1978) 3

Estimation of variance components
To produce realistic input to the simulation mode! used to evaluate the statistical methods, we estimated

the spatial (G i.) and temporal (G .i o s J ;‘;s) variance comporents from SCCWREP reference stations that were

7
sampled on more than one occasion (using the VARCOMP procedure, SAS 1990a). We excluded the outfall
monitoring data from these estimates since these variance components could be especially influenced by nearby
outfalls, Only a single grab was taken at SCCWRP reference stations, so we had to estimate the replicate variance
from replicated stations in the outfall monitoring data. Here, we used a regression approach (the generalized
additive model technique; Hastie and Tibshirani 1990, Chambers and Hastie, 1993) to model the relationship
between the replicate variance and the sediment grain size (% silt-clay) and outfall infleence (ITI indicator). The
regression model was then used to predict replicate variances for the subset of reference stations used to estimate
the spatial and temporal variance components.

We next formed seven groups of reference stations that we consider separately in our simulations

evaluating the proposed methods (Table 4), Each of the seven groups was chosen to represent different situations

that might affect the behavior of the proposed tests. We then used the general additive model regression technique
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to predict the variance components for each group of reference stations, based on the differences in sediment size
and distances between stations. The regression model parameters were based on the variance component estimates

computed at the SCCWRP reference stations sampled on more than one occasion (see previous paragraph).

Table 4. The seven groups of reference stations to be used in the simulations.

Group Stations Representing

1 4,5,7,8,11-15 North of Santa Monica Bay, remote from any outfalls, fairly wide range
of sediment sizes

2 16-22 Santa Monica Bay, closer to outfall, generally finer sediments

3 50-62 Southern area, remote from outfalls, sediment gradient

4 70,71 Very coarse sediments, outliers for some indicators

5 4,5,7,8 11-22 All northern stations, heterogeneous

6 4,5,7,8, 11-22, 50-62 All stations but outlier stations 70, 71

7 50-62,70,71 All soupthern stations, including outliers

In our results, we present the average variance components for each group as a percent of the total of all
the variance components, This puts all variance components on a common scale without loss of information, since
only the relative magnitudes of the different variance components are important. In the simulations we also used
the average variance components for each group, except for the replicate variances, where we used the predicted
replicate variances for each separate station.

It should be emphasized that these variance component estimates are only very rough average values, and
we would be hesitant to claim that they would apply to any one specific set of stations. On the other hand, at the
very least we would want our proposed methods to perform well for average conditions. As such, the main purpose
of computing variance component estimates is to provide inpats to our simulations testing the performance of the

proposed methods.

Testing assumptions
‘We use the simulation model (described in the next section) 1o test the robustness of the various
techniques to violations of some of the assumptions of the methods. We do this by violating the assumptions to

varying degrees in the simulations, and observing the effect on the test results. To make these simulations relevant,
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we need to have some idea of the extent to which some of the assumptions might be violated in practice.

Accordingly, we use the reference station data to test for violations of some of the more important assumptions of

the tests.

Normality
For each group (Table 4), we examined histograms of indicator values and applied the Shapiro-Wilk test

(Shapiro and Wilk 1965) to evaluate the normality of the data (SAS 1990b, UNIVARIATE procedure).

Random sampling

For most monitoring programs, the station locations are not chosen randomly. At times it is more
important to obtain data at specific key locations or to efficiently obtain a certain amount of coverage of an area.
Other types of analysis, e.g., péaem analysis, often perform better with a more systematic sampling pattern.
Fulfilling these requirements is more difficult with random sampling, so we most often encounter transects or grids
in environmental studies, with the spacing between stations equal or varied in some way to fulfiil other
requirements. The test data used to compute the variance components is obviously more systematic than random
(Figure 4),

Nonrandom sampling patterns of reference stations can potentially violate a key assumption of the
proposed methods, which is that the locations of the reference station Iocations are randomly chosen. When
systematic sampling is performed instead of random sampling, but the population (of reference stations) is in
random order (Gilbert 1987} or quasi-random (Barnett 1991), then we can use the systematic data for statistical
inference in the same manner as random data without biasing the variance estimates used in the tests. The
population is in random order when the following three criteria are satisfied for the reference area.

1. There are no trends in indicator values within the area sampled.
2. There are no namral strata where the indicator values are locally elevated or depressed.

3. There is no correlation between differences in indicator values and distances between stations,
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An example will show why these criteria make sense. Let’s say that we randomly draw 100 data values
froma single normal distribution and store these numbers in a vector df the 100 values. We can think of the
successive positions in the vector as successive sampling positions along a transect in space. Because there is no
relationship between location in the vector and data value, we will obtain a random subsample of ten values -
whether we choose values from ten random positions in the vector, systematically pick every eleventh value in the
vector , or even take the first 10 values in the vector, Actually, in this situation the1"e is no way to obtain a
nonrandom subsample if we do not look at the data values when choosing a sampling position in the vector.

A variation of this example will show the effect of violating the criteria. Let’s say we rearrange the data
valnes in our vector so that they are in ascending order from the first vector position to the last. This arrangement
would violate the first criterion in that it would produce a “spatial trend” along the vector, and also violate the
third criterion in that there would be strong correlation between difference in position along the vector and
difference in data values. Now, if we used the first ten values in the vector as our subsample, we would only obtain
the ten lowest data values, which is obviously a highly biased sample. If we systematically select every eleventh
position in the vector (positions 1, 12, ...,89,100), and compute the mean and variance of the subsample, we will
obtain an unbiased mean, but the variance of the chosen data values will tend be larger than the variance from a !
sample chosen from random positio‘ns in the vector. This is because the systematic sample will always contain the
highest and lowest values, whereby this would not necessarily be true for a random sample. If we were to repeat the
whole process (randomly selecting the 100 data values from a normal distribution, rearranging the data from low
to high values in the vector, and systematically sampling along the vector) a large number of times, the varian&e of
the mean of the multiple systematic subsamples would be lower than the variance of the mean that would be
obtained from multiple random subsamples, This is true even though the individual systematic subsample means
are unbiased. The reason for this result is that the systematic subsamples will be more “balanced”” than random
subsamples, in that the systematic subsamples will tend to contain more equal numbers of high and low values,
which will tend to cancel each other out in the mean computations.

These examples demonstrates some ways that systematic or nonrandom selection of sampling locations

could affect estimates of both the variance of the population and the variance of the population means. The

proposed statistical techniques depend on reasoriable estimates of these variances, so we need to evaluate the

29



degree to which our sampling design fulfills the three criteria, and when the criteria are not met, we need to

determine the effects of this on our test results.

The correlation between differences in indicator values and distance between stations (criterion 3 above) is
called spatial autocorrelation (CLiff and Ord 1981, Jumars et al. 1977, Jumars 1978, Sokal and Oden 1978), and is

commonly measured by an index called Moran’s I, which is

I n
2 2 W5Z:Z;
p =L
#i
I=(—=)—F— @7
W 2
P
i=1
where n is the number of stations, and z, = X; — X, with X; being the indicator value for station and X the

mean of all stations. The w; values are weights that convey the spatial information by giving more weight to

station pairs that are closer together in space. In this application, we used

oL
! dy

where d; is the distance in km between stations i and j. Finally,

W=iiw,.j.

i=1 j=1
J=i

The expected value of I when the null hypothesis of no spatial autocorrelation is true is

E(I)=n__11.

To evaluate the probability that the null hypothesis was true for a given computed value of 1, we used a
randomization technique that involved building a nul! distribution of I values by randomly shuffling the indicator
values among the stations 2000 times, and for each shuffle, computing the value of I. The probability of the actual
I value occurring by chance was obtained by ;:omparing the actual I value to the null distribution.

The I index will be sensitive to violations to all three criteria (for random order), since trends and natural
strata in the reference area will cause at least some stations in relatively close proximity to have similar indicator

values. For each of the seven groups of reference stations, we computed the spatial autocorrelation for each
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indicator. Where significant spatial autocorrelation was found, we included the antocorrelation in the simulation
model to show the effect of the antocorrelation on the statistical test results.

It should be emphasized that gradients, strata, and autocorrelation are only a potential problem when the
data are not randomly sampled (de Gruijter and ter Braak 1990, Legendre 1993). If we had sampled randomly, and
found high autocorrelatibn among the data values, the autocorrelation would not invalidate the statistical tests. In
addition, even if the sami;ﬁng is random, it is still important that the r;ferencc area sampled is representative of
what the fmpact locations might lock like in the absence of the impact. Finally, if systematic sampling is used, the
analyst needs to be aware that spatial cycles in indicator values can bias the means and variance estimates if the
spacing between stations is a multiple of the spatial period of the cycles. However, in practice, such cycles are

usually unlikely.

The simulation model

Figure 5 summarizes the simulation model used to evaluate the proposed statistical tests. Each simulation
produces a data matrix (X values in Figure 5) that is applied to each of the proposed statistical tests. For ea;:h
matrix, the null hypothesis is true, since the randomly generated X values contain no changes due to impact. By
repeating the simulations many times (30,000), we can determine the long-term behavior of the different statistical
tgstso |

The method of evaluating the long-term behavior of the statistical tests was different for the two
approaches. For all the t statistics computed with the first approach, we rejected the null hypothesis in a simulation
when the test indicated that the impact station was significantly different from the mean of the reference station
distribution. If a particular test is performing well, the proportion of rejections of the null hypothesis in all
simulations should approximate the nominal type-1 error of the test (we used O =05 for all tests).

In the second appreach, both methods define statistical intervals that are supposed to cover the prh
percentile of the reference station distribution ¥ — 0t proportion of the time, or, in other words, the statistical
interval defined should fail to cover the pth percentile (¢ proportion of the time. Since we know the actual variance

components used in the simulation, we can compute the underlying variance of the reference station distribution
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Figure 5. Diagram of the simulation model used to test the proposed procedures. Starting at the top, the spatial variance component
(O'i.) and the overall mean (|1) are input to a univariate normal random number generator to produce indicator means for each of
the m reference stations and the impact station (subscript I). These means and a variance-covariance matrix are input to a multi-
variate random number generator (Johnson 1987) to add the temporal variances to the means. In the variance-covariance matrix,
the mean temporal variance for the stations is in the diagonal, and the mean covariance over time for the station pairs are in the off-
diagonal. Finally, the resulting means are input to a univariate normal random number generator to create r replicate indicator val-

ues for each staton, using the estimated G ;‘ for each station. The X values constitute the data matrix for a single simulation.



(using equation 4) and find the indicator value for the actual pth percentile. We can then count the proportion of
simulations in which the computed interval bound did not cover this indicator value for the pth percentile. This
proportion should approximate the nominal type-1 error level (00 ) if the test is performing well. Note that these
statistical tests are in effect testing the nuil hypothesis that the underlying mean of the indicator value at the jmpact
station is af worst equal to the pth percentile of the reference station distribution. When we reject this null
hypothesis, we say there is an impact. If the underlying mean of the impapt station is exactly equal to the prh
percentile, we should reject the null hypothesis of no impact O proportion of the time,

To test specific violations of test assumptions, we altered the model accordingly. For example, we varied
the number of replicates among the different reference and impact stations, or we increased the variability of the
replicate variances améng the stations. ’

To include spatial autocorrelation in the simulations we modified the model as follows.
1. Instead of generating the underlying station means in the first step (i.e., lL;, Hz5.-., IL,, in Figure 5) with a
random normal number gcnefator, means reflecting the actual station means were used. These means were

rescaled to have a variance equal to Gé and a mean equal to the actual mean of the station means. This
configuration of means will retain the spatial autocorrelation present in the original data.

2. With the spatial autocorrelation present, the expected valﬁe of the true spatial variance component is not the
original 0'_2.; , but some other variance that would be realized if we had sampled randomly instead of
systematically. To estimate the true spatial variance component, we modeled a random sampling procedure of
a transect v-vith the actnal station spacing and including the underlying mean values (described in step 1) at the
stations. We used a cubic spline technique to model the relationship between the mean indicator value and the
spatial position, The cubic spline will predict an indicator value for any spatial position along the transect by
interpolating indicator values between successive spatial positions with a smooth curve. Where there were very
larpe distances between snccessive station {e.g., from station 22 to 50), we used.only a small spatial gap, in
order to minimize interpolations between such stations. We did not want to interpolate across the large spatial

gaps because these gaps contained non-reference conditions.
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3. Tomodel random sampling, we randomly selécted m spatial locations along the transect, and used the cubic
spline to obtain indicator values for the chosen locations. The variance of the m indicator values was

computed.

4. Step 3 was repeated 2000 times. The new spatial variance component was computed as the mean of the 2000
variances computed in step 3.

5. This new spatial variance component was input to a univariate random normal number generator to generate
the mean for the impact station in the first step (J1,; ), and also used in equation 4 to find the variance of the
reference station distribution from which the percentiles are computed (for the evaluation of the approach 2

tests).

RESULTS

The raw indicator values for the reference stations are pfcseuted in Appendix A (Table Al). This table

should be helpful in observing the nature of the nonnormality and spatial autocorrelation indicated below.

Normality Tests

Table 5 shows the results of normality tests for seven groups of reference stations. When including ail
stations (column 2), three indicators are associated with a probability less than . /0. This nonnormality is mainly
due to the presence of the outlier stations 70 and 71, since the probabilities for the same indicators are much higher
when stations 70 and 71 are removed (column 3). The only other group of stations showing much nonnormality is
all the southern stations (next to last column). Again this nonnormality is due to stations 70 and 71, since the
probabilities increase when these two stations are removed (last coiumn). In summary, these results indicate that
there is no compelling evidence that our assumption of normality is inappropriate for the present data. The

nonnormality observed for some of the indicators is removed when the outlier stations 70 and 71 are excluded.
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Table 5. Probability from the Shapiro-Wilk tests for normality for seven groups of reference stations (using the
1977 SCCWRE reference stations). Low probabilities indicate evidence of nonnormality. Probabilities less than .10
are emboldened. Reference station group numbers are shown in parentheses in column headings (see Table 4).

All but AllS
All 70-71 (6) AN Nof SMB AllS but 70-71
Indicator {5) SMB ) )] 3)
@

D Q9 .69 S5 24 A0 02 87
H o4 20 A2 18 29 A5 40
15 Yy 38 32 32 83 09 07
IT1 g1 26 28 09 23 Kia1 34
J 56 32 22 58 29 81 .61
N_CRUS 1 16 37 .39 49 35 12
N_ITI1 05 39 .93 .80 97 05 30
NSPEC 02 .69 A6 S A2 01 74
T _AMP 54 T2 .74 A2 .61 01 52
T_ECH 77 87 .95 28 54 17 A4
T ITI1 67 A8 .56 .63 39 A1 14
T POLY g4 59 95 92 .89 03 37
TOTAB .66 17 31 41 g7 9 96

Spatial Aatocorrelation

The last two columns in Table 6 contain the spatial autocorrelation results. In the south, the results for
reference station group 3 (stations 50-62) suggest that a sediment gradient (see Table A1)} may be causing the
antocorrelation observed in about one half of the indicators. The same group of stations with stations 70 and 71
added (reference group 7) shows autocorrelation in all but one indicator. Stations 70 and 71, which are quitc-
different from the other southern stations, comprise a separate stratum that greatly increases the autocorrelation.

In the north, all but one indicator exhibit antocorrelation when Santa Monica Bay is included with the
more northerly stations (reference station group 5). It appears that Santa Monica Bay forms a naturat stratum that
causes the antocorrelation. When the northern stations (group 1) and Santa Monica Bay (group 2) are anaiyzed
separately, the spatial autocorrelation is much lower.

When spatial antocorrelation is present, one way to possibly eliminate the autocorrelation is to drop
stations so the distance between adjacent stations increases. We found that we could eliminate just about all the
spatial auntocorrelation from the entire set of reference stations when no two reference stations were closer than 20
km apart, Unfortunately, this process reduced the number of reference stations from 31 to ten, so this is not an

attractive option.
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Table 6. (Following pages) The percent type-1 error from the simulations for each proposed test, the estimated per-
cent variance components, and spatial autocorrelation (SA) results. The nominal type-1 error used in the tests was
O =5%, s0 tests performing well will show a simulation type-1 error around 5%. Testl-testd are the statistics
from the first approach, Tol Int and Hm3 are the tolerance interval and Hampel Standardization 3, respectively
from the second approach. The I column is the Moran I spatial antocorrelation index, and P(J) is the probability of
obtaining the Moran I value by chance alone. When P(1, }<.05 (bold type), the autocorrelation in the original data
was included in the simulation model. All simulations were run with one replicate at all stations, except for tests 1,
3, and 4, which were run with two replicates at all stations. Results are presented separately for each reference sta-
tion group (see Table 4). The indicator symbols are explained in Table 3. See text for discussion of the pattern of

results.

Reference Station Group 1 (North of Santa Monica Bay)

% Type-1 Error % Variance Components SA

Indicator | Test! Test?2 Test3 Testd Tolint Hm3 | o i © ; G ;_xs G i | PO
D 10.9 49 5.7 5.2 52 6.2 26 24 27 231 -0 2770
H 28.8 5.1 50 5.2 5.2 6.4 4 g2 40 4| -21 9900
I5 327 49 5.2 5.2 49 6.2 2 47 47 3| -15 8355
ITl 8.0 5.1 6.4 5.1 5.2 6.3 46 17 15 22+ -03 .3365
J 386 5.1 50 49 5.0 6.4 | 56 42 1 -09 5835
N_CRUS 121 5.0 56 5.1 5.0 6.0 41 23 21 14 06 .1180
N_ITH 10.3 4.9 5.9 5.2 48 6.4 28 24 24 23 03 1150
NSPEC a7 5.1 12.9 9.7 5.0 6.5 48 5 7 40 07 10570
T_AMP 226 5.1 5.1 5.1 52 6.4 20 39 34 71 -11 8775
T_ECH 19.7 49 4.9 49 5.0 6.2 24 38 29 9| -11 6450
TITI 15.7 3.1 3.2 3.6 1.5 3.3 27 31 28 13 41,0350
T_POLY 31.5 42 4.1 4.1 35 5.5 10 32 55 3 A0 L0335
TOTAB - 200 3.8 41 4.3 2.9 5.0 11 29 49 11 49 0055

Reference Station Groupt 2 (Santa Monica Bay)

% Type-1 Error : % Variance Components' SA

Indicator | Test! Test2 Test3 Testd Tollnt Hmd (o, o i o s O z | P{)
1] 7.7 49 7.1 56 51 6.4 46 3 28 23| -02 .1840
H 25.3 5.1 5.0 50 50 6.4 7 29 58 7 -01 1115
5 325 4.8 5.2 5.2 5.1 6.7 3 47 46 3| -08 4155
ITl 7.9 4.9 6.9 b5 5.1 6.4 39 20 16 25 -03 2185
J 37.8 4.8 4.7 43 3.8 58 2 40 57 2 07 0315
N_CRUS 8.2 5.0 6.0 49 49 6.3 48 12 23 17 o0 1215
N_ITH 84 50 6.8 5.5 5.2 6.4 28 11 30 30 -11  .68518
NSPEC 28 5.2 15.6 12.5 48 6.6 65 0 5 31 01 4310
T_AMP 227 36 36 33 23 5.0 24 36 33 7 05 .0340
T_ECH 20.0 36 35 31 1.9 4.7 28 37 26 8 05 .0245
T ITH 15.0 5.1 5.5 52 5.1 6.6 36 28 24 12 01 1090
T_POLY 333 50 49 49 4.9 6.5 15 33 50 21 -06 .3260
TOTAB 17.0 5.1 5.1 5.0 5.1 g4l 17 20 49 15| -01 1495
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Reference Station Group 3 (Southern, excluding 76, 71)

36

% Type-1 Error % Variance Components SA
indicator | TesH Test2 Test3 Testd Tollnt Hm3 | o i Gi G;'xs 0-';’{ H P
D 9.3 45 4.8 45 34 52] 34 12 29 241 11 .0045
H 26.8 3.7 37 37 1.9 37| 5 41 49 6 A2 .0040
15 32.3 "B.0 51 5.1 5.1 6.2 3 46 48 3| -09 .8440
I} 8.2 4.2 5.4 41 32 50 47 17 14 22 05 .0385
J 38.2 38 35 34 1.5 41 1 48 49 1 09 0140
N_CRUS 11.8 5.1 55 5.1 5.0 8.1 44 19 2 15 .04 0550
N_TH 8.3 3.9 4.7 43 29 4.8 3 16 26 27 Jo 0105
NSPEC 35 47 131 10.1 44 6.2 b4 2 6 37 08 .0iso
T_AMP 22.3 49 5.1 5.1 51 6.3 23 35 35 7 .00 1815
T_ECH 19.9 48 5.1 49 49 6.3 27 35 29 g 01 1445
T_Im 1586 5.1 53 5.1 4.9 6.3 31 28 28 13| -04 3910
T_POLY 32.2 50 52 5.1 48 6.0 13 33 52 '3 -05 5285
TOTAB 18.7 4.7 5.1 5.0 4.8 6.1 13 28 47 12 -11  .9525
Reference Station Group 4 (70,71)
% Type-1 Error % Variance Components SA
Indicator | Testl Test2 Test3 Testd Tollnt Hm3 | 6, ofF o7 Coi | ! P
D 28 5.1 151 136 124 77 44 0 27 24
H 25.1 4.7 5.3 6.0 11.4 76 2 18 65 8
15 315 37 39 4.5 8.7 7.0 2 46 49 3
I 6.3 38 7.9 75 - a4 5.9 43 19 14 24
J 377 41 42 48 10.2 81 2 36 60 2
N_CRUS 5.8 38 93 8.0 94 6.6 46 11 25 18
N_ITH 2.9 5.1 151 13.7 . 12.6 6.9 37 0 30 33
NSPEC 28 53 14.9 134 12.6 76 64 0 5 31
T_AMP 18.9 27 40 37 6.7 6.8 23 K1 35 7
T_ECH 15.1 1.1 1.3 9 2.9 47 27 36 28 9
T ITH 11.1 1.9 2.8 27 47 46 35 28 25 12
T_POLY 324 3.7 40 45 3.9 7.0 14 32 51 3
TOTAB 13.9 4.7 71 7.0 11.7 8.3 19 8 55 18



Reference Station Group 5 (All northern)

% Type-1 Error 9% Variance Components SA
Indicator | Testl Test2 Test3 Testd Tollnt Hm3 | o, ol O';Js c? | 2{)]
D 121 1.9 20 1.7 3 1.6 25 28 25 21| 26 0010
H 28.9 1.0 1.0 9 .0 T 3 56 37 41 31 .0005
15 323 3.0 3.1 3.2 g 2.8 2 49 45 3{ .14 .D065
m 8.3 54 6.3 6.1 46 6.1 42 18 16 23| .32 .0005
J 38.3 1.2 1.3 1.1 ] 1.0 1 58 40 1| .26 .0005
N_CRUS 129 - 25 24 21 5 1.9 41 25 20 14! .18 0010
N_ITH 111 3.1 34 29 1.1 31 25 28 24 221 09 .0325
NSPEC 42 3.2 78 54 15 34 49 6 6 39| .25 .0005
T_AMP 232 4.4 4.3 48 21 41 19 41 33 7| .4 .0085
T_ECH 20.5 4.1 3.9 42 1.5 35 23 40 28 g .13 0110
T_ITH 15.8 48 5.1 50 52 6.1 26 33 28 13§ 05 0975
T_POLY 322 27 28 2.7 8 2.7 11 a2 54 3] 15 .0075
TOTAB 19.3 2.6 2.9 29 .9 3.2 11 28 50 11] .13 .0045
Reference Station Group 6 (All stations excludingnﬂ},'?l)
% Type-1 Error % Variance Components SA
Indicator | Test! Test2 Test3 Testd Tollnt Hm3 | o g Gi‘ G ;xs o i | P

D 124 3.3 33 3.0 D 1.8 20 35 24 21 16 .0025
H 300 3.0 3.2 3.0 2 14 3 58 34 4| .16 .003%
15 321 5.2 5.1 5.1 5.1 6.2 3 50 44 3| 04 0840
171 87 55 6.8 6.6 5.4 7.4 a7 19 18 251 21 .0005
Jd 39.9 3.4 3.8 34 A 2.7 1 59 39 1| .16 .0040
N_CRUS 13.7 3.0 3.2 2.8 4 13 39 28 19 14| .12 .008%
N_ITH 12.2 39 4.4 490 15 32 20 2 26 22| 08 .0345
NSPEC 43 37 7.3 52 1.7 32 40 9 7 441 47 .0020
T_AMP 21.9 5.1 53 © 586 33 5.2 14 41 37 gt .17 .0020
T_ECH 204 4.9 5.1 5.3 29 4.6 16 40 34 10| .17 .0035
T 16.0 4.3 4.3 45 2.1 4.6 17 a2 37 14| .14 .0045
T_POLY 3.8 3.2 3.2 3.1 9 29 10 3 54 3| .18 L0015
TOTAB 20.0 3.2 3.1 3.1 ] 3.2 8 31 50 11 21 .0005
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Reference Station Group 7 (All southern)

% Type-1 Error % Variance Components SA

Indicator | Test Testz Test3 Testd Tolint Hm3 | o, % ois © 2 | P(
D 10.8 4.2 48 43 2.7 45 30 21 27 22 18 .0005
H 27.4 3.3 3.2 3.3 1.0 3.0 4 50 42 5 A7 0005
15 32.4 38 3.9 4.0 1.6 43 3 48 46 3 09 .0045
ITl 8.2 44 4.9 3.8 238 6.8 45 18 15 22 A5 0005
Jd 39.0 3.6 3.2 32 i1 33 1 55 43 1 A3 0015
N_CRUS 11.9 3.7 4.1 4.0 20 38 43 21 22 16 10 .0085
N_ITH 10.2 3.9 44 42 23 4.1 28 23 24 24 18 .0005
NSPEC 38 5.1 12.0 87 43 5.7 52 4 6 37 A7 0005
T_AMP 23.0 2.2 22 22 4 4.6 21 39 3 7 iz .o010
T_ECH 203 2.7 28 2.7 S5 43 26 39 27 8 13 0010
T_ITH 16.3 3.5 3.6 3.7 1.6 3.8 29 31 27 12 06 .0260
T_POLY 32.0 4.0 42 4.6 24 4.4 12 32 53 3 09 .0085
TOTAB 19.2 4.9 5.0 50 52 6.4 12 28 48 11| -03 4210

Simulation Results

Table 6 includes some o_f the simulation results and the variance components used in the simulations
{expressed as percents). Where spatial autocorrelation was found (P(I)<.05), the autocorrelation was included in
the simulation model (emboldened results). The simulations in Table 6 included the same number of replicates at
all smﬁons. The replicate variance at the stations varied a little, since a separate replicate variance was predicted

for each station. We now discuss the pattern of results in Table 6 for each test.

Test 1

Test 1, a standard t test comparing a single reference station with an impact station and utilizing only the
replicate variance, generally has a type-1 error well above the nominal type-1 error level of 5%. At the upper
extreme, when the replicate variance is relatively low compared to-the spatial and time by space interaction
variance components, the type-1 error can get close 10 40% (e.g., see results for J, evenness diversity for all
groups). At the lower extreme, the type-1 error of the test is closest to 5% when the replicate variance is high in
relation to the spatial and interaction variance components. For example, for all the feference station groups, the
number of species (NSPEC) has relatively high replicate variance, and the type-1 error ranges from 2.8 t0 4.3%.

This pattern of results was expected, since the test does not incorporate the spatial and interaction variance
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components, and these componenté contribute less to the variance of the reference station means when the replicate
variance is relatively high.
The results show that test 1 should be avoided unless it is known that the replicate variance is large

relative to the spatial and time by space interaction variance components.

Tesis 2, 3,and 4

These three tests incorporate all the expeétcd variance components. The simulations included equal
replication and relatively small variation in replicate variance améng the stations, so V;Jhcﬂ no spatial
autocorrelation is present, we would expect these tests to perform well, since none of the assumptionls of either test
are greatly violated. Our initial discussion excludes reference station group 4, which includes only two reference
station and could not be measured for spatial autocorrelation.

Where no spatial autocorrelation was detected, the type-1 error for test 2 is in all cases close to the
nominal rate of 5%. Tests 3 and 4 also perform well, except when the replicate variance is high relative to the

spatial and time by space variance components (e.g., sec NSPEC for groups 1-4, 7). This is apparently due to the

fact that these two tests estimae a value for S _;‘f 125> and when the replicate variance is relatively bigh, the
probability of a negative value for the Sﬁ Tes INCTEASES (equations 14 and 16). When a negative estimate occurs, a

value of zero is used in the test, since a variance cannot be negative. The resulting underestimation of h g xS
causes a smaller denominator and the null hypothesis will tend to be rejected more often (inflating the type-1 error
a bit). The output from the simulation model confirmed that the number of negative S ; a5 estimates was high
when the type-1 error was inflated.

When spatial autocorrelation is present, these tests in general tend to produce a type-1 error that is below
the nominal rate of 5%. At the worst; when the spatial variance component is quite high relative to the interaction
and replicate variance components, the type-1 error rates can get as low as 1% (e.g., see H for reference station
group 5). This pattern is expected, since the antocorrelation is contained in the spatial variance component, and we

expect the systematic sampling in the presence of autocorrelation to inflate the variance of the reference station
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means. This inflated variance will tend to inflate the denominator of the t statistic and reduce the type-1 error level

below the nominal level.

Tolerance interval, Hampel identifier

Without spatial autocorrelation, all these methods perform well. In the presencé of spatial autocorrelation,
the type-1 error can be lower than the nominal rate, again depending on the relative size of the spatial variance
component. In some cases, the Hampel identifier seems more robust to the effects of the autocorrelation. For
example, with reference station group 1, the average type-1 error for the last three indicators is 2.6 and 4.8% for

the tolerance interval and Hampel identifier, respectively.

Reference station group 4

The results for this group seem to be more variable, probably due to the fact that there are only two
stations in the group. The tolerance interval type-1 error is inflated when the spatial variance component is
relatively low. These results suggest that more than two referénce stations will provide more stable type-1 error

levels.

Variations in the replicate variance and replication level

Test 2, the tolerance interval, and Hampel identifier all assume that the replicate variance and the
replication level are; equal at all stations. Tests 3 and 4 have relaxed assumptions oﬁ the replication level, but still
assume equal replicate variances at the reference stations. We ran additional simulations to test the robustness of
the various methods when these assumptions were violated. We also ran simulations for some tests to see the effect
of including more replicates at all stations.

Since these assumptions and additional tests all involve the replicate number or replicate variance, the
maximal effect will be observed where the replicate variance is relatively high compared to the spatial and
interaction variance components. For this reason, we ran additional simulations with the number of species

(NSPEC) in reference group 3, a situation with relatively high replicate variance (Table 7).
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The type-1 error for test 1 increases as the replication increases (Table 7). This would be expected since
the higher replication decreases the relative contribution of the replicate variance and accentuates the influence of
the missing spatial and interaction variance COMpONERLS.

With more replicates, the type-1 error for tests 3 and 4 gets closer to 5% (Table 5, rows a-d). The larger

number of replicates improves the results since fewer negative estimates of S ; 7xs are produced. The improvement

is- much more rapid with test 4, which gets close to 5% with only three replicates, while test 3 does not get as close
until there are five replicates. As demonstrated in the methods section, using the data in Table 1, the computed t
values will be the sare for tests 3 and 4 when the numbers of replicates are the same at all stations. Since the
pumber of replicates is the same for both tests in rows a-d, the different results for test 4 must be ch to the
estimate of the degrees of freedom (equation 21).

When there are five replicates at the impact station and only one or two replicates at the reference stafibns
(Table 7, row £), the assumption of equal replication at all stations is violated for all but tests 3 and 4. The type-1
error for tests 3 and 4 is still high due to the negative variance estimates discussed above. The remaining tests
show a somewhat depressed type-1 error level, except for the Hampel identifier, which seems to be more robust to
this assumption. The depression of the type-1 error would be due to the fact that the variance of the impact station
mean is lbwer than expected, due to the extra replication at the impact station (i.e., in equation 4, the value for r is

greater for the impact station than for the reference stations).
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Table 7. The results of additional simulations with variations of replicate numbers and replicate variances using
the number of species (NSPEC) for reference group 3, which is associated with relatively high replicate variance.
The first four rows (a-d) show the effects of increasing the replicate numbers on tests 1, 3, and 4. Row e shows the
effect of five replicates at the impact station but only one or two replicates at the reference stations. Row f shows
the effect of unequal replicate numbers among the reference station (varying between 1 and 5, with 5 replicates at
the impact station). In row g, the replicate variance at the impact station is double the average replicate variance at
the reference stations, and in row b, the replicate variance is one half that at the reference stations. In row i, the
replicate variance at the reference stations varies among the stations (alternating double and half and equal the
replicate variance used in Table 6). In rows g-i, five replicates were used at all stations for tests 3 and 4.

Simulation Testl Test2 Test3 Festd Tol Int Hm3
Approx. equal rep variance
a. 2 reps, all stations 35 4.5 13.1 10.1 4.1 5.6
b. 3 reps, all stations 57 9.0 59
c¢. 4reps, all stations 7.1 7.8 5.1
.d. 5 reps, all stations 82 6.4 4.8
e. 5 reps, Impact station 6.2 12 11.9 9.6 4.0 6.3
f. 1-5 rep reference, S reps Impact 1.5 5.8 6.3 1.6 4.2
Varying rep variance
g. Impact double rep variance 9.3 6.2 4.6 3.8 5.0
h. Impact half rep variance 1.7 7.3 5.6 4.0 6.2
i. Reference rep variance varying 4.2 7.0 5.0 4.5 6.6

In Table 7, rows g and h, the replicate variance at the impact station is double and one half, respectively,
times the replicate variance at the reference stations. This situation violates an assumption for all methods except
tests 3 and 4. The tolerance interval and Hampel standardization 3 seem relatively robust to this violation, while
test 2 is more sensitive. As expected, tests 3 and 4 perform well, but with test 4 closer to 5%.

Row i in Table 7 involves varying the replicate variance among the reference stations. None of the
methods seem particularly sensitive to the varying replicate variances used in the simulation.

It should be emphasized that we chose a worst-case situation to test the robustness of the methods (Table
7.In cases where the replicate variance is lower relative to the spatial and interaction variance components, these
methods will be more robust than demonstrated here. This makes'sense since the violations considered all involve
variability in station means due to the replicate variance, and when the replicate variance is a smaller proportion of

the variance of the station means, the violations of these assumptions will become less important.
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Application With Test Data

We now apply the proposed methods to the 1977 SCCWRP data set. It should be emphasized that the
purpose of the following analyses is not o thoroughly analyze the data, but only to demonstrate how one might
approach an analysis with the proposed statistical techniques. The results shown only apply to the status of the
benthos in 1977. Since that time, all the sewage dischargers have greatly improved the quality of their effluents,
with corresponding changes in the benthos (e.g., Stull et al. 1986). We also want to avoid the implication that the

methods are only applicable to benthic infaunal data.

Patterns of Change in Indicator Values With Expected Impacts

When applying these techniques to actual data, it is important that the analyst understand the behavior of
the chosen indicators. First of all, when the expected type of impact occurs, the direction and pattern of change in
indicator values should be known. Figure 6 summarizes the relationship between the indicators and the expected
outfall gradient in the area. For indicators increasing with mpact, we will be using the upper bounds (U values) of
the statistical intervals for the reference envelope edge (e.g., I5), and for those generally decreasin g (most
indicators), we will be using the lower bounds (L values).

Note that about half the indicators initially increase and then decrease along the outfall gradient (we
analyze these as if they were decreasing with impact). These will not be the more sensitive indicators, since we will
not be measuring the effects of the impact untl the indicator values decrease below levels in the reference area. By
this point, we are fairiy far along the outfall gradient.

Other indicators (e.g., T_AMP, T_ECH, T_ITI1) decrease rapidly as we progress away from reference
conditions. These indicators will be very sensitive to an impact, but will not be as useful for quantifying the degree
of impact beyond a certain point, since these indicators level out fairly quickly with increasing impact.

The IS and ITI indicators tend to follow the outfall gradient in a more linear manner, and as such may be
more useful quantifying the degree of impact over the entire range of impacts. There is some circularity in this
argument since we used ITT to quantify the outfall gradient in the first place (in Figure 6). However, our experience

has shown this to be generally truze.
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The patterns observed for the species diversity measures and total abundance match the patterns described

by Pearson and Rosenberg (1978) concerning the effects of organic enrichment on benthic communities.

Relationships Between Indicators and Habitat

In the Southern California Bight, the natural benthic communities on the mainland shelf vary mainly with
depth and sediment grain size (Jones 1969). With the test data used in the application, all stations were taken at 60
meters depth, so changes in indicator values from variation in depth were not a concern. However, within the data
sample, there is a very wide range in sediment grain size, which ranges from 10 to 95% silt-clay (Tables Al and
A2 in Appendix A). Figure 7 shows the relationships between the sediment grain size and the indicator values.

We perform two separate analyses illustrating different approaches to habitat variation and display of
results. In the first analysis, we use the Iinear relationships between the indicétors seen in Figure 7 to
mathematically remove the effect of sediment size from the data, and use the adjusted data in the statistical tests.
When the effect of sediment size is removed from the data, we reduce the contribution of varying sediment size to
the spatial component of the background variability, while at the same time we minimize the probability that we
will confuse an impact with differences in sediment size in the reference and impact areas. Thué, as discussed in
the section on the spatial variance component, we are increasing the test sensitivity without sacrificing test validity.
In addition, if the spatial antocorrelation found in the data is at least partly due to sediment gradients, then
removing the effect of sediment size can remove some of the spatial autocorrelation. Removal of spatial
autocorrelation from the reference stations will tend to produce more sensitive statistical tests, since the
autocorrelation tends to depress the type-1 error rate below the nominal type-1 error level (Table 6), indicating an
gverprotective test.

A second analysis is performed where we do not adjust the indicators for sediment size. In this case, we
will need to carefully consider the choice of reference stations so that differences in sediment size are not confused

with mmpact.
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Analysis 1

Using the reference stations only, we used simple regression to fit a linear relationships between percent
silt-clay and each indicator (Figure 7). The resulting regression equations were then applied to all the 1977
SCCWRP data, and the regression res;duals were used as the data values in the subsequent analyses. The residuoal
indicator value at a station includes the variation not explained by the sed'u;ient grain size at that station. This
procedure assumes that we do pot consider a change in sediment size as an impact.

We reran the spatial antocorrelation analyses after removal of the sediment size effects (Table 8). When
comparing these results with the original analyses CTablé 6), the most dramatic change observed was the reduction
in spatial autocorrelation for reference station group 3, which includes the stations above San Diego in the south.
This is the area where we suspected that a sediment gradient (Table A1) was causing the antocomrelation. The
removal of the sediment size effects has eliminated the sediment gradient and the related antocorrelation. Since
reference station group 3 is not asspciated with any problems from spatial autocorrelation, we use reference station

group 3 to define the reference envelope in this analysis.

Table 8. Spatial autocorrelation results after removal of the effect of sediment size. The probability associated with
the Moran I value is shown (same as P(I) in Table 6). See Table 4 for the membership of the reference station

Eroups.

Reference Station Group

Indicator 1 2 3 5 6 7

D 0090 0280 7230 0245 0475 0155
H 2920 0515 4285 0495 .0230 2465
15 4825 3530 8160 3150 5800 .1660
ITI 3000 .0450 3545 0105 0190 1535
J 6260 1260 4165 2915 0150 4725
N_CRUS 0245 0495 5070 0265 .0240 3325
N_IT11 0595 3065 5785 2455 3300 0085
NSPEC 0080 0195 6630 .0200 .0340 0135
T _AMP 3870 2175 8490 4545 0030 1065
T_ECH 4515 ,1860 8790 4325 0020 1845
T_ITI1 1035 1850 9470 2350 .0045 6760
T _POLY 0340 1700 2170 0520 .6025 2050
TOTAB 0095 0695 6210 0190 0005 5940
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Using the data from reference group 3, we computed the envelope edge (interval bounds, equation 6) for
each indicator using test 2 (equation 12). We eliminated the data for the T_POLY and TOTAB jndicators, since
they would be difﬁéult to interpret, due to the multimodal pattern élong the outfall gradient (Figure 6). Test 2 was
chosen over tests 3 and 4, since there was only a single replicate at all stations, and tests 3 and 4 require at least
two replicates. To conserve spaceKand avoid redundancy, we only show the results for a single test (test 2). In the
second analysis, we show output where the results for the different su;tisﬁeal tests can be directly compared for an
indicator. |

Tn order to present the analysis results in a concise form, we rescaled and centered the indicator datato
reflect the position of each data point in relation to the reference envelope edge. Here we rescaled the residuoals data
for each indicator to a scale from 0 to 100, and then subtracted the (rescaled) value of the reference envelope edge
from each rescaled data value. Positive rescaled data values are inside the reference envelope (acceptance of the
null hypothesis of no impact), and negative values are outside the envelope (indicating a probable impact). The
more negative the value, the greater the impact. With the data in this form, the results for all indicators can be
shown on a single figure (Figures 8-11).

In Figures 8-11, the indicators are ordered on the vertical axis by expected sensitivity to an impact, which
was determined by examination of the patterns of the indicators along the outfall gradient (Figure 6). The most
sensitive indicators are toward the bottom, and the least sensitive indicators are toward the top of the vertical axis.
Successive figures from Figure 8 to 11 show the stations in the vicinity of individual outfalls, beginning with the
outfall showing the least impact (Figure 8) to the outfall showing the greatest impact (Figure 11). Figures 8-11
allow us to observe the patterns of all the indicators at once, and provide a broader perspective on the natmre and

extent of probable impacts.

Analysis 2
Here we are not adjusting the indicator data for the influence of sediment size, so we need to consider
whether our statistical tests will tend to confuse sediment size differences with impacts. We note that the sediment

sizes in the vicinity of the outfalls range from 20 to 79 percent silt-clay (Table A2). If our chosen reference stations
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all had fine sediment (say 85-100% silt-clay), or very coarse sediment (say 0 to 15% silt-clay), then our statistical
tests would tend to confuse sediment differences with impacts, since the impact and reference stations will cover
nonoverlépping ranges of sediment size. To prevent this, we want to include the effect of sediment size differences
- in the spatial variance compon;ant (i.e., include sediment effects in the background variability). This cau be
accomplished by choosing reference stations with a mix of sediment sizes. Accordingly, reference station group 1
(north of Santa Monica Bay), with a range of sediment sizes ranging from 20 to 81 percent (Table Al), was chosen
for this analysis.

In this analysis, we computed the reference envelope edges (interval bounds) for test 2, the tolerance
interval, and the Hampel identifier. For the last two methods, we used four different values of p. We could not
utilize tests 1, 3 and 4, since there was no replication at the stations. Here we display the results in a manner that '
allows us to focus on a single indicator (Table 9) at a time. This choice of display has nothing to do with the type
of analysis, but is included to show another useful way that results can be displayed. When displaying the results as
in Table 9, it is easy to compare results from different statistical tests and p values (or even different Ot values, if
desired). We can see that test 2 is the most sensitive of the tests, with the tolerance interval and Hampel identifier
being more conservative, as expected. The Hampel identifier is consistently more conservative than the tolerance
interval (with g held constant),

Another advantage with this type of display is that we can see what percentiles of the reference station
distribution the underlying mean at the impact station would need to equal for us to falsely declare an impact. For
example, if we were to declare that station 45 was impacted, we would be confident that this was a good decision,
since for us to be wrong, the underfying Index 5 mean for station 45 would have been by chance greater than the
99.9th percentile of the reference distribution, according to the Hampe! identifier. Or, if we were using the
tolerance interval, the underlying Index 5 mean for station 45 would have been by chance greater than the 99.99th
percentile of the reference distribution. Since these are unlikely chance events, we would gain confidence in a

decision to declare station 45 as impacted, given the values of the indicator in question.
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Table 9. Results with a single indicator (Index 5) in the second analysis. The Index 5 values are sorted in
ascending order, since the index values increase with impact, Interval bounds (envelope edges) for different
statistical tests and p values are shaded. For the station types, REF=reference, SD=S3an Diego outfall area,
OC=0range County outfall area, SMB=City of Los Angeles outfall area in Santa Monica Bay, and PV=County of
Los Angeles outfall area on the Palos Verdes shelf.

Statistical Test Index 3 {(I5) Station Type Station
20 REF 21
23 REF 19
24 REF 18
26 REF 4
27 REF 20
.34 REF 17
35 REF 14
37 REF 7
41 REF 13
44 REF 22
A3 REF 8
.50 _REF 5
50 REF 12
51 REF 11
.53 REF 16
.53 REF 15
56 SMB 27

1.31 PV 32
1.60 PY 31
1.80 PV 33
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DISCUSSION

The detection of impacts in environmental monitoring is a serious vndertaking, since undetected impacts
may harm the environment, or frequent detection of false or ecologically insignificant impacts can lead to a waste
of resources and discredit important environmental protection programs. We have defined and evaluated statistical
tests that could be used to test for impacts when no before-impact data are available. A large percentage of

monitoring programs lack sufficient before-impact data, so there is ample need for such techniques.

Related Approaches

Underwood (1989), Keongh and Quinn (1991), and Smith (1991) emphasize the need for multiple
reference locations when testing for impact or treatment effects. These approaches also include sampling before
and after the onset of the impacting activity. In this paper, wé are proposing that even in the absence of before-
impact data, we can still make inferences concerning differences between the impact location and an appropriate
reference area, since the variation among the reference locations can be used to estimate the natural background
vaﬁability among stations separated in space. Our approach would not be as sensitive as a design ncorporating
before and after mpact data, but it often will be preferable to the application of an mappropriate test (e.g., test 1) or :
1o test at.all. |

The idea of a reference envelope delimiting a population of reference locations is conceptually similar to
the multivariate approaches of Bloom (1980) and Hughes et al. (1990). Clarke and Green (1988) emphasize the
need to include a “relevant level of between-area variation™ in the background error term of the statistical test for
impact when comparing spatially separated locations.

Boswell et al. (1994) introduce the idea of the “crystal cube”, where one “side of the cube” conceptually
corresponds to the “edge of the reference envelope™ for a single indicator. A side of the cube is defined with a one-
sided prediction interval for a single future observation (Whitmore 1986, Hahn and lMceker 1991, Vardeman
1992). The formula for the bound of such a prediction interval is identical to the formula for the reference
envelope edge when using test 2 (equation 12 rearranged in the form of equation 6). However, the bound defined
by our test 2 would differ from the prediction interval bound of Boswell et al. (1994). The background error

variance computed for their test will contain different variance components, due to the fact that their variance is
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computed from multiple samples in both space and time. (The variance in test 2, S; , is computed from samples

taken at one only period in time.) The Boswell et al. (1994) sampling plan involves sampling a single randomly-
{ocated reference station per year, so multiple years of sampling would often be required before a sufficiently
powerful test is available. Additional power could be obtained by sampling multiple reference stations each year.
Davis (1994, p 837) derives a compuational formula for the pertinent variance whe.n. multiple reference stations are
sampled at each time.

Which approach, the “reference envelope™ or “crystal cube”, is preferable will depend on the situation. If
there is only one effective sampling period (and at least two reference stations), then the reference envelope
approach is preferred since multiplersamp!ing periods are required for the crystal cube approach. Beyond this
situation, the better choice will depend on the relative power or sensitivity of the two approaches, which in turn will
depend on the number of effective sampling times, the number of reference stations, and the relative magnitudes of
the spatial, temporal, and replicate variance components.

As far as variance components are concerned, the main difference between the two approaches is the

manner in which the temporal variance is utilized. With the reference envelope, the interaction between time and
space (O 125[5) contributes to the background error variance, where with the crystal cube approach, the “parallel time-

to-time component” (i.e., 0'; )} contributes to the background error variance (Davis 1994).

Multiple Comparisons

The prediction intervals discussed above (including our test 2} involve setting a bound on a single future
observation, but frequently we will be interested in applying the same bound to several separate observations (impact
stations). This suggests that when applying the same prediction interval bound to several impact-stations, the
proportion of impact stations found outside the bounds will tend to be inflated due to the multiple comparisons. Hahn
and Meeker (1991, p 63) give tables and a (conservative approximate) formula for prediction interval bounds for
more than one future observation. The formula corrects for the multiple comparisons by applying the Bonferroni

inequality to the nominal type-1 error level, i.e., & / m is used instead of ¢t for the critical Lodrs where m is the

number of comparisons applied to the bound. The folerance interval, on the other hand, is designed so that
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all fature observations are within the computed bounds with the nominal error rate (Vardeman 1992), so no
adjustments are needed for multiple comparisons when nsing a single indicator. Incidentally, there is no reason
that the background error variance used in the crystal cube approach could not be used with a tolerance interval.
Multiple comparisons will also be involved when any of the statistical tests are applied to multiple
 indicators. Jones (1984), and Davis (1994) discués some approaches to adjusting tests for multiple comparisons.
The price paid for adjusting the statistical tests for multiple comparisons is a loss of power for the individual tests.
There is still controversy over the extent to which tests should be adjusted. For example, Saville (1990), in
reference to multiple pairwise comparisons of treatment groups, proposed that no adjustments for multiple
comparisons be applied when using the tests for generating hypotheses (See also letters generated by Saville’s
~ article in Holland 1991, Lea 1991, and Saville 1991). Most oftén, regulators will judge the severity of impacts with
a weight of evidence approach, which could be thought of as a hypothesis generation process involving evaluation
of patterns of test results and information from multiple sources. For this reason, we did not apply any adjustments

for multiple comparisons in the applications of the reference envelope with the benthic data

P_seudoreplication and the Background Error Variance of the Tests

In the classic paper by Hurlbert (1984), the term pseudoreplication is defined “in analysis of variance
terminology, as the testing for treatment effects with an error term inappropriate to the hypothesis being
considered”. A clear example of pseudoreplication is the use of the standard t test (test 1) when testing fqr mpacts.
The error term of this test is based on small-scale spatial (replicate) variance, bat we are comparing (reference and
impact) stations that can separated by relatively large distances (compared to the small-scale spatial differences}, so
it would not be surprising that such a test would often detect “impacts”, when in fact the test is only detecting
differences in the underlying indicator means at two geographically-separated, unimpacted stations. The error term
of the test contains no information on the natural variability of indicator values on the larger geographic scale.
This is consistent with the greatly inflated type-1 error of this test in our simulations.

In order to avoid psendoreplication in manipulative ecological experiments with a spatial dimension,
Hurlbert (1984) states that a treatment area should not be spatially segregated from a control or reference

(nontreatment) area, but instead replicate treatment and reference locations should be interspersed in space to

51



avoid confusing spatial differences with treatment differences. The logic behind this recommendation is that, even
without a treatment effect, any two areas in space will almost certainly differ somewhat in their underlying mean
dependent variable (indicator) values. In a psendoreplicated ecological experiment we would subject multiple
randomly-chosen locations within one area to a treatment, and also randomly choose multiple untreated locations
within a separate area. We would then compare the mean indicator values in the two arcas using a statistical test
with the aim of discovering whether there are any treatment effects. When we reject the null hypothesis, we may
only be detecting differences in underlying indicator means in the two arcas rather than a real treatment effect.
FEven when there are only small differences in the underlying means for the two areas, we increase our chances of
detecting this difference as a treatment effect as we increase the number of sampling locations within the two areas.
However, if the treatments are inferspersed in space (instead of segregated), and we compare treatment Iocations
with the untreated locations, we will not be confusing treatment effects with spatial differences, smce we are no
longer also comparing two segregated areas in space.

Our proposed general approach to detecting impacts could be thought of as an ecological experiment with
the impacting activity serving as a treatment applied to a small area in space (the impact station). To detecta
treatment effect (impact), we compare the impact station with a larger (unimpacted or untreated) reference area,
from which we obtain a sample of multiple reference stations. Even though we might have multiple impact
stations, we are considering the impact stations one ar a time in our statistical tests. We are only considering a
single impact station at a time because impacting activities often set up strong spatial gradients in indicator valaes
in the impact area, and we will usually have an interest the condition of individuat locations along the gradient (in
contrast to only being interested in the condition of the entire area). In addition, these indicator gradients in the
impact area would greatly inflate our background error variance if we used the variance between different impact
stations in the estimation of the background error variance. This would make our test much less sensitive to the
impact.

Our apprqach clearly involves comparing two segregated areas in space with a statistical test, and as such,
we need to consider whether our tests are subject to serious problems from pseudoreplication. Multiple impact
(treatment) stations cannot be interspersed in space with multiple reference stations, since the location of the

impacting activity is usually fixed, and by necessity the typical sampling design involves a reference area
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segregated from an impact location (Stewart-Oaten et al. 1986, Eberhardt and Thomas 1991). At times, the impact
area could be spatially interspersed within a larger reference area. This may reduce the pseudoreplication, but with
only one impact area, there is still some segregation.

When we have segregated reference and impact areas, a useful design would involve a random sample of
multiple reference areas. From the variance of the means of the reference areas, we could estimate a background
error variance that would reflect the variability in mean indicator values among segregated areas in space. With
such a design, we would not expect pseudoreplication to be a problem, since the background error variance
incorporates expected differences among the areas, and we will not tend to confuse impacts with spatial
differences.

Since we are only considering a single impact station at a time, we are concerned with the underlying
mean indicator value in 2 limited subarea of the entire impact area. From this perspective, our pseudoreplication
problem becomes a problem of distinguishing actual impacts frou; underlying differences between “limitéd
subareas™ of space. If we consider each of our reference stations to be a sample (of one) from a subarea of the larger
reference area, then the background error variability for our proposed statistical models will incorporate expected
variability among the subareas, and pseudoreplication should niot be 4 problem. What we call a reference area in
the statistical tests is a matter of scale, and when we consider individual impact stations in our statistical tests, the
relevant scale involves smaller areas that can be represented by individual stations rather than relatively large
areas.

One of the properties of a pseudoreplicated statistical test comparing two segregated areas for treatment
effects is that any underlying mean indicator differences existing between the segregated reference and treatment
areas will be detected as an impact if we just sample a sufficient number of stations within both areas (when the
null hypothesis is true). This is becanse the background error term for such a test would include the sum of thé

variance of the means for the two areas, and as the number of stations sampled within the areas increases to a large
number, the variance of the means will tend toward zero. Recall that the variance of a mean is S 2 / n, where nis
the number of stations sampled, and S? is the variance of the stations, and as # increases, S 2’/ n diminishes

toward zero. As the error term of the test tends toward zero, more minnte underlying differences in the arcas

sampled will tend to be detected as impacts. However, with the proposed tests, the error variances will not tend
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toward zero as the number of stations sampled increases. With tests 2-4, the error variance tends toward the
underlying variance of the reference station distribution (rather than zero) as the number of reference stations
sampled increases (see eqﬁation 12). For the tolerance interval, the measure of (background error) variability nsed
to compute the interval bounds is the estimated variance of the reference station means (equations 22 and 23), and
as we sample more refcrénce stations, this estimated variance also tends toward the underlying variance of the
reference station distribution, (The Hampe! identifier is similar in concept to the tolerance interval). Thus, to detect
an impact with the proposed tests, the difference between the impact station mean and the mean of the reference
stétion means in a survey must exceed differences that would be predicted from the estimated variance of the
reference station distribution. This is why we emphasize that the reference stations be chosen from an area that
includes at least a level of physical and geographic variation that might exist between a reference station and the
impact station. When this is the case, the background error variability of the tests should contain variability
commensurate with the spatial differences of the segregated impact and reference locations, and this situation will
prevent the tests from confusing spatial differences with impacts. The scale of the desired physical and geographic
variation in the reference area will dépend somewhat on the indicators utilized, since different indicators can vary
in their sensitivity to different environmental factors and geographic separation.

The removal of the effect of sediment size on the indicator values in our first analysis demonstrated how
we can use relevant information to decrease the background error variance due to habitat (sediment size)
differences (which are part of the spatial variability), while at the same time lower the probability an impact will be
confused with habitat differences between impact and reference locations. This type of procedure can enhance both

the sensitivity and the validity of ihe statistical tests.

Test Assumptions

The stmulations show that the proposed tests generally work well and the test applications have produced
reasonable results, It is not surprising that the simulation model produced good results, since it incorporated the
basic assumptions of the statistical tests. However, when these basic assumptions are violated in practice, the

results of the statistical tests could potentially be very misleading. Therefore, it is imperative that the analyst
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thoroughly consider the assumptions associated with the use of the proposed techniques. We discuss the more

important assumptions in more detail below.

Random Sampling of Reference Stations

When the positions of the reference station locations are not chosen at random, we need to consider the
effect of our sampling design on the statistical tests. Most commonly, we will have some sort of systematic
sampling design. When the spatial autocorrelation in the indicator values is absent or relatively low, even with a
systematic sampling design, the tests will perform as if the statior location were randomly chosen. As the degree of
(positive)} spatial autocorrelation increases; the tests become more conservative as far as type-1 esror is concerned,
i.e., the actual type-1 error tends to be: lower than the nominal (€t ) type-1 error. This fact also implies that the tesis
are less sensitive to impacts. Consequently, when we suspect that spatial autocorrelation is present for an_indicator,
and an impact is detected, the autocorrelation should not cast doubt on the conclusion of impact. This is because
the autocorrelation makes it more difficult to detect an impact, but in spite of this, an impact was still detected. On
the other kand, if an impact was not detecied, this may be partly due to the autocoﬁelation.

When applying inferential statistics to data with spatial structure (and non-random sampling), the
computations can in some cases be modified to a;ijust for spatial autocorrelation (Griffith 1978, CLiff and Ord
1981, Legendre et al. 1990, Legendre 1993, Kleinn 1994). Future research is needed to determine how the

proposed tests could be adjusted for autocorrelation.

Indicator Vaiues at the Impact Station Under the Null Hypothesis

Our tests 2-4 assume that the (unimpacted) impact siation would appear as a random selection from the
reference station disttibution. Thus, it is assured that the impact station most frequently would have an underlying
mean indicator value closer to the mean of the distribution, and less frequently have underlying mean values
toward the tails of the distribution. The tolerance interval and Hampel outlier identifier also assume that the impact
station originated from the reference station distribution, but we make a more pessimistic assumption that the
impact station originated from the tail of the distribution toward an indication of an impact. This allows for more

caution in our assumptions regarding the unimpacted state of the impact station. Such caution would be warranted
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when the costs of impact are very high and we would want to be confident that any identified impact had a high

probability of being an actual impact.

Normality of Referenée Station Distribution

When we have evidence that the reference station data is non-normal to an extent that it would distort the
statistical test results, it is often possible to transform the data to obtain a more normal distribution (Box and Cox
1964). With our test data, we transformed some of the indicators to obtain replicate variances that were not
dependent on the station mean. Although these transformations were for a different purpose, they will often also
make the distribution of station means more normal.

‘When transformations are insufficient for this purpose, nonparametric approaches can sometimes be
utilized. There are nonparametric tolerance intervals (Hahn and Meeker 1991), but to be useful for the present
application, a fairly large sample size (number of reference stations) would be needed. More recently,
computational methods requiring smaller sample sizes have been proposed (Vangel 1994). Randomization
(Edgington 1987) or bootstrap (Efron and Tibshirani 1993 ) methods could possibly be applied to the proposed tests,
but this is an area for foture research,

If we have reason to believe that the reference station indicator values follow some known distribution
other than the normal distribution, we could generate the appropriate g values for the Hampel outlier identifier

using simulations with that distribution, It may be possible to do something similar with tolerance intervals.

Variance Estimates from Multiple Spatial or Temporal Strata

We may be able to substantially increase the degrees of freedom by pooling data from ﬁmhiple surveys
and/or strata in order to estimate the background error variance. This approach brings with it the assumption that
the variance among the reference stations is the same within all strata. When considering all the temporal and
spatial variance components that can affect the magnitude of this variance, we realize that in practice it may be
difficult to assume that all these spatial and temporal components are constant across straia, or that they change
over time or space in ways that the differences cancel out to produce the same overall variance. The extent of the
problems with pooling will probably depend on the application, and if pooling over strata is being considered, the

associated assumptions should be carefully evalnated.
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APPENDIX A. RAW INDICATOR VALUES FOR THE SCCWRP 1977 SURVEY DATA.

Table Al. Raw indicator values for the SCCWRP referenice stations in 1977 survey. Table 1 describes the indicator
symbols. The last column is the percent silt-clay at the station.

Station d h i5 i n_ nh_ nspec L t L t tolab %
crus  itil amp ech itil paly slc
North of Santa Monica Bay
4 113 312 26 77 715 27 19 66 45 b4 & 12 30 22
5 103 282 50 8 8% 17 15 60 113 115 152 88 316 42
7 93 307 37 & 78 16 11 5 3 U e 37 218 59
8 121 314 48 85 74 22 17 69 83 8 12 7 2713 20
1 130 325 51 79 74 31 23 81 97 99 156 126 460 81
12 114 282 50 79 66 27 20 70 4 46 {55 218 430 64
13 129 320 M1 8 73 27 18 79 42 B3 152 156 428 U
14 108 287 35 8 68 26 19 68 89 97 260 161 EQ8 67
15 132 307 53 8 73 22 16 69 89 93 26 80 424 46
Santa Monica Bay ' '
16 102 271 53 B89 65 23 10 63 161 165 233 99 426 @2
17 105 238 34 93 58 2 15 63 201 204 256 63 378 8
18 72 208 24 94 56 15 13 4 146 151 178 4 251 9
19 88 218 23 94 56 18 14 50 149 154 179 4 259 92
20 67 213 27 9 61 13 9 33 66 66 &0 14 116 81
21 74 247 20 91 67 16 12 a9 7 78 104 A 173 64
22 84 272 44 88 70 16 18 50 118 118 197 114 333 45
Southern '
50 74 222 32 92 589 15 11 43 148 148 188 60 289  &f
51 79 226 45 8 58 15 1 B0 207 207 254 171 498 &2
52 80 213- 4 93 55 18 11 50 258 258 299 74 467 92
53 80 167 A7 94 42 18 14 51 348 349 413 68 523 90
54 76 185 41 91 48 4 9 46 228 233 245 77 383 85
55 60 178 15 80 49 12 12 37 223 224 26% 111 4M T2
- 56 91 180 46 89 44 14 8 60 363 365 409 179 651 70
57 104 272 32 83 g6 17 14 61 132 142 170 100 321 78
58 99 268 34 8 65 20 16 62 174 178 240 138 467 51
59 97 240 30 88 59 22 18 60 203 204 257 104 427 50
60 94 253 43 8 63 19 14 - 57 182 184 218 92 392 &
61 104 290 29 87 70 23 19 62 117 122 198 89 357 G54
62 19 275 41 84 B84 13 19 74 180 183 226 168 463 48
Far South - very coarse sediments '
70 158 305 &7 70 65 24 it 106 8 48 135 545 765 29
il 172 379 75 71 81 A 30 110 1 27 139 287 570 16




Table A2. Raw indicator values for SCCWRP non-reference stations in 1977 survey. The last column is the

percent silt-clay at the station. Stations closest to the outfalls in the different areas are marked with an asterisk.

Station d h i5 iti n_ n_ nspec U t t t. iotab %
crus it amp ech il  poly sfc
Northern - oil present
1 125 326 74 63 .76 28 16 75 3 42 73 7 384 20
2 161 348 83 77 74 3y 2 113 22 45 292 B43 1038 13
3 124 303 69 69 .89 2 23 81 02 10 147 194 627 3
6 109 324 59 8 79 14 17 60 65 68 102 56 223 43
9 62 260 18 90 77 7 7 29 3 & 50 18 90 95
10 78 306 57 75 83 13 6 40 30 3 37 48 148 94
Santa Monica Bay - near outfall
23 69 240 110 53 466 9 7 39 3 3 11 69 244 A
24 76 316 147 60 82 7 5 47 0 0 6 232 414 51
25* 83 291 119 6 74 12 8 51 0 0 20 190 401 51
26 103 253 8 66 .59 17 23 75 1 4 158 779 1331 H4
27 89 292 56 63 74 13 14 5 % 29 B3 14 289 7O
28 124 317 81 66 73 24 15 78 8 12 48 245 510 42
Palos Verdes Shelf - near outfall
29 82 247 87 43 64 7 7 47 1 2 22 51 2 79
30 103 313 108 64 75 17 14 64 0 2 70 95 451 67
K3 80 155 160 56 37 10 9 65 0 0 33 1939 3034 48
32 58 205 151 538 .56 2 2 39 0 0 8 42 708 67
33+ 52 175 180 66 .49 2 1 36 0 0 1 Bt 85 B2
35 59 282 143 55 84 2 1 29 0 0 1 60 111 5
Near harbor
36 124 328 77 7 76 2 20 75 5 12 67 285 448 18
37 144 292 80 77 B4 23 29 95 0 4 183 568 689 27
38 186 3982 79 80 81 3 29 126 0 18 237 334 834 10
Orange County - near outfall
39 113 335 103 75 79 18 19 70 52 M 100 204 457 29
40 120 342 94 76 80 15 23 72 24 24 84 200 369 B3
4 101 302 102 67 73 16 14 63 1 11 43 190 451 53
42 89 273 107 60 68 15 18 57 1 1 37 179 537 41
43 106 252 126 54 .58 18 17 74 0 2 4 272 1008 31
44 88 235 119 & 57 14 12 62 2 3 40 223 1012 23
45* 96 276 134 49 65 17 i 69 0 0 22 608 1202 23
46 90 2865 125 B3 65 4 1 60 0 0 4 323 78 25
47 126 300 119 55 69 6 16 78 1 4 43 196 600 24
48 120 334 107 65 .78 10 21 74 i 3 8 198 441 20
48 87 323 71 80 81 i5 18 54 ¥ 75 88 237 B2
San Diego - near outfall
63 88 311 87 74 81 7 8 47 16 i7 39 108 182 63
84* 86 332 983 T 86 9 10 48 2 g 3 117 235 62
68 84 307 88 63 .79 9 7 48 16 17 4 129 270 =0
69 72 292 74 78 .79 7 8 40 56 57 81 69 226 62
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