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Introduction 
Streamflow duration assessment methods (SDAMs) are rapid, field-based methods to determine flow 
duration class at the reach scale. The conceptual framework and process steps presented by Fritz and 
others (2020) were followed to integrate the three key components of an SDAM development study 
(hydrological data, indicators, and study reaches) and develop a beta SDAM for the Western Mountains 
(WM; Mazor et al. 2021c).  
 

This supplemental document describes the data collection, data analysis, and evaluation steps 

that resulted in the beta SDAM WM. The SDAM Project Delivery Team is making this document 

available to inform public review and comment on the beta method. For a complete description 

of the beta SDAM WM protocol, please see the User Manual (Mazor et al. 2021c). For more 

information on the collaborative effort between the U.S. Environmental Protection Agency 

(EPA) and the U.S. Army Corps of Engineers (Corps) to develop regional SDAMs for nationwide 

coverage, please see here. 

Streamflow duration classes 
Streamflow duration governs important ecosystem functions (such as support for aquatic life, 

sediment transport, and biogeochemical processing rates) and streamflow duration classes are 

often used to guide watershed management decisions, including assessing the applicability of 

water quality standards. Our definitions of streamflow duration classes followed those used by 

Nadeau (2015): 

• Ephemeral reaches flow only in direct response to precipitation. Water typically flows 

only during and/or shortly after large precipitation events, the streambed is always 

above the water table, and stormwater runoff is the primary water source.  

• Intermittent reaches contain sustained flowing water for only part of the year, typically 

during the wet season, where the streambed may be below the water table or where 

the snowmelt from surrounding uplands provides sustained flow. The flow may vary 

greatly with stormwater runoff.  

• Perennial reaches contain flowing water continuously during a year of normal rainfall, 

often with the streambed located below the water table for most of the year. 

Groundwater typically supplies the baseflow for perennial reaches, but the baseflow 

may also be supplemented by stormwater runoff or snowmelt. 

 
For these definitions, a reach is a section of stream or river along which similar hydrologic 
conditions exist (e.g., discharge, depth, velocity, or sediment transport dynamics) and 
consistent drivers of hydrology are evident (e.g., slope, substrate, geomorphology, or 
confinement). A channel is an area that is confined by banks and a bed and contains flowing 
water (continuously or not). 
  

https://www.epa.gov/streamflow-duration-assessment/beta-streamflow-duration-assessment-method-western-mountains
https://www.epa.gov/streamflow-duration-assessment
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Overview of the beta method for the Western Mountains 

The beta SDAM for the WM uses a small number of indicators to predict the streamflow 
duration class of stream reaches in the WM. Some indicators are measured through desktop 
analysis, while others are quantified during a single field visit. The beta SDAM WM results in 
one of four possible classifications: ephemeral, intermittent, perennial, and at least 
intermittent. The at least intermittent category occurs when an intermittent or perennial 
classification cannot be made with high confidence, but an ephemeral classification can be 
ruled out.  
 
The tool uses a machine learning model known as random forest. Random forest models are 
increasingly common in the environmental sciences because of their superior performance in 
handling complex relationships among indicators used to predict classifications. We previously 
used this approach to develop regional SDAMs for the Arid West (AW; Mazor et al. 2021a, 
2021b) and Pacific Northwest (PNW; Nadeau et al. 2015, Nadeau 2015). Because the beta 
method for the WM includes continuous indicators, the random forest model was not able to 
be simplified into a decision tree or table, as was done with the beta SDAM AW (Mazor et al. 
2021b) and SDAM PNW (Nadeau et al. 2015). Consequently, the random forest model for the 
beta SDAM WM requires specialized software to run, so we developed an online open-access, 
user-friendly web application to facilitate efficient and consistent use of the beta SDAM WM 
protocol for those that do not have access to specialized software.  
 

The degree of snow influence at an assessment reach was used to stratify the WM region 
(snow-influenced and non-snow influenced areas) because persistent snow can be an 
important water source affecting flow duration in streams. Snow influence is measured as 
the mean snow persistence within a 10-km radius of the assessment reach (Hammond et al. 
2017). Snow persistence is the fraction of time that snow is present on the ground between 
January 1 and July 3; for the beta SDAM WM, snow persistence is calculated as the average of 
the years between 2000 and 2020. Assessment reaches where the mean snow persistence is 
greater than 25% are classified as snow-influenced, as this threshold differentiates areas where 
snow is minimal from areas where snow is intermittent, transitional, or persistent (Hammond 
et al. 2018). Although climate change and annual variation may change the degree of snow 
influence affecting a reach in any given year, the stratification for this beta method is based on 
a fixed 21-year time period that should be robust to short-term changes in climate. Snow-
influenced areas are prevalent in the Rocky Mountains, as well as at higher elevations in 
Arizona and the Sierra Nevada of California. Non-snow influenced areas are prevalent in the 
coastal mountains and valleys of northern California, the Sierra Nevada Foothills, and the 
mountains of southern New Mexico, but they are also found throughout other regions of the 
WM (Figure 1).  

https://sccwrp.shinyapps.io/beta_sdam_wm/
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Figure 1. Average snow persistence in the western United States. Data accessed from Hammond et al. (2017). Snow-influenced 
areas are defined as those with mean snow persistence greater than 25 (i.e., on average, snow is on the ground more than 25% 
of the time between January 1 and July 3). Portions of the west outside the WM region are presented with a gray overlay.  

Methods and Results 

Study area 

The WM encompasses nearly 1 million km2 in the western United States, covering portions of 

twelve western states. The region is defined by a combination of variables related to climatic, 

landcover, vegetation, and soil conditions; for purposes of the current study, portions of the 

WM region that overlap with the states of Washington, Oregon, and Idaho were excluded 

(Figure 2; U.S. Army Corps of Engineers 2010). The WM includes low-elevation temperate 

rainforests along the coast that rarely freeze, although much of the region is characterized by 

high-elevation snow-dominated mountain ranges, including the Sierra Nevada, Rocky 

Mountains, and Cascades. Typical vegetation is coniferous forests, although higher elevations 

are characterized by grassland and tundra. Total annual rainfall typically exceeds 20 inches. 

Ephemeral and intermittent reaches may be found at any position within a watershed but are 

more common in smaller headwaters, where flow accumulation is insufficient to sustain longer-

duration flows.  
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Although few large cities are found within the WM, several growing metropolitan areas are 

found in bordering portions of the AW and Great Plains, such as Denver, Reno, and Salt Lake 

City. Thus, the need for an SDAM in permitting and management programs is high in this 

region. Within the WM, at least two SDAMs are currently in use but are applicable to only 

specific geographic areas: the Pacific Northwest (PNW) method (Nadeau 2015), and the New 

Mexico (NM) method (New Mexico Environment Department (NMED) 2011). However, prior to 

the current study, the rest of the region lacked any tool to classify streamflow duration. Our 

effort focused on the portion of the WM outside the PNW (Figure 2).  

 

Figure 2. Sub-regions of the WM. 

This method applies to WM region of the United States as defined in the National Wetland 

Plant list (U.S. Army Corps of Engineers 2010, Lichvar et al. 2016), excluding the WM region that 

overlaps with the states of Washington, Oregon, and Idaho. For reaches near regional borders 

or for reaches in atypical (e.g., arid) conditions within the WM, consult the Western Mountains 

regional supplement (U.S. Army Corps of Engineers 2010) to determine whether this method is 

appropriate. 

Development of the Beta SDAM WM 
To develop this method, the steps described in Fritz et al. (2020) were followed, as detailed 

below. 

Preparation 

At the outset of the project, we assembled a regional steering committee (RSC) consisting of 

technical staff at Corps Districts and EPA Regional Offices in the WM region that manage 

programs where streamflow duration information is often needed (e.g., Clean Water Act 

programs, including permits and enforcement). RSC members were selected based on their 

expertise in both scientific and programmatic elements relevant to streamflow duration 

classification needs. The RSC served several functions in the development process, such as 

reviewing technical products, facilitating connections with local experts, and identifying 

resources such as sources of hydrologic data.  
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We identified candidate indicators that were supported by the scientific literature (reviewed in 

(Mazor and McCune 2021) or used in existing SDAMs developed for portions of the WM; 

specifically, the New Mexico SDAM (NM method; (NMED 2011), and the SDAM PNW (PNW 

method; (Nadeau 2015). Following input from the RSC, these candidate indicators were then 

screened using the criteria described by Fritz and others (2020), including:  

• Consistency: Does the indicator consistently discriminate among flow duration classes 

(e.g., demonstrated in multiple studies)? 

• Repeatability: Can different practitioners take similar measurements, given sufficient 

training and standardization? 

• Defensibility: Does the indicator have a rational mechanistic relationship with flow 

duration, as either a response or a driver? 

• Rapidness: Can the indicator be measured during a one-day reach-visit (even if 

subsequent lab analyses are required)? 

• Objectivity: Does the indicator rely on objective (often quantitative) measures, as 

opposed to subjective judgments of practitioners? 

• Robustness: Does human activity complicate indicator measurement or interpretation 

(e.g., poor water quality may affect the expression of some biological indicators)? 

• Practicality: Can practitioners realistically sample the indicator with typical capacity, 

skills, and resources? 

Candidate indicators were included in the study (Table 1) if they met all of the above criteria or 

were included in the NM or PNW SDAMs to facilitate comparison across the methods (McCune 

and Mazor 2019). 

Identify candidate reaches 

We had two objectives in selecting candidate reaches for the WM region covered by this study: 

first, to include a sufficient number of reaches in each streamflow duration class to characterize 

variability in indicator measurements; and second, to select reaches representing the range of 

key natural and disturbance gradients within the region to aid applicability of the method in 

anticipated conditions across the WM region. To support our goal of geographic 

representativeness, we established four sub-regional strata in the WM (Figure 2): one stratum 

for California and Nevada (comprising both the cold Sierra Nevada mountains, and the warmer 

North Coast of California) and one each for the Southern, Central, and Northern Rocky 

Mountains. We aimed to select 150 publicly accessible stream-reaches (one assessed location 

per reach) with equal representation of perennial, intermittent, and ephemeral flow duration 

classes among and within the four WM sub-regions. 
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Table 1. Candidate indicators evaluated in the present study. Indicators with “NM” in the Origin column were measured 
following the NM method protocol (NMED 2011) and indicators marked with “PNW” were measured following the PNW 
protocol (Nadeau 2015); other indicators (OTH) were measured with protocols developed for this study (available here) and 
come from sources reviewed in a study by Mazor and McCune (2021) or recommendations from the RSC. Asterisks (*) indicate 
hydrologic indicators that are considered direct measures of water presence. 

Candidate indicator Description Origin 

Geomorphic indicators  

Sinuosity Visual estimate of the curviness of the stream 
channel 

NM 

 
Bankfull width Width of the channel at bankfull height PNW  
Floodplain channel 
dimensions 

Visual estimate of the extent of channel 
entrenchment and connectivity to the 
floodplain 

NM 

 
Particle size/stream 
substrate sorting 

Visual estimate of the extent of evidence of 
substrate sorting within the channel 

NM 

 
In-channel 
structure/riffle pool 
sequence 

Visual estimate of the diversity and 
distinctiveness of riffles, pools, and other flow-
based microhabitats 

NM 

 
Sediment 
deposition on 
plants and debris 

Visual estimate of the extent of evidence of 
sediment deposition on plants and on debris 
within the floodplain 

NM 

Hydrologic indicators  

Surface and 
subsurface flow* 

Estimate of the percent of the reach-length 
with surface and subsurface flow 

PNW 

 
Isolated pools* Number of pools in the channel without any 

connection to flowing surface water 
PNW 

 
Water in channel* Visual estimate of the extent of surface flow in 

the channel 
NM 

 
Seeps and springs* Presence/absence of springs or seeps within 

one-half channel width of the channel 
NM 

 
Hydric soils Presence/absence of hydric soils within the 

channel, measured at up to three locations 
NM 

 
Soil moisture and 
texture* 

Extent of soil saturation and texture measured 
at three locations in the channel 

OTH 

 

Woody jams Number of woody jams within the channel OTH 

Biological indicators  

Live and dead algal 
cover 

Visual estimate of the percent of streambed 
covered by live or dead algal growth 

OTH 

 

Filamentous algal 
abundance 

Estimate of the overall abundance of 
filamentous algae within the channel 

NM 

 
Stream shading Percent shade-providing cover above the 

streambed measured with a densiometer at 
three locations 

OTH 

https://ftp.sccwrp.org/pub/download/PROJECTS/Attachment%201_Flow%20Duration%20Protocol_version2.zip
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Candidate indicator Description Origin  

Hydrophytic plant 
species 

Number of obligate (OBL) or facultative wet 
(FACW)-rated plants (as listed in Lichvar et al. 
2016) growing within the channel or a half-
channel width from the channel 

PNW 

 
Fish Estimate of the overall abundance of fish (other 

than non-native mosquitofish) in the channel  
NM 

 
Aquatic 
invertebrates 

Abundance and richness of aquatic invertebrate 
families collected from the channel 

PNW 

 
Aquatic 
invertebrates 

Estimate of the overall abundance of aquatic 
invertebrates within the channel 

NM 

 
Amphibians Estimate of the overall abundance of 

amphibians within the channel 
NM 

 
Mosses and 
liverworts 

Visual estimate of the percent of streambed 
and banks covered by live or dead bryophytes 
or liverworts 

OTH 

 

Differences in 
vegetation (riparian 
corridor) 

Visual estimate of the distinctiveness of 
vegetation in the riparian corridor compared to 
surrounding upland vegetation 

NM 

 
Absence of upland 
rooted plants in the 
streambed 

Visual estimate of the extent of upland rooted 
plants growing within the streambed 

NM 

 Presence of iron-
oxidizing fungi or 
bacteria 

Presence of oily sheens indicative of iron-
oxidizing fungi or bacteria within the 
assessment reach 

NM 

 Presence of aquatic 
or semi-aquatic 
snakes 

Presence of aquatic or semi-aquatic snakes 
(e.g., most garter snake species) in the channel 

PNW 

Geospatial indicators 

 Location and 
watershed 
characteristics 

Latitude, longitude, and elevation OTH 

 

Long-term normal 
precipitation and 
temperature 

30-y normal mean annual and monthly 
precipitation and 30-y normal mean, maximum, 
and minimum annual temperature (PRISM 
climate data; Hart and Bell 2015). 

OTH 

 Long-term mean 
snow persistence 
between January 1 
and July 3 

Snow persistence (Hammond et al. 2017) OTH 
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Figure 3. Flowchart used to classify reaches based on continuous measures of water presence (e.g., USGS stream gages). DOR: 
days of record. Zyear: Average number of dry days per year. Myear: Average length of longest continuous wet period per year, in 
days. For USGS gages, at least 20 years of data were analyzed whenever possible. 

To screen reaches for use in method development, we first compiled a list of 1166 candidate 

study reaches based on existing hydrologic data records (e.g., U.S. Geological Survey (USGS) 

stream gages, water presence logger, wildlife cameras, field photos), published studies, and 

interviews with local experts familiar with the specific reach’s hydrology. Most of these reaches 

(858) were derived from the database of gages operated by the USGS and nearly all of them 

were perennial (as determined by applying the flowchart in Figure 3). Consequently, other 

sources were required to identify candidate ephemeral and intermittent reaches. Hydrologic 

data collected for other purposes (e.g., gages maintained by local flood control agencies, or 

local natural resource managers) provided another 239 reaches. Published studies and public 

land management plans yielded 49 candidate reaches and consultation with local experts 

provided another 30. Whenever possible, multiple sources of hydrologic information were used 

to confirm classifications. In the resulting set of reaches, 9.6% were determined to be 

ephemeral, 15.6% were intermittent, and 74.7% were perennial. 

Classified reaches were prioritized for study inclusion based on the number and type of data 

sources available to determine actual streamflow duration classification. Reaches where flow 

duration could be determined based on multiple data sources (e.g., water presence loggers and 

expert knowledge) were categorized as “preferred” for study inclusion. Reaches classified 

based solely on interpretation of USGS stream gage data without consultation of a local expert 

were categorized as “USGS gage” reaches. Reaches classified through local expertise alone 

Zyear ≤ 37 DOR ≥ 328 

Insufficient 

record 

Perennial 

Zyear > 328 Ephemeral 

Myear > 37 Intermittent 

Unclassified 

Yes Yes 

Yes 

Yes 

No 
No 

No 

No 
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were categorized as “acceptable” and included in the study to fill gaps in study sub-regions 

where an insufficient number of “preferred” and “USGS gage” reaches classified as intermittent 

or ephemeral could be identified.  

Of these 1166 reaches, 149 reaches were sampled (31 ephemeral, 66 intermittent, and 52 

perennial reaches) in a sampling campaign that ran from July 2019 to October 2020. Post-

sampling site classifications were reviewed in light of the data collected, including the Stream 

Temperature, Intermittence, and Conductance (STIC; Chapin et al. 2014) logger data collected 

at 48 “baseline” sites that were revisited multiple times over a year (baseline sites are 

described under Data collection below). If sampling events produced direct observations of 

stream hydrology inconsistent with the initial classification (e.g., ephemeral reaches flowing 

during site visits without antecedent precipitation), then field notes and field photos were used 

to determine reach flow duration. Each of these cases triggered case-by-case review of all 

available materials by the project delivery team and the RSC to determine if the original 

classification should remain the same, be updated, or excluded from analysis.  

In the final data set of 149 sampled reaches, streamflow duration class was directly determined 

from USGS stream gage records at 48% of reaches (41 perennial and 30 intermittent reaches, 

but no ephemeral reaches; Error! Reference source not found., Figure 4Error! Reference 

source not found.). Other sources of hydrologic data used to directly classify study reaches 

include continuous data loggers (48 reaches), trail cameras, published studies, and consultation 

with local experts. Multiple sources of hydrologic data were used to classify 47 of the ungaged 

assessment reaches and a single source was used at 33 ungaged study reaches. In general, 

more hydrologic data were available at perennial reaches than at intermittent or ephemeral 

reaches.  

 

Figure 4. Locations of 31 ephemeral, 66 intermittent, and 52 perennial study stream reaches used to develop the beta SDAM 
WM. 
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Table 2. Distribution of sites used to develop the beta SDAM WM. Baseline sites were visited three times throughout the study 
and had water presence loggers installed and validation sites were visited once throughout the study and did not have loggers 
installed. 

 Validation  Baseline  
Class Gaged Preferred Acceptable   Gaged Preferred Total 

Ephemeral 0 5 22  0 4 31 
-California and 
Nevada 0 0 8  0 2 10 
-Central Rockies 0 2 4  0 1 7 
-Northern Rockies 0 0 6  0 0 6 
-Southern Rockies 0 3 4  0 1 8 

Intermittent 16 10 10  12 18 66 
-California and 
Nevada 5 2 1  5 5 18 
-Central Rockies 2 4 3  0 8 17 
-Northern Rockies 6 0 6  2 4 18 
-Southern Rockies 3 4 0  5 1 13 
Perennial 31 6 1  10 4 52 
-California and 
Nevada 9 0 0  4 0 13 
-Central Rockies 4 5 1  0 2 12 
-Northern Rockies 9 1 0  3 1 14 

-Southern Rockies 9 0 0  3 1 13 

Data collection 

Reaches were sampled following the development protocol (available here and in the 

supplementary material of Mazor et al. 2021c), which covers measurement of indicators 

identified in Mazor and McCune (2021), as well as “Level 1” indicators of the NM method 

(NMED 2011), and all indicators of the PNW method (Nadeau 2015). STIC loggers (Chapin et al. 

2014) were deployed at 48 “baseline” reaches and were revisited a total of three times each 

over a year; “validation” sites were visited once and did not have loggers. For further details on 

STIC data loggers and their verification/calibration, deployment, and data retrieval, see 

Schumacher and Fritz (2019). The sampling protocol used in this study was identical to that 

used to develop the beta SDAM AW. Mazor et al. (2021a) provides a summary of these data 

collection protocols. Sampled study sites are shown in Figure 4. Forty-two of these study sites 

were noted as disturbed by human activity (e.g., channelization, discharges, diversions) by field 

crews. 

Data analysis 

Metric calculation 

Candidate indicator data were used to calculate 72 candidate metrics: 37 biological metrics, 7 

geomorphological metrics, 8 hydrologic metrics (7 of which were direct measures of water 

presence), and 20 geospatial metrics (Table 3). 

https://ftp.sccwrp.org/pub/download/PROJECTS/Attachment%201_Flow%20Duration%20Protocol_version2.zip
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Table 3. Metrics evaluated for the development of the beta SDAM WM. PctDom: Percent of observations with the most common value (typically zero). PvIvE: F-statistic from a 
comparison of mean values at perennial, intermittent, and ephemeral reaches. Absolute t-statistic from a comparison of mean values at ephemeral and at least intermittent 
reaches (EvALI), at perennial and non-perennial reaches (PvNP), at flowing intermittent and perennial reaches (PvIwet), and at non-flowing intermittent and ephemeral reaches 
(EvIdry). rf_MDA: Variable importance from a random forest model, measured as mean decrease in accuracy. Screen: Indicates if the metric passed or failed screening criteria in 
Table 4. Ord: Ordinal metrics. Bin: Binary metrics. Con: Continuous metrics. Asterisks (*) indicate hydrologic metrics that directly measure the presence of water. NM: Metrics 
derived from candidate indicators used in the SDAM NM. OBL and FACW: Obligate and facultative-wet wetland indicator plants, respectively (Lichvar et al. 2016). EPT: 
Ephemeroptera, Plecoptera, and Trichoptera insect orders. GOLD: Gastropoda, Oligochaeta, and Diptera invertebrate groups. OCH: Odonata, Coleoptera, and Heteroptera insect 
orders. 

Metric   Description Form PctDom Range PvIvE EvALI PvNP PvIwet EvIdry rf_MDA Screen 

Biological 
            

fishabund_score2 
 

Abundance of fish, excluding 
mosquitofish (NM) 

Ord 73% 3 8.91 7.09 3.01 0.51 1.44 0.0004 Pass 

DifferencesInVegetation_score 
 

Differences in vegetation between the 
riparian corridor and adjacent uplands 
score (NM) 

Ord 34% 3 31.10 6.28 6.35 1.47 1.93 0.0027 Pass 

UplandRootedPlants_score 
 

Absence of upland rooted plants in the 
streambed score (NM) 

Ord 47% 3 6.04 2.60 3.29 0.20 0.53 -0.0003 Pass 

iofb_score 
 

Presence of iron-oxidizing bacteria and 
fungi score (NM) 

Bin 85% 1.5 6.30 5.18 2.74 0.96 1.00 0.0003 Pass 

mayfly_abundance 
 

Abundance of mayflies Con 47% 66 52.47 10.78 8.41 4.18 1.16 0.0111 Pass 

perennial_abundance 
 

Abundance of perennial indicator taxa Con 58% 90 16.06 6.48 4.72 2.23 1.56 0.0062 Pass 

perennial_taxa 
 

Number of perennial indicator taxa Con 58% 14 16.27 7.21 4.75 1.67 1.02 0.0007 Pass 

perennial_live_abundance 
 

Abundance of perennial indicator taxa 
(living specimens only) 

Con 58% 90 15.90 6.44 4.71 2.19 1.17 0.0063 Pass 

snake_score 
 

Presence of aquatic snakes Bin 97% 1 0.31 0.27 0.72 0.10 1.00 0.0000 Fail 

vert_score 
 

Presence of aquatic vertebrates Bin 86% 1 1.66 0.88 1.67 0.32 1.79 0.0001 Fail 

vert_sumscore 
 

Number of aquatic vertebrate types 
present (fish, amphibians, snakes, 
turtles) 

Ord 92% 2 0.48 0.16 0.80 0.15 1.36 0.0001 Fail 

hydrophytes_present 
 

Number of OBL and FACW plant species 
present in the channel or within a half-
channel width of the channel 

Ord 20% 13 15.71 5.41 4.65 0.76 0.24 0.0012 Pass 
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Metric   Description Form PctDom Range PvIvE EvALI PvNP PvIwet EvIdry rf_MDA Screen 
hydrophytes_present_noflag 

 
Number of OBL and FACW plant species 
present in the channel or within a half-
channel width of the channel (excluding 
those with a flagged unusual 
distribution) 

Ord 20% 13 14.79 5.37 4.44 0.58 0.09 0.0001 Pass 

alglivedead_cover_score 
 

Cover of live or dead algae on the 
streambed 

Ord 34% 4 45.84 10.23 8.03 2.06 2.51 0.0049 Pass 

moss_cover_score 
 

Moss cover on the streambed Ord 63% 3 0.21 0.26 0.65 0.85 0.35 0.0000 Fail 

liverwort_cover_score 
 

Liverwort cover on the streambed Ord 88% 3 1.38 2.46 1.20 0.57 1.06 -0.0001 Pass 

PctShading 
 

Percent shading on the streambed Con 8% 1 2.54 0.66 2.25 1.90 0.13 0.0001 Pass 

TotalAbundance 
 

Total abundance of aquatic 
invertebrates 

Con 21% 287 35.93 9.72 7.09 2.73 0.11 0.0077 Pass 

Richness 
 

Total richness of aquatic invertebrate 
families 

Con 21% 36 45.87 10.24 8.53 2.87 0.13 0.0067 Pass 

EPT_abundance 
 

Abundance of EPT Con 34% 150 37.86 9.62 7.27 3.16 0.84 0.0107 Pass 

EPT_taxa 
 

Number of EPT families Con 34% 27 37.14 9.86 7.38 2.82 0.90 0.0095 Pass 

EPT_relabd 
 

Relative abundance of EPT families Con 34% 1 13.78 3.86 5.36 2.27 0.86 0.0021 Pass 

EPT_reltaxa 
 

Relative richness of EPT families Con 34% 2 16.42 5.83 5.42 1.94 1.39 0.0013 Pass 

GOLD_abundance 
 

Abundance of GOLD  Con 33% 91 31.93 9.39 6.62 2.17 0.30 0.0025 Pass 

GOLD_taxa 
 

Number of GOLD families Con 33% 14 32.04 10.28 6.59 1.70 0.27 0.0012 Pass 

OCH_abundance 
 

Abundance of OCH Con 44% 74 10.19 5.26 3.86 1.19 1.03 -0.0002 Pass 

OCH_taxa 
 

Numer of OCH families Con 44% 11 9.61 4.39 3.82 0.62 1.03 -0.0010 Pass 

GOLD_relabd 
 

Relative abundance of GOLD taxa Con 33% 1 4.11 2.40 2.12 1.56 0.18 0.0030 Pass 

GOLD_reltaxa 
 

Relative richness of GOLD taxa Con 33% 1 6.66 3.44 2.48 1.66 0.06 0.0022 Pass 

OCH_relabd 
 

Relative abundance of OCH taxa Con 44% 1 0.06 0.04 0.36 0.02 0.32 -0.0001 Fail 

OCH_reltaxa 
 

Relative richness of OCH taxa Con 44% 1 0.03 0.18 0.06 0.76 0.21 0.0002 Fail 

GOLDOCH_relabd 
 

Relative abundance of GOLD and OCH 
taxa 

Con 27% 1 2.93 2.00 1.58 1.51 0.06 0.0011 Pass 

GOLDOCH_reltaxa 
 

Relative richness of GOLD and OCH taxa Con 27% 1.4 4.75 2.74 2.01 1.94 0.09 0.0008 Pass 

Noninsect_abundance 
 

Abundance of non-insect taxa Con 50% 87 6.76 5.02 2.87 0.40 0.37 0.0001 Pass 



 

15 
 

Metric   Description Form PctDom Range PvIvE EvALI PvNP PvIwet EvIdry rf_MDA Screen 
Noninsect_taxa 

 
Richness of non-insect taxa Con 50% 11 7.34 5.68 2.81 0.15 0.05 0.0001 Pass 

Noninsect_relabund 
 

Relative abundance of non-insect taxa Con 50% 1 0.37 0.30 0.69 1.21 0.21 0.0003 Fail 

Noninsect_reltaxa 
 

Relative richness of non-insect taxa Con 50% 1 0.54 0.62 0.53 1.37 0.22 -0.0009 Fail 

Geomorphological 
            

Sinuosity_score 
 

Channel sinuosity score (NM) Ord 33% 3 4.30 1.52 2.76 1.42 0.68 0.00 Pass 

ChannelDimensions_score 
 

Channel dimensions score (NM) Ord 37% 3 0.52 0.97 0.31 0.57 0.28 0.00 Fail 

RifflePoolSeq_score 
 

Riffle-pool sequence score (NM) Ord 31% 3 11.92 2.66 5.07 2.48 0.09 0.00 Pass 

SubstrateSorting_score 
 

Substrate sorting score (NM) Ord 33% 3 8.64 2.78 4.14 2.11 0.56 0.00 Pass 

SedimentOnPlantsDebris_score 
 

Sediment on plants and debris score 
(NM) 

Ord 91% 1.5 0.43 0.70 0.97 0.42 0.38 0.00 Fail 

BankWidthMean 
 

Mean bank-width Ord 2% 48 8.54 5.29 3.44 1.67 1.32 0.01 Pass 

Slope 
 

Valley slope Ord 15% 26 1.24 1.48 0.61 0.69 0.43 0.00 Fail 

Hydrologic 
            

WaterInChannel_score * Water in channel score (NM) Ord 48% 6 110.02 17.82 13.98 3.88 1.85 0.03 Pass 

HydricSoils_score 
 

Presence of hydric soils in the channel 
score (NM) 

Bin 76% 3 8.20 3.77 3.42 1.89 0.97 0.00 Pass 

springs_score * Presence of springs or seeps in the 
channel score (NM) 

Bin 98% 3 0.63 1.00 1.00 1.00 0.00 0.00 Fail 

SurfaceFlow_pct * Percent of reach with flowing surface 
water 

Ord 50% 100 102.77 19.20 13.77 3.53 1.00 0.03 Pass 

SurfaceSubsurfaceFlow_pct * Percent of reach with flowing surface or 
subsurface water 

Ord 86% 100 6.66 4.20 2.04 3.14 1.97 0.00 Pass 

IsolatedPools_number * Number of isolated pools (no 
connection to flowing surface water) 

Ord 89% 9 3.49 0.78 2.92 1.53 1.84 0.00 Pass 

WoodyJams_number 
 

Number of woody jams in the reach Ord 79% 10 0.98 0.22 1.42 0.49 1.10 0.00 Fail 

SoilMoist_MaxScore * Maximum soil moisture score in the 
reach 

Ord 72% 2 55.23 8.53 8.44 0.00 1.94 0.01 Pass 

Geospatial 
            

Elev_m 
 

Elevation Con 3% 3250 2.11 1.97 1.49 0.41 0.89 0.00 Pass 

tmean 
 

Mean annual temperature Con 3% 17 1.66 1.95 0.92 0.34 0.67 0.00 Fail 

tmax 
 

Maximum annual temperature Con 2% 18 1.97 2.17 0.39 1.11 0.76 0.00 Pass 

tmin 
 

Minimum annual temperature Con 2% 17 1.56 1.63 1.40 0.43 0.54 0.00 Fail 
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Metric   Description Form PctDom Range PvIvE EvALI PvNP PvIwet EvIdry rf_MDA Screen 
MeanSnowPersistence_10 

 
Mean snow persistence within a 10-km 
radius of the reach 

Con 1% 82 2.69 2.52 1.45 0.00 0.91 0.00 Pass 

MeanSnowPersistence_05 
 

Mean snow persistence within a 5-km 
radius of the reach 

Con 1% 86 2.97 2.67 1.35 0.17 1.11 0.00 Pass 

MeanSnowPersistence_01 
 

Mean snow persistence within a 1-km 
radius of the reach 

Con 1% 84 2.53 2.51 1.18 0.25 1.02 0.00 Pass 

ppt 
 

Mean annual precipitation Con 2% 1603 0.80 0.23 1.38 0.76 0.54 0.00 Fail 

ppt.m01 
 

Mean January precipitation Con 2% 337 0.90 0.80 1.44 0.38 0.33 0.00 Fail 

ppt.m02 
 

Mean February precipitation Con 2% 293 0.50 0.35 1.09 0.33 0.53 0.00 Fail 

ppt.m03 
 

Mean March precipitation Con 2% 254 0.49 0.41 1.06 0.42 0.37 0.00 Fail 

ppt.m04 
 

Mean April precipitation Con 2% 143 1.08 0.82 0.99 1.33 0.66 0.00 Fail 

ppt.m05 
 

Mean May precipitation Con 2% 107 1.93 1.29 1.07 2.28 0.36 0.00 Pass 

ppt.m06 
 

Mean June precipitation Con 3% 129 2.20 1.51 0.99 2.15 0.53 0.00 Pass 

ppt.m07 
 

Mean July precipitation Con 2% 102 0.37 0.86 0.57 0.27 0.53 0.00 Fail 

ppt.m08 
 

Mean August precipitation Con 2% 131 0.05 0.06 0.31 0.50 0.17 0.00 Fail 

ppt.m09 
 

Mean September precipitation Con 2% 80 0.49 0.66 0.93 0.57 0.17 0.00 Fail 

ppt.m10 
 

Mean October precipitation Con 2% 102 0.08 0.33 0.20 0.16 0.38 0.00 Pass 

ppt.m11 
 

Mean November precipitation Con 2% 247 0.80 0.44 1.44 0.73 0.35 0.00 Fail 

ppt.m12 
 

Mean December precipitation Con 2% 367 0.74 0.68 1.34 0.39 0.32 0.00 Fail 
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Metric screening 

As an initial data exploration step, we visualized the relationships between streamflow duration 

class (hereafter “flow class”) and indicators by ordinating all 72 metrics for all samples in the 

data set in a nonmetric multidimensional scaling using Gowers’ distance. Convex hulls were 

drawn around each streamflow duration class to help visualize their distributions in ordination 

space. The 2-axis ordination was computed using the metaMDS function in the vegan R package 

(Oksanen et al. 2019). Correlation coefficients (Spearman’s rho) were calculated between 

ordination axes and metric values. Wet and dry reaches were plotted separately to evaluate the 

role of flow conditions at the time of the visit on flow duration indicators; streams with scores 4 

and higher for the “Water in channel” indicator (WaterInChannel_score) from the NM SDAM 

were considered wet and scores 3 or lower were considered dry.  

The ordination showed that perennial and ephemeral reaches were quite distinct, but 

intermittent reaches overlapped considerably with the other classes (Figure 5). In general, 

intermittent reaches that were dry on collection dates were similar to ephemeral reaches and  
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Figure 5. A two-axis nonmetric multidimensional scaling of metrics based on biological, geomorphic, geospatial, and hydrologic 
indicators. Panel A shows individual reaches. MDS: Multidimensional scaling axis 1 or 2. Eph: Ephemeral reaches. Int: 
Intermittent reaches. Per: Perennial reaches. Circle: Reaches were dry during the site visit. Triangle: reaches were flowing during 
the site visit. Panel B shows correlations (Spearman’s rho) between selected metrics and ordination axis scores; metrics with rho2 
> 0.5 are highlighted in blue (no geomorphological or geospatial metrics had rho2 > 0.5, nor did any metric have rho2> 0.5 with 
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the second axis). Selected metrics are labeled: Biological metrics: A: Total aquatic invertebrate abundance. B: GOLD abundance. 
C: EPT abundance. D: Perennial indicator taxa abundance. E: GOLDOCH relative richness. Geomorphological metrics: F: Bank 
width. G: Slope. Geospatial metrics: H: Mean snow persistence within 10 km. I: Mean annual maximum temperature. Hydrologic 
metrics. J: Percent of reach with surface flow. K: Soil moisture. L: Number of isolated pools. 

intermittent reaches that had surface flow on collection dates were similar to perennial 

reaches. Hydrologic and biological metrics were among the most strongly correlated with 

ordination axes and no geomorphological or geospatial metric correlated with an ordination 

axis with a rho2 greater than 0.5. 

Metrics were evaluated using several criteria for inclusion in the beta SDAM (Table 4). We 

developed criteria following approaches for screening metrics in bioassessment indices (e.g., 

Stoddard et al. 2008) and applied them to data from initial reach-visits (i.e., data from revisits 

were withheld from analysis). One criterion was a distribution statistic, calculated as percent 

dominance of the most common value (which was typically zero); all metrics had to meet this 

criterion. The remaining criteria measured responsiveness of metrics (i.e., ability to discriminate 

across flow classes). Most of these measures were based on statistical comparisons of mean 

values at different subsets of reaches (e.g., t-statistic from a comparison of metric values at 

perennial and non-perennial reaches), as has been used in other studies (Hawkins et al. 2010, 

Cao and Hawkins 2011, Mazor et al. 2016). Another responsiveness statistic was based on 

variable importance (specifically, mean decrease in accuracy) from a random forest model to 

predict streamflow duration class from all candidate metrics; the model was calibrated using 

the default option from the randomForest function in the randomForest package in R (Liaw and 

Wiener 2002). Metrics had to meet at least one responsiveness criterion to be considered in 

further analyses. A total of 47 of the 72 candidate metrics met these criteria and were 

considered as screened metrics. 

Table 4. Metric screening criteria. Metrics had to meet the distribution criterion and at least one responsiveness criterion to be 
considered screened for further analysis. 

Criterion Definition 

Distribution criterion 
% dominance of 
most common value 

<95% Frequency of most common value (typically, zero) in the 
development data set 

Responsiveness criteria 
PvIvE F>2 F-statistic in a comparison of values at perennial versus 

intermittent versus ephemeral reaches 
EvALI t>2 t-statistic in a comparison of values at ephemeral versus at 

least intermittent reaches 
PvNP t>2 t-statistic in a comparison of values at perennial versus 

non-perennial reaches 
PvIwet t>2 t-statistic in a comparison of values at perennial versus 

flowing intermittent reaches 
EvIdry t>2 t-statistic in a comparison of values at ephemeral versus 

dry intermittent reaches 
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rf_MDA Top 
quartile 

Mean decrease accuracy (MDA) in a random forest model 
to predict perennial, intermittent, or ephemeral 
streamflow duration class 

 

Metric selection 

The screened metrics were reduced to a final set of metrics for the beta SDAM based on their 

importance in random forest models using the recursive feature elimination (rfe) function in 

the R caret package (Kuhn 2020). Briefly, rfe is a form of stepwise selection where complex 

models (i.e., those based on many metrics) are calibrated and simpler models are considered 

iteratively by eliminating the least important metrics. We considered the most complex model 

(i.e., 47 candidate metrics included) then iteratively eliminating 5 variables at a time in each 

step based on low variable importance until a 20-variable model was identified; after this point, 

only one variable was eliminated in each step. The best performing model (i.e., highest 

accuracy in predicting streamflow duration class) was identified. Then, the simplest model (i.e., 

the one with the fewest variables) with accuracy within 1% of the best was selected to identify 

the final set of metrics. If the best-performing model selected by this approach had more than 

20 variables, the 20-variable model was selected. For this analysis, accuracy was measured with 

Cohen’s Kappa statistic —a measure of accuracy that accounts for uneven distribution among 

the three streamflow duration classes. 

We applied this modeling process to different subsets of the dataset, including: 

• the full region-wide dataset; 

• datasets stratified by sub-regions shown in Figure 2 (4 total); and  

• datasets stratified into snow-influenced and non-snow influenced sites, based on mean 

snow persistence greater than 25% calculated for a 1-km, 5-km, and 10-km buffer from 

the sampling reach (2 strata for each of 3 buffers). 

For each subset, the modeling process was implemented:  

• with or without considering geospatial metrics; and 

• with or without considering metrics based on direct measures of water presence. 

There are advantages and disadvantages to including these metrics in an SDAM and thus we 

evaluated options with and without them. Geospatial metrics may improve SDAM performance 

but would require GIS analysis to use the resulting method. Direct measures of water presence 

can also greatly increase performance, but this introduces circularity (because water presence 

was used to confirm and update streamflow duration classes in the development data set) and 

may degrade the ability of the SDAM to work during atypical conditions, such as drought. See 

(Mazor et al. (2021b) for a discussion of the implications of including geospatial metrics and 

direct measures of water presence in SDAMs. 
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To explore all these options, we developed 20 sets of models for different subsets of reaches 

and combinations of predictors, with sets including between 1 and 5 models (44 models total; 

Table 5). Analyses were conducted on data from the initial reach visits alone. For each of the 20 

models, data were split into 80% training and 20% testing data sets, stratified by the 4 sub-

regions and 3 streamflow duration classes. Model design characteristics and optimal number of 

metrics selected by rfe are shown in Table 5 and the selected metrics for each model are shown 

in Figure 6. 

Table 5. Design characteristics of the 44 models. H2O: included direct measures of water presence. GIS: included geospatial 
metrics. n sites: number of sites used in model training, testing, and evaluated for repeatability (revisit). rfe accuracy: accuracy 
of best model produced by recursive feature elimination (rfe), measured as Cohen’s Kappa or as out-of-bag (OOB) accuracy. 

    n reaches  rfe accuracy 

Model set Stratum H2O GIS training testing revisit # metrics Kappa OOB 

Unstratified models         

Unstrat None   117 32 84 19 0.41 0.45 

Unstrat GIS None  Yes 117 32 84 15 0.41 0.38 

Unstrat H2O None Yes  117 32 84 16 0.47 0.38 

Unstrat H2O GIS None Yes Yes 117 32 84 3 0.47 0.28 

Models stratified by region         

Strat California & Nevada   32 9 25 20 0.36 0.47 

Strat Central Rockies   27 9 21 18 0.52 0.26 

Strat Northern Rockies   29 9 19 19 0.27 0.41 

Strat Southern Rockies   26 8 19 3 0.51 0.31 

Strat GIS California & Nevada  Yes 32 9 25 16 0.38 0.28 

Strat GIS Central Rockies  Yes 27 9 21 20 0.52 0.41 

Strat GIS Northern Rockies  Yes 29 9 19 16 0.42 0.41 

Strat GIS Southern Rockies  Yes 26 8 19 3 0.45 0.38 

Strat H2O California & Nevada Yes  32 9 25 3 0.59 0.28 

Strat H2O Central Rockies Yes  27 9 21 14 0.54 0.26 

Strat H2O Northern Rockies Yes  29 9 19 10 0.39 0.45 

Strat H2O Southern Rockies Yes  26 8 19 3 0.52 0.31 

Strat H2O GIS California & Nevada Yes Yes 32 9 25 3 0.51 0.25 

Strat H2O GIS Central Rockies Yes Yes 27 9 21 20 0.51 0.3 

Strat H2O GIS Northern Rockies Yes Yes 29 9 19 20 0.25 0.31 

Strat H2O GIS Southern Rockies Yes Yes 26 8 19 8 0.49 0.31 

Models stratified by snow influence         

Snow influence within 1 km         

Snow01 Not snow-dominated   46 13 36 20 0.42 0.43 

Snow01 Snow-dominated   71 19 48 8 0.35 0.35 

Snow01 GIS Not snow-dominated  Yes 46 13 36 20 0.37 0.41 

Snow01 GIS Snow-dominated  Yes 71 19 48 18 0.35 0.32 

Snow01 H2O Not snow-dominated Yes  46 13 36 3 0.57 0.3 

Snow01 H2O Snow-dominated Yes  71 19 48 20 0.33 0.38 
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    n reaches  rfe accuracy 

Model set Stratum H2O GIS training testing revisit # metrics Kappa OOB 

Snow01 H2O GIS Not snow-dominated Yes Yes 46 13 36 6 0.6 0.28 

Snow01 H2O GIS Snow-dominated Yes Yes 71 19 48 10 0.48 0.35 

Snow influence within 5 km         

Snow05 Not snow-dominated   40 11 28 20 0.38 0.43 

Snow05 Snow-dominated   77 21 56 15 0.48 0.36 

Snow05 GIS Not snow-dominated  Yes 40 11 28 14 0.33 0.4 

Snow05 GIS Snow-dominated  Yes 77 21 56 13 0.43 0.29 

Snow05 H2O Not snow-dominated Yes  40 11 28 13 0.48 0.25 

Snow05 H2O Snow-dominated Yes  77 21 56 20 0.43 0.3 

Snow05 H2O GIS Not snow-dominated Yes Yes 40 11 28 4 0.54 0.3 

Snow05 H2O GIS Snow-dominated Yes Yes 77 21 56 17 0.48 0.3 

Snow influence within 10 km         

Snow10 Not snow-dominated   39 11 31 13 0.24 0.49 

Snow10 Snow-dominated   78 21 53 6 0.43 0.45 

Snow10 GIS Not snow-dominated  Yes 39 11 31 17 0.22 0.31 

Snow10 GIS Snow-dominated  Yes 78 21 53 11 0.52 0.33 

Snow10 H2O Not snow-dominated Yes  39 11 31 5 0.54 0.31 

Snow10 H2O Snow-dominated Yes  78 21 53 8 0.41 0.33 

Snow10 H2O GIS Not snow-dominated Yes Yes 39 11 31 4 0.42 0.31 

Snow10 H2O GIS Snow-dominated Yes Yes 78 21 53 13 0.52 0.24 

 

Biological metrics (particularly those based on aquatic invertebrates) were among the most 

widely selected metrics across model sets. Among non-biological metrics, mean bankfull width 

was the only frequently selected geomorphological metric. Direct measures of water presence 

were selected every time these measures were eligible for selection. Among geospatial metrics, 

October precipitation was the most frequently selected metric (Figure 6). 
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Figure 6. Metrics (left) selected by RFE for each model set (bottom). White tiles indicate that a metric was ineligible for selection 
in that model set (e.g., the water in channel score was ineligible for models that did not allow direct measures of water 
presence). X-axis labels refer to model sets described in Table 5; Y-axis labels refer to metrics described in Table 3. 
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Preliminary model calibration and performance assessment 

Random forest models were then fit for each of the 20 options using the randomForest 

function in the randomForest package in R (Liaw and Wiener 2002) using default parameters, 

except that the number of trees was set to 1500 instead of the default 500. Only the initial visit 

for reaches in the calibration data set was used for model fitting. 

Model performance evaluation focused on two aspects: accuracy and repeatability. Accuracy 

was assessed by calculating the same comparisons used to evaluate metric responsiveness 

during the metric screening phase (e.g., ephemeral versus at least intermittent reaches, 

perennial versus wet intermittent reaches, etc.; Table 4). Accuracy was measured using the 

initial reach-visit in both the calibration training and testing data sets independently. We 

compared training and testing measures to see if models validated poorly, suggesting that they 

may be overfit.  

Repeatability was assessed using data from the 48 reaches that were revisited (i.e., Baseline 

sites; Error! Reference source not found.) and was calculated as the percent of reaches where 

model classifications from visits were the same (regardless of classification accuracy). Due to 

the limited amount of data, repeatability was only assessed on a region-wide basis and not 

within each subregion; it was not analyzed separately for calibration and validation reaches. 

Performance of the beta SDAM AW, SDAM PNW, and SDAM NM was also evaluated within the 

training data set. 

SDAM models newly developed through the current effort had better performance than 

previously developed SDAMs (especially the beta SDAM AW), but among the new models, 

performance was similar and there was no clear best model set (Table 6, Figure 7 and Figure 8). 

Stratified model sets performed slightly better than the unstratified models and there were 

modest improvements in accuracy achieved by including geospatial metrics, as well as direct 

measures based on water presence. The RSC recommended the model set stratified by snow 

influence calculated within a 10-km radius; furthermore, the RSC opted for the models that 

included geospatial metrics (i.e., model set Snow 10 GIS) but did not recommend including 

direct measures of water presence due to the potential introduction of circularity (water 

presence during field visits was sometimes used to inform or verify the direct flow classification 

of stream reaches), as described above. 
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Table 6. Performance of the 20 model sets evaluated. PvIvE: Percent of reaches classified correctly as perennial, intermittent, or 
ephemeral. EvALI: Percent of reaches classified correctly as ephemeral or at least intermittent. PvNP: Percent of reaches 
classified correctly as perennial or non-perennial. PvIwet: Percent of flowing reaches classified correctly as perennial or 
intermittent. IvEdry: Percent of dry reaches correctly classified as intermittent or ephemeral. Train: Result for training data. Test: 
Result for testing data. Model sets are described in Table 5. AW: Results for the beta SDAM AW. NM: Results for the SDAM NM. 
PNW: Results for the SDAM PNW.  

 Accuracy  

 PvIvE EvALI PvNP PvIwet IvEdry  
Model set Train Test Train Test Train Test Train Test Train Test Precision 

AW 0.39  0.79  0.45  0.48  0.25  0.67 
NM 0.58  0.8  0.72  0.66  0.46  0.87 
PNW 0.57  0.79  0.78  0.64  0.46  0.82 
Snow10 H2O 
GIS 

0.74 0.59 0.88 0.81 0.85 0.78 0.76 0.63 0.7 0.54 0.81 

Snow05 H2O 
GIS 

0.7 0.75 0.86 0.88 0.84 0.88 0.72 0.81 0.67 0.64 0.83 

Snow01 H2O 
GIS 

0.68 0.78 0.88 0.88 0.79 0.91 0.66 0.84 0.7 0.69 0.82 

Stratum H2O 
GIS 

0.71 0.6 0.82 0.83 0.89 0.77 0.79 0.65 0.6 0.5 0.84 

Unstrat H2O 
GIS 

0.72 0.69 0.87 0.84 0.85 0.84 0.75 0.74 0.67 0.62 0.8 

Snow10 H2O 0.68 0.66 0.86 0.78 0.81 0.88 0.69 0.78 0.64 0.5 0.8 
Snow05 H2O 0.72 0.5 0.9 0.81 0.82 0.69 0.7 0.5 0.74 0.5 0.83 
Snow01 H2O 0.65 0.69 0.85 0.81 0.79 0.88 0.66 0.79 0.63 0.54 0.82 
Stratum H2O 0.68 0.6 0.83 0.77 0.84 0.83 0.76 0.7 0.55 0.47 0.83 
Unstrat H2O 0.62 0.75 0.85 0.88 0.77 0.88 0.62 0.79 0.63 0.69 0.8 
Snow10 GIS 0.68 0.63 0.89 0.81 0.78 0.81 0.66 0.7 0.7 0.5 0.83 
Snow05 GIS 0.68 0.69 0.85 0.88 0.83 0.81 0.72 0.68 0.61 0.69 0.84 
Snow01 GIS 0.64 0.59 0.85 0.81 0.79 0.78 0.65 0.67 0.62 0.5 0.84 
Stratum GIS 0.63 0.57 0.82 0.8 0.81 0.77 0.69 0.65 0.55 0.42 0.8 
Unstrat GIS 0.62 0.53 0.81 0.81 0.8 0.72 0.68 0.47 0.5 0.6 0.84 
Snow10 0.54 0.69 0.79 0.84 0.74 0.84 0.59 0.63 0.44 0.75 0.73 
Snow05 0.62 0.69 0.85 0.88 0.75 0.81 0.59 0.68 0.65 0.69 0.77 
Snow01 0.62 0.69 0.84 0.88 0.78 0.81 0.63 0.65 0.6 0.75 0.78 
Stratum 0.63 0.46 0.82 0.8 0.8 0.66 0.66 0.42 0.58 0.5 0.83 
Unstrat 0.55 0.63 0.79 0.81 0.74 0.81 0.58 0.67 0.49 0.57 0.79 
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Figure 7. Performance of the 20 model sets evaluated. Blue dots indicate the highest-performing model sets and red dots 
indicate the next-best performing model sets. PvIvE: Percent of reaches classified correctly as perennial, intermittent, or 
ephemeral. EvALI: Percent of reaches classified correctly as ephemeral or at least intermittent. PvNP: Percent of reaches 
classified correctly as perennial or non-perennial. PvIwet: Percent of flowing reaches classified correctly as perennial or 
intermittent. IvEdry: Percent of dry reaches correctly classified as intermittent or ephemeral. Unstrat: Unstratified models. 
Stratum: Models stratified by subregion. Snow10: Models stratified by snow persistence. Model sets are described in Table 5. 
AW: Results for the beta SDAM AW (Mazor et al. 2021a). NM: Results for the SDAM NM. PNW: Results for the SDAM PNW. 
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Figure 8. Performance of the 20 model sets evaluated within strata defined by sub-region or snow influence. The y-axis labels on 
the left indicate the stratifications used to develop the models (if any) and the panel labels on the right indicate the 
stratifications used to assess performance. PvIvE: Percent of reaches classified correctly as perennial, intermittent, or ephemeral. 
EvALI: Percent of reaches classified correctly as ephemeral or at least intermittent. PvNP: Percent of reaches classified correctly 
as perennial or non-perennial. PvIwet: Percent of flowing reaches classified correctly as perennial or intermittent. IvEdry: Percent 
of dry reaches correctly classified as intermittent or ephemeral. Model sets are described in Table 5. AW: Results for the beta 
SDAM AW (Mazor et al. 2021a). NM: Results for the SDAM NM. PNW: Results for the SDAM PNW. 

Simplification of the selected model set 

Upon selection of the final model set (i.e., models that included geospatial metrics and were 

stratified by snow influence calculated within a 10-km radius), we attempted to simplify the 

selected model set in three steps to make the SDAM easier to implement in the field while 

improving (or at least not sacrificing) performance. Simplification occurred in three steps: 
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1. Refinement of metrics 

2. Increased confidence required for classifications 

3. Addition of single indicators of at least intermittent flow 

Refinement of metrics 

The metric selection process described above identified an optimal set of metrics to use in the 

SDAM, but it did so without considering difficulties in measuring each metric or effort required 

to measure all of the metrics. For example, rfe may have selected a metric based on the total 

number of aquatic invertebrates, even if there was little new information provided once 20 

individuals were recorded. That is, SDAM users might be able to cease counting aquatic 

invertebrates once 20 individuals were recorded. Simplifying metrics was intended to reduce 

the burden on SDAM users and facilitate method use (e.g., avoid reliance on access to statistical 

software). Some metrics were eliminated because they were closely related to another metric 

in the selected model set (i.e., they described similar stream characteristics, such as mayfly 

abundance and EPT abundance). Metrics that were more time-consuming to measure were 

rejected if a simpler alternative was available and continuous metrics were converted to binary 

or ordinal metrics based on visual interpretation of random forest partial dependence curves 

(binary and ordinal metrics are typically more rapid to measure and easier to standardize than 

continuous metrics). Accuracy and repeatability measures were re-evaluated to ensure that 

overall model performance was not substantially diminished by the modifications. 

The snow-influenced and non-snow influenced models were refined in parallel steps. At each 

step, metrics were either eliminated, classified into categorical bins, or otherwise modified. The 

impact on performance was assessed and the highest performing modification was selected for 

further refinement. Performance was assessed in terms of three accuracy measures: PvIvE (i.e., 

proportion of reaches classified corrected as perennial, intermittent, or ephemeral), EvALI (% of 

reaches classified correctly as ephemeral or at least intermittent), and Cohen’s Kappa. The 

metric refinement steps are described below. Asterisks (*) indicate the selected refinement at 

each step; if no asterisk is shown, none of the refinements considered at that step were 

selected and the selected option from the previous step was used for further analysis. 

Snow-influenced model: 

1. Select two aquatic invertebrate metrics: 

a. Total abundance and richness 

b. Total abundance and perennial indicator abundance* 

c. Total abundance and richness of perennial indicator taxa 

d. Total abundance and EPT abundance 

e. Total abundance and richness of EPT taxa 

f. Total abundance and GOLD abundance 

g. Total abundance and richness of GOLD taxa 

2. Add a third aquatic invertebrate metric 

a. Richness of EPT taxa 
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b. Richness of perennial indicator taxa * 

c. Total richness 

d. Richness of GOLD taxa 

3. Bin richness of perennial indicator taxa metric 

a. Two categories* (0 to 3, ≥4) 

b. Three categories (0, 1 to 3, ≥4) 

4. Bin total and perennial indicator abundance 

a. Three categories for total abundance (0, 1 to 19, 20+) and perennial indicator 

abundance (0, 1 to 5, ≥6)* 

5. Bin mean bankfull width 

a. Three categories (<2, 2 to 6, ≥6)* 

6. Bin streambed algal cover 

a. Two categories (<10%, ≥10%)* 

7. Bin or drop geospatial metrics (NONE SELECTED) 

a. Bin October precipitation at quartiles 

b. Bin October precipitation at quintiles 

c. Drop October precipitation 

Refinements to the snow-influenced model improved model performance at most steps (Figure 

9). These refinements included eliminating several variables and binning those that remained 

into two or three categories. Unfortunately, no satisfactory way to bin the single geospatial 

metric in this model (October precipitation) was identified, so it was retained as a continuous 

variable for the beta SDAM WM.  
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Figure 9. Impact of indicator refinement on the accuracy of the snow-influenced model. Solid lines show the performance of the 
best model from each step. Dotted lines show the performance of model selected at each step. Dashed lines show performance 
of the original model. 

Non-snow influenced model 

1. Select 2 aquatic invertebrate metrics 

a. Total abundance and richness 

b. Total abundance and abundance of perennial indicators 

c. Total abundance and richness of perennial indicator taxa 

d. Total abundance and EPT abundance 

e. Total abundance and richness of EPT taxa 

f. Total abundance and mayfly abundance 

g. Total abundance and GOLD abundance 

h. Total abundance and richness of GOLD taxa 

i. Abundance and richness of EPT taxa 

j. Abundance and richness of perennial indicator taxa 

k. Mayfly abundance and total richness 

l. Mayfly abundance and richness of perennial indicator taxa* 

2. Add a third aquatic invertebrate metric (NONE SELECTED) 

a. Total abundance 

3. Remove an additional metric (NONE SELECTED) 

a. Sinuosity 

b. Mean bankfull width 
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c. Fish abundance 

4. Bin mayfly abundance 

a. Five categories (0, 1 to 5, 6 to 10, 11 to 15, ≥16)* 

5. Bin richness of perennial indicator taxa 

a. Four categories (0, 1, 2, ≥3)* 

6. Bin mean bankfull width (NONE SELECTED) 

a. Three categories (<2, 2 to 6, ≥6) 

b. Bin at quartiles 

7. Bin geospatial metrics (NONE SELECTED) 

a. Bin May precipitation at three categories (<45, 45 to 50, 50+) 

b. Bin May precipitation at quartiles 

c. Bin maximum temperature at quartiles 

d. Bin maximum temperature in two categories (<18, ≥18) 

e. Bin maximum temperature and May precipitation based on quartiles 

Refinements to the non-snow influenced model rarely improved model performance and most 

refinements were rejected (Figure 10). The only refinement to substantially improve 

performance was the binning of the mayfly abundance metric (step 4). Thus, the non-snow 

influenced model retained more metrics in continuous forms than the snow-influenced model.  

 

Figure 10. Impact of indicator refinement on the accuracy of the non-snow influenced model. Solid lines show the performance 
of the best model from each step. Dotted lines show the performance of model selected at each step. Dashed lines show 
performance of the original model. 
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Increased confidence required for classifications 

Random forest models, when used in classification mode, traditionally make assignments based 

on the class that receives the highest number of votes by each “tree” in the forest. Thus, in a 3-

way decision, the class with the most votes could receive much less than a majority of all 

votes—as low as 34%. The RSC believed such low-confidence classifications may not provide 

sufficient defensibility for some management decisions, instead the RSC recommended 

exploring approaches to distinguish between high- and low-confidence classifications.  

Based on this input from the RSC, we explored increasing the minimum number of votes 

required to make a confident classification from 30% to 100% by increments of 1%. When the 

final model was applied to a novel test reach and a single class received a sufficient percent of 

votes, then the reach was classified accordingly. If none met the minimum, but the combined 

percent of votes for intermittent and perennial classes exceeded the minimum, then the reach 

was classified as at least intermittent. In all other cases, the reach was classified as need more 

information. This decision framework reflects the opinion of the RSC that distinguishing 

between ephemeral and at least intermittent reaches is a high priority use of the SDAM, more 

so than distinguishing between perennial and nonperennial (ephemeral and intermittent) 

reaches. The percent of reaches under each of the five possible classifications with increasing 

minimum vote agreement thresholds was calculated. The snow-influenced and non-snow 

influenced models were analyzed together to evaluate the overall impact of this modification to 

the entire WM. 

At a minimum required proportion of votes of 0.5, only 5% of reaches were classified as at least 

intermittent and none were classified need more information (Figure 11). Classifications of at 

least intermittent first appear with a minimum proportion of 0.38 (0.45 in the testing data set), 

whereas classifications of need more information appear at 0.51 (in both the training and 

testing data sets). Although they cannot be ruled out, it appears unlikely that the beta SDAM 

WM will result in classifications of need more information. Based on these results, the RSC 

recommended a minimum proportion threshold of 0.5 for flow classification. 
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Figure 11. Influence of the minimum proportion of votes required to make a classification on n (the number of reaches in each 
class). NMI: Need more information. ALI: At least intermittent. P: Perennial. I: Intermittent. E: Ephemeral. The vertical black line 
represents a minimum proportion of required votes of 0.5, reflecting the final recommendation of the RSC. The two red lines 
represent the proportion of votes that first result in classification of ALI (the lower line) or NMI (the upper line). Only results from 
the training data set are shown. 

Addition of single indicators of at least intermittent flow 

Single indicators can supersede model classifications of ephemeral to at least intermittent. 

Single indicators provide technical benefits (i.e., improved accuracy), as well as non-technical 

benefits, such as greater acceptance of the SDAM, given public understanding of the role of 

streamflow duration in supporting wildlife and rapidity of determining a flow classification, 

which is why they are used in most other SDAMs (e.g., NMED 2011, Nadeau et al. 2015, Dorney 

and Russell 2018, Mazor et al. 2021a). The following potential single indicators, based on 

recommendations from the RSC were evaluated:  

• Presence of aquatic invertebrates 

• Presence of EPT individuals, or at least 5 EPT individuals 

• Presence of hydrophytes, or at least 2 or 3 hydrophytic plant species 

• Algal cover ≥ 10% 

• Presence of fish 

The number of instances where inclusion of the single indicator would correct a 

misclassification (i.e., the reach was truly intermittent or perennial) and the number of times it 

would introduce a misclassification (i.e., the reach was truly ephemeral) were quantified.  
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Several single indicators had minimal impact on performance or introduced more errors than 

they corrected (Figure 12). Based on these results, the RSC recommended using only the 

presence of fish (apart from mosquitofish) as single indicators in the beta SDAM WM. 

 

Figure 12. Influence of single indicators on performance of snow-influenced and non-snow influenced models 

Performance of the beta SDAM WM 

Performance of the final, simplified model for the beta SDAM WM is summarized in Table 7. 

The overall accuracy was 74% in the training dataset (and 53% in the testing dataset), but this 

accuracy increased to 93% in the training dataset (and 88% in the testing data set) when only 

ephemeral versus at least intermittent classifications were considered (i.e., both blue and green 

cells in Table 7 were treated as correct). Among 42 reaches marked as disturbed by human 

activity, accuracy among all classes was 79% and 95% when only ephemeral versus at least 

intermittent classifications were considered. 



 

35 
 

Table 7. Classifications of the final version of the beta SDAM WM on training and testing datasets. Blue cells indicate correct 
classifications of perennial, intermittent, at least intermittent, and ephemeral reaches, whereas green cells indicate correct 
classifications as ephemeral versus at least intermittent. 

 True streamflow duration class 

Beta SDAM WM 
Classification 

  Intermittent   

Ephemeral Dry Flowing Perennial 
Train Test Train Test Train Test Train Test 

Ephemeral 20 4 4 1 0 0 0 0 

Intermittent 3 3 17 3 16 5 8 7 
At least 
intermittent 1 0 2 0 2 1 3 0 

Perennial 0 0 0 1 11 3 30 4 

 

Data and code availability 
All data used to develop the method and R code used in analysis are available here. 

Next steps 
Continued data collection within the WM is underway and will provide greater representation 

of the diversity of stream conditions found within the region. Data from this effort will be used 

to develop a final method (expected after 2023) to replace the beta method. 
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Links 
Beta Streamflow Duration Assessment Method for the Western Mountains user manual: 

https://www.epa.gov/streamflow-duration-assessment/beta-streamflow-duration-assessment-

method-western-mountains 

Reginal Streamflow Duration Assessment Methods website: https://www.epa.gov/streamflow-

duration-assessment 

Web application for the beta SDAM for WM: https://sccwrp.shinyapps.io/beta_sdam_wm/ 

Western Mountain beta SDAM data and R code: https://doi.org/10.23719/1526066 
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