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EXECUTIVE SUMMARY 
Bioassessment is a useful method for estimating the impacts of stormwater management on 
stream condition. However, conducting bioassessment can be difficult or costly, and managers 
may not be able to achieve high levels of spatial coverage in portions of the watershed they 
manage, forcing them to make decisions based on limited information about stream condition. 
Spatial statistical network (SSN) models provide a way to estimate conditions (e.g., 
bioassessment index scores) at unsampled locations based on their proximity to sampled 
locations, providing an expanse of stream condition that may not otherwise have been quantified. 

We conducted four case studies to explore the value of SSNs models for stormwater managers in 
California: Ventura County, Los Angeles County, Santa Clara County, and Alameda County. We 
evaluated the importance of environmental factors (specifically, channel engineering and 
imperviousness in the watershed) and spatial factors (specifically, distance between sampling 
locations) in estimating bioassessment index scores in unsampled locations. Although we did not 
identify a spatial limit for extrapolations that could be applied to all streams in California, we 
found that SSN models are a powerful tool for understanding watershed conditions, yet 
substantial hurdles (such as training requirements) limit their widespread use by stormwater 
management agencies. We have developed a toolkit to facilitate the development of SSNs in 
California. This toolkit should make it easier to use SSNs in California watersheds, enhancing 
capacity among technical staff and consultants to create these models for bioassessment 
purposes, as well as other types of environmental monitoring data stormwater managers need to 
evaluate in stream networks. 

Lessons from the case studies 

Channel modification is strongly associated with differences in index scores. 

• Hardened channels had low scores in all case studies, whereas scores were much more 
variable in soft-bottom channels. In general, extrapolating from one channel type to 
another should be discouraged. 

Spatial models provide precise, spatially explicit estimates of stream condition. 

• Spatial models were always better (i.e., more precise) than non-spatial models. 

Spatial models represent good use of available data. 

• Every sampled site (probabilistic or targeted) can be used to estimate overall condition. 

Spatial information by itself is often sufficient for estimating condition at unsampled sites where 
other information is lacking. 

• Land use and channel engineering information only marginally improved estimates of 
condition in certain circumstances.  

• This superiority reflects the ability of bioassessment indicators to integrate conditions 
better than any proxy (even ones as integrative as “% impervious”). 
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Although we didn’t identify a number or limit, our ability to extrapolate suggests that 
bioassessment samples can represent large areas with moderate precision. 

• When eyeballing the maps, “high” precision estimates are limited to a few kilometers. 
There was no obvious difference between natural and modified channels in these limits. 

Data density alone does not always lead to the most precise models. 

• Other factors, like watershed hydrography and underlying variability of the data, may 
play a role. For example, Alameda had the fewest samples, but the best precision, while 
Los Angeles had a large number and high density of samples, yet the worst precision. 
Within a watershed, however, better sampled regions have more precise estimates than 
poorly sampled regions. 
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INTRODUCTION 
Background and purpose 

As the State Water Resources Control Board (State Water Board) develops guidance for the 
implementation of biointegrity policies, and regional efforts (such as proposed biological 
objectives for the San Diego region) proceed in tandem, CASQA is supporting research that 
helps managers understand limits on the spatial extent of biological condition assessment based 
on samples from a limited number of locations. Bioassessment tools such as the California 
Stream Condition Index (CSCI, Mazor et al. 2016) will be used to support these efforts. As a 
result, there exists a need to understand the representativeness of limited numbers of reach 
assessments to the larger watershed condition.  

CASQA previously contracted with the Southern California Coastal Water Research Project 
(SCCWRP) to evaluate the spatial representativeness of bioassessment monitoring data and 
prepared a report (Mazor et al. 2017). Upon initiation of the previous project, it became clear that 
more complex statistical tools were necessary and would need to be developed on a watershed 
basis to provide an adequate level of confidence in statistical extrapolation or interpolation. To 
perform the scope of services for CASQA, SCCWRP facilitated a technical advisory group and 
determined that it was necessary to develop spatial statistical network (SSN) models. 

Under this previous project, a general spatial representative model was produced. Because of the 
questions regarding the application of the State’s Biological Stimulatory/Integrity program on 
engineered channels and the prevalence of engineered channels in many MS4 permits statewide, 
additional evaluation of this stream type was determined to be necessary. Specifically, additional 
evaluation was needed to support management decisions based on the extent of likely 
constrained biology in engineered channels. This project supported efforts to evaluate the spatial 
representativeness of CSCI scoring in engineered channels or channels that have been modified 
substantially to support other beneficial uses. 

Using the data from statewide surveys, the State Water Resources Control Board has developed a 
statistical model used to predict a range of likely CSCI scores based on the observed CSCI scores 
associated with different landscape characteristics (Beck et al. 2019). This model (called the 
Stream Classification and Prioritization Explorer, or SCAPE model) has recently been used by 
the State to support the Biological Stimulatory/Integrity program. Streams where the range of 
predicted scores falls below 0.79 are considered “likely constrained”, and streams where the 
predicted range is above 0.79 are considered “likely unconstrained”. This model can be used to 
identify constrained streams, where scores above key CSCI thresholds are unlikely to be 
attained. This model can help resource managers set goals that are appropriate for the constraints 
of their region.  

These two efforts exemplify two different approaches to estimating bioassessment scores at 
unsampled locations. The SSN approach is based largely on spatial information: scores are 
estimated based on observations at nearby locations. In contrast, the landscape model approach is 
based purely on environmental factors (such as imperviousness, land use, or road density in the 
watershed); estimates are based on observations in similar environments (regardless of whether 
the observation is close to the unsampled location). There are both technical and philosophical 
differences between these approaches, and it may be best to use them in complementary fashion 
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where feasible. However, spatial models can be extended to make use of both spatial and 
environmental data. In this study, we explore efforts to use SSNs to make estimates from both 
spatial and environmental information. Ultimately, this model can be used to identify streams 
that are likely to meet managers’ goals (e.g., CSCI scores above 0.79), even where monitoring 
data is limited. When used in combination with SCAPE model outputs, SSN models may help 
managers prioritize stream reaches for further investigation, restoration, or other activities. 

Why would you want an SSN? 

The objective of this study was to determine the spatial variability and ability to extrapolate 
modelled biological assessment scores (specifically, CSCI scores) in a variety of engineered 
channel types, and to determine their biological condition ceiling potential. Spatial statistical 
network (SSN) models allow for the estimation of bioassessment index scores at unsampled 
locations based on their proximity to sampled locations within a stream network. This modeling 
output can help state regulators better understand appropriate limits on the spatial extent of 
condition assessment based on samples from a single location, which can help inform the 
development of guidance for the implementation of a biological integrity policy. 

Spatial statistics date back decades, particularly in the geological sciences (Peterson and Ver 
Hoef 2014). They can help predict locations of mineral deposits in two- or three-dimensional 
space based on a limited number of discrete observations. Peterson and Ver Hoef (2014) 
developed tools in ArcGIS and R to facilitate the creation of networks that reflect stream 
topology, which has accelerated the application of spatial statistics to watershed management, 
yet studies demonstrating applications to bioassessment or benthic macroinvertebrate data are 
still few in number (Frieden et al. 2014).  

Spatial statistics offer a way to estimate likely biological condition at unsampled locations based 
on their proximity to sampled locations. Although other methods exist for estimating biological 
condition at unsampled locations (e.g., based on landscape alteration, Beck et al. 2019), spatial 
statistics are conceptually different, offering a few theoretical and practical advantages: 

• Estimates based on spatial models are typically much more precise than estimates from 
similar non-spatial models. 

• Spatial models are based on direct observation of conditions (sometimes exclusively so). 
In contrast, non-spatial models are based on hypothesized relationships with 
environmental factors (e.g., landscape alteration). Therefore, spatial models do not 
require assumptions about the causes of poor condition. 

• Spatial models are able to show how well-sampled portions of a watershed are better 
understood than poorly sampled regions. 

Four California case studies 

We identified four case study regions (either watersheds or counties) where we expected to find 
large numbers of bioassessment samples, as well as information on channel engineering: Los 
Angeles County, Ventura County, Santa Clara County, and Alameda Creek in Alameda County. 
For each case study, we identified sources of channel engineering information, updated stream 
networks, and built models to predict CSCI scores at unsampled locations. Channel engineering 
information was provided as shapefiles by different local agencies. We simplified the numerous 
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classifications found in the original shapefiles into binary (natural vs. engineered) or three-
category (natural vs. soft-bottom vs. hardened) classes. We then transferred stream channel 
information to the National Streams Internet (NSI), a shapefile of topologically corrected flow 
lines, based on the National Hydrography Dataset Plus (NHD Plus). We obtained information on 
watershed imperviousness from the StreamCat dataset (Hill et al. 2016) associated with nearly all 
stream segments in the NHD Plus (and therefore in the NSI). We then followed the steps 
described in the appendix to snap observed bioassessment scores with each flowline in the NSI, 
generate a set of prediction points (i.e., unsampled points where CSCI predictions are desired). 
This process results in a landscape network (LSN). The LSN is an interim product necessary for 
creating SSN models, which can then be used to predict CSCI scores at the prediction points. 

We used the SSN package in R (Ver Hoef et al. 2014) to create three types of models that predict 
CSCI scores at unsampled locations: 

• A non-spatial or purely environmental model, where CSCI scores are predicted from 
environmental factors that characterize the site, such as channel form or watershed 
characteristics. 

• A purely spatial model, where CSCI scores are predicted from scores at nearby sampled 
locations 

• A combined spatial environmental model, where CSCI scores are predicted from both 
environmental factors and scores at nearby sampled locations. 

We considered up to two types of environmental factors: channel engineering information (as 
either a two-category or three-category variable) or watershed imperviousness (as a continuous 
variable). To construct the non-spatial, purely environmental model, we identified the best 
combination of environmental factors based on the Akaike Information Criterion (AIC), which is 
a common measure for identifying parsimonious models with good prediction ability because 
unlike many goodness-of-fit measures (like R2), it penalizes models for having high numbers of 
predictors. Low AIC values indicate good performance. However, we also looked at the root-
mean square prediction error (RMSPE) to estimate the overall performance of the model; low 
RMSPE values indicate more precise models. 

We considered up to three different spatial components in spatial models: Euclidean distance 
between sites (which ignores flow connectivity), “tail-down” distance (i.e., hydrologic distance 
between flow-connected sites in a downstream direction), and “tail-up” distance (i.e., hydrologic 
distance between flow-connected and flow-unconnected sites in upstream directions) (Figure 1). 
To construct the purely spatial model, we again used AIC to identify the best combination of 
spatial components.  
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Figure 1. Diagrams of tail-down, tail-up, and Euclidean distances. The gray ribbons represent the 
strength of influence each site has in tail-up (a) and tail-down (b) directions. Sites S1 and S2 are 
hydrologically connected to S3, but not to each other. Panels A and B are from Frieden et al. 2014. 
Euclidean distances (c) can be calculated among all sites (even those with no hydrologic 
connectivity; sites closer together have stronger influences on each other (indicated by thicker 
black arrows). 

The strength of each component can be interpreted as follows: 

• If the Euclidean component is strong, sites close together tend to be similar, regardless of 
whether those sites are connected by flow. Thus, if you know a CSCI score at one site, 
sites close by will likely have the same score. 

• If the tail-down component is strong, sites tend to be similar if you move in a 
downstream direction. Thus, if you know a CSCI score at one site, downstream sites will 
likely have the same score, but upstream sites might not. 

• If the tail-up component is strong, sites tend to be similar if you move in an upstream 
direction. Thus, if you know a CSCI score at one site, upstream sites will likely have the 
same score, but the downstream sites might not. 

We compared the predictive value of the spatial environmental model to the best purely spatial 
and the non-spatial models based on the AIC. We then applied the best model to a dense set of 
prediction points in the watershed, estimating both likely CSCI scores and the prediction 
standard error (which can then be used to estimate the likely range of CSCI scores at each 
location). These points were then used to create a map showing likely scores, highlighting 
regions of high and low certainty. 

c) Euclidean 
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Summary of the data 

Across the 4 case studies, we had CSCI scores from 869 locations, with higher numbers in the 
Southern California case studies (i.e., 363 and 282 samples for Ventura and Los Angeles 
Counties, respectively) than the Northern California case studies (i.e., 118 and 106 samples for 
Santa Clara and Alameda Counties, respectively). In Los Angeles, Santa Clara, and Alameda, 
samples from natural channels outnumbered engineered channels, while in Ventura, samples 
from engineered channels were more common. 

In all case studies, scores in hardened channels were typically lower than in soft-bottom or 
natural channels, although low scores were observed in all channel types. Ranges were relatively 
homogenous in hardened channels, with medians ranging from 0.40 to 0.60, and 90th percentiles 
(an estimate of the upper limit of scores in each channel type) ranging from 0.52 to 0.73 (Table 
1). In contrast, ranges were much larger in natural and soft-bottom channels. Notably, values for 
soft-bottom channels varied considerably from case to case, with relatively low scores observed 
in Alameda County and much higher scores in Ventura County (Figure 2). Thus, the soft-bottom 
classification may reflect a mix of channel types that varies from case study to case study.  

Table 1. Summary of CSCI scores used in the study. n = Number of unique samples. 

County Channel type n 10th percentile CSCI Median CSCI 90th percentile CSCI 
Alameda Natural 74 0.43 0.70 1.07 
 Soft 10 0.23 0.34 0.40 
 Hardened 22 0.20 0.40 0.52 
Los Angeles Natural 183 0.60 0.92 1.18 
 Soft 19 0.26 0.48 0.71 
 Hardened 80 0.32 0.60 0.73 
Santa Clara Natural 83 0.45 0.74 1.11 
 Soft 24 0.41 0.53 0.70 
 Hardened 11 0.25 0.42 0.64 
Ventura Natural 129 0.74 0.99 1.13 
 Soft 219 0.49 0.72 1.02 
 Hardened 15 0.39 0.50 0.67 
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Figure 2. Range of CSCI scores in different channel types in the four case studies. Gray dots 
indicate individual samples. Large black triangles indicate the upper limit (i.e., the 90th percentile) 
of scores in each channel type for each case study. 

 

Ventura County 

A shapefile showing stormwater infrastructure was provided by Ventura County Watershed 
Protection District. This shapefile contained channel classifications used by County staff for 
operations and maintenance indicated in the “OM2” field of the shapefile attribute table. 
Definitions of some of these classes was self-evident (e.g., “concrete lined channel”), but others 
were less clear (e.g., “redline”) and not readily available; based on discussions with County staff 
and review of aerial imagery, OM2 designations were classified as natural or engineered; 
engineered features were further classified as hardened or soft-bottomed (Table 2). In the 
absence of contradictory information, we assumed unclassified channels were natural, and that 
unspecified but clearly engineered channels were soft-bottom. Although we conducted limited 
validation of these assignments using Google Earth, it is not possible to completely verify the 
accuracy of these classifications and how well they represent present-day conditions; as with all 
the case studies, it is likely that some inaccuracies (including misclassifications, exclusions of 
streams, and inclusions of flowlines that do not represent aquatic habitats) affect the data.  
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Table 2. Classification of channel types provided by the Ventra County Watershed Protection 
District 

Natural streams Engineered – hard-bottomed 
streams 

Engineered – soft-bottomed 
streams 

Blueline 
Connector 
Mining area 
NHD 
Natural stream 

Concrete lined channel 
Conduits 
 

Bank protection 
Dam/Debris Basin/NPDES Basin 
Improved unlined channel 
Flowline 
Invert stabilization 
Levee 
Other 
Redline 
Transition 
V-Ditch 

 

The stormwater infrastructure shapefile attributes were then transferred to the National Streams 
Internet (NSI) flowlines, which are required for SSN modeling. Flowlines in the NSI not found 
in the stormwater infrastructure shapefile were designated as soft-bottom where local riparian 
imperviousness exceeded 15%; otherwise, they were designated as natural channels. The 
resulting network showed that Ventura County contained 4,595 stream-km, 77% of which are 
natural, 22% are soft-bottom, and 1% are hard-bottom. 

A landscape network (LSN) was created from the NSI and modified to correct topological errors 
(typically by deleting isolated networks where the errors were found). The LSN is an interim 
product necessary for creating SSN models. 

The best non-spatial model for predicting CSCI scores was based on two factors: percent 
imperviousness in the watershed, plus a binary variable indicating whether the channel was 
engineered or natural (Table 3). Subdividing the engineered channels based on bottom-hardening 
did not improve the model; in fact, that model had larger error than any other model evaluated —
perhaps due to the small number of samples in hard-bottom channels. Adding a spatial 
component greatly improved performance. A purely spatial model had the best performance of 
all, indicating that in this intensively sampled region, information about channel type or 
watershed imperviousness add no additional value to predicting CSCI scores when nearby scores 
are known. The RMSPE of the selected (pure spatial) model was 0.13, which is small relative to 
the variability in CSCI scores among reference sites (i.e., 0.16; Mazor et al. 2016). This low error 
suggests that the model may be suitable for predicting which streams are in likely altered 
condition (i.e., CSCI scores < 0.79, or 0.21 points below the expected value of 1.00), but may not 
be suitable for detecting streams in possibly altered condition (i.e., CSCI scores < 0.92, or 0.08 
points below the expected value of 1.00). 
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Table 3. Summary of models for the Ventura County case study. Each X indicates if an 
environmental factor or spatial component was included in the model. AIC: Akaike Information 
Criterion. RMSPE: Root-mean square prediction error. Highlighting indicates the final selected 
model. 

 Environmental factors   Spatial components     

 Imperviousness 
Natural vs. 
engineered 

Natural vs. 
Hardened vs. Soft-

bottom   Tail-up Tail-down Euclidean AIC RMSPE 

 Pure spatial (only top-performing model shown)     
 

     X X -382 0.13 
 Spatial and environmental        
 X X    X X -366 0.13 
 Non-spatial (pure environmental)       
 X X      -211 0.18 
 X  X     -205 0.24 
 

  X     -153 0.19 
 X       -150 0.19 
   X           -141 0.20 

 

We created a set of prediction-points located every ~250 m along the stream network, and used 
the purely spatial model to predict CSCI scores (along with prediction errors) at each point 
(Figure 3). We then used these points to update the Ventura stream network to create a map 
showing likely scores throughout the county.  
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Figure 3. Predicted CSCI scores in Ventura County streams. 
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Overall, 74% of stream-miles were predicted to have CSCI scores indicative of reference 
conditions (i.e., ≥ 0.79). These streams with high predicted CSCI scores were concentrated in the 
undeveloped, mountainous interior portions of the county. Although these results were expected, 
it is nonetheless notable that these predictions are based strictly on spatial proximity to sampled 
sites, and not on land use or other environmental factors known to influence CSCI scores. High 
precision estimates (i.e., prediction standard error < 0.15) were possible for 27% of stream-miles, 
although 91% of estimates achieved at least moderate precision (standard error < 0.2) (Figure 4). 
Estimates for engineered channels (particularly hardened channels) were frequently more precise 
than estimates for natural channels (Table 4). 

 

 

Figure 4. Prediction standard errors for the top models in Ventura County. 

 

Table 4. Percent of stream-miles with high, medium and low precision (based on ranges of 
standard error shown in parentheses) in Ventura County. 

 High Medium Low 
Channel type (<0.15) (0.15 to 0.20) (>0.20) 
Natural 19 69 11 
Engineered 46 54 0 
-Hardened 60 40 0 
-Soft 45 55 0 
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Los Angeles County 

Los Angeles County Public Works provided a shapefile of modified channels comparable to the 
layer provided by Ventura County, with the same categories of channel types identified (Table 
2). The shapefile attribute table contained a column designating hardened and soft-bottom 
channels, which we used as the primary classification system for analysis. Streams missing from 
that data set were presumed to be natural, unless imperviousness within 100 m of the stream-line 
exceeded 15%. The resulting network showed that Los Angeles County contained 5,745 stream-
km, 84% of which are natural, 3% are soft-bottom, and 13% are fully hardened. The NSI did not 
contain errors requiring further modification for creating an LSN. 

The best non-spatial model for predicting CSCI scores was based on the same two factors 
identified in Ventura County: percent imperviousness in the watershed, plus a binary variable 
indicating whether the channel was engineered or natural (Table 5). In contrast with Ventura 
County, a purely spatial model was only slightly better than a model on both spatial and 
environmental factors, perhaps due to the lower density of sampling locations and higher 
variability in scores. Furthermore, the purely spatial model for Los Angeles County had 
particularly poor precision (i.e., standard error > 0.3) in the sparsely sampled Antelope Valley. 
Therefore, the model based on both factors was used for further analysis. The RMSPE of the 
selected (spatial and environmental) model was 0.26, which is twice the error of the Ventura 
County model. This low precision suggests that the model may not be suitable for predicting 
which streams are in likely altered condition, but may be better suited for predicting which 
streams are very likely altered (i.e., CSCI < 0.63, or 0.37 points below the expected value of 
1.00). 

Table 5. Summary of models for the Los Angeles County case study. Each X indicates if an 
environmental factor or spatial component was included in the model. AIC: Akaike Information 
Criterion. RMSPE: Root-mean square prediction error. Highlighting indicates the selected model. 

Environmental factors   Spatial components     

Imperviousness 
Natural vs. 
engineered 

Natural vs. 
Hardened vs. 
Soft-bottom   Tail-up Tail-down Euclidean AIC RMSPE 

Pure spatial (only top-performing model shown)     

     X X 82 0.262 
Spatial and environmental 

X X    X  85 0.260 
Non-spatial (pure environmental) 

X X      106 0.277 
X  X     118 0.278 

 X      130 0.295 

  X     133 0.296 
X             136 0.295 
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We created a set of prediction-points located every ~250 m along the stream network, and used 
the environmental + spatial model to predict CSCI scores (along with prediction interval) at each 
point (Figure 5). We then used these points to update the Los Angeles County stream network to 
create a map showing likely scores throughout the county.  
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Figure 5. Predicted CSCI scores in Los Angeles County streams. 

Overall, 77% of stream-miles were predicted to have CSCI scores indicative of reference 
conditions (i.e., ≥ 0.79). These streams were concentrated in the undeveloped, mountainous 
interior portions of the county. Compared with Ventura County, precision of the model in Los 
Angeles county was poor, with no estimates achieving a standard error as low as 0.28 (Figure 6), 
and all predictions were classified as having low precision (i.e., standard error > 0.20; Table 6). 
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This poor precision may be due to the complex topography of the landscape, the low density of 
samples in the desert portions, or to other factors that require further exploration. 

 

 

Figure 6. Prediction standard errors for the top models in Los Angeles County. Note that the color 
scale differs greatly from the scale in Figure 4. 

 

Table 6. Percent of stream-miles with high, medium and low precision (based on ranges of 
standard error shown in parentheses) in Los Angeles County. 

 High Medium Low 
Channel type (< 0.15) (0.15 to 0.20) (> 0.20) 
Natural 0 0 100 
Engineered 0 0 100 
-Hardened 0 0 100 
-Soft 0 0 100 
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Santa Clara County 

Consultants representing Santa Clara County (specifically, Nick Zigler of EOA, Inc.) provided 
us with two spatial datasets of engineered stream channels (Table 7). After comparing the 
shapefile to aerial imagery, we chose to use the file “exempt_channel.shp”, created by The 
Habitat Restoration Group for the Riparian Corridor Policy Study (1995), due to its better 
classification and accuracy of engineered channels in urban zones. All channel types were 
aggregated and re-classified as Natural/Engineered and Natural/Soft/Hardened and then 
transferred to the NSI dataset (“Coyote” HUC8 watershed). NSI Channels that did not overlap 
with the engineered channels were assumed to be natural, and verified using NLCD Impervious 
layers. The resulting network showed that Santa Clara County contained 1185 stream-km, 84% 
of which are natural, 10% are soft-bottom, and 6% are hard-bottom. The NSI did not contain 
errors requiring further modification for creating an LSN. 

Table 7. Classification of channel types provided by Santa Clara County. 

Natural Streams 
Engineered – hard-bottomed 
streams 

Engineered – soft-bottomed 
streams 

Natural Unmodified Arch Culvert Earth Levees 
  Articulated Concrete Blocks Excavated Earth 
  Box Culvert Flood Walls 
  Bridge Modified Flood Plain 
  Bypass Channel   
  Concrete (Bottom)   
  Gabion (Sides and Bottom)   
  Pipe Culvert   
  Rock Lined (Sides and Bottom)   
  Sack Concrete   
  Trapezoidal Concrete   
  U-Frame Concrete   

 

The best non-spatial model for predicting CSCI scores was based on the same two factors 
identified in the other two counties: percent imperviousness in the watershed, plus a binary 
variable indicating whether the channel was engineered or natural (Table 8). As with Ventura 
County, a pure-spatial model was better than the spatial + environmental factors model in Santa 
Clara County. However, the Santa Clara model included only a Euclidean component (i.e., 
overland distance; Figure 1), whereas both Los Angeles and Ventura Counties included a tail-
down component. Therefore, hydrologic connectivity (which would be reflected by the presence 
of a tail-up or tail-down component) may not be necessary for predicting CSCI scores from 
nearby samples, perhaps due to the fact that this region consists largely of small, disconnected 
stream networks, whereas the others are characterized by a few large stream networks. We used 
the pure spatial model for further analyses. The RMSPE of the selected (pure spatial) model was 
0.17, which is comparable to the variability in CSCI scores among reference sites (i.e., 0.16; 
Mazor et al. 2016). As with the Ventura County model, this low error suggests that the model 
may be suitable for predicting which streams are in likely altered condition (i.e., CSCI scores 
< 0.79, or 0.21 points below the expected value of 1.00), but may not be suitable for detecting 
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streams in possibly altered condition (i.e., CSCI scores < 0.92, or 0.08 points below the expected 
value of 1.00). 

 

Table 8. Summary of models for the Santa Clara County case study. Each X indicates if an 
environmental factor or spatial component was included in the model. AIC: Akaike Information 
Criterion. RMSPE: Root-mean square prediction error. Highlighting indicates the selected model. 

Environmental factors   Spatial components     

Imperviousness 
Natural vs. 
engineered 

Natural vs. Hardened 
vs. Soft-bottom   Tail-up Tail-down Euclidean AIC RMSPE 

Pure spatial (only top-performing model shown) 

      X -44 0.167 
Spatial and environmental 

X X     X -40 0.167 
Non-spatial (pure environmental) 

X X      -21 0.202 
X  X     -11 0.204 
X       -2 0.229 

 X      -2 0.231 
    X         -1 0.231 

 

We created a set of prediction-points located every ~250 m along the stream network, and used 
the pure spatial model to predict CSCI scores (along with prediction errors) at each point (Figure 
7). We then used these points to update the Santa Clara County stream network to create a map 
showing likely scores throughout the county.  
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Figure 7. Predicted CSCI scores in Santa Clara County streams. 

Whereas the pure-environmental model had moderate precision throughout the region, both the 
pure-spatial model and the spatial + environmental models had higher precision overall, with 
pockets of poor precision in the southeastern portion of the region (where sample density was 
relatively low). Although this pattern was evident in Los Angeles and Ventura Counties, it is far 
more striking in this county. Good conditions (i.e., CSCI ≥ 0.79) were predicted in the 
undeveloped hillsides surrounding the urban core. Poor conditions were predicted in the 
baylands, as well as in the headwaters of Coyote Creek east of the City of Morgan Hill. Nearly 
half of the watershed (i.e., 47% of stream-miles) were predicted to have CSCI scores below 0.79, 
indicated that poor conditions are more pervasive here than in Ventura or Los Angeles counties.  

Precision was much better than in the Los Angeles case study, but not quite as good as Ventura; 
precise estimates (standard error < 0.15) were only achieved for 5% of the watershed, but 
moderate precision (standard error between 0.15 and 0.2) was achieved for 34%. Precision was 
poorest in the southeastern portions of the county (Figure 8). In Santa Clara County, engineered 
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channels were more precisely estimated than natural channels, although high precision estimates 
(i.e., standard error < 0.15) still relatively uncommon (i.e., only 10% of engineered channels; 
Table 9). 

 

 

Figure 8. Prediction standard errors for the top models in Santa Clara County. 

 

Table 9. Percent of stream-miles with high, medium and low precision (based on ranges of 
standard error shown in parentheses) in Santa Clara County. 

 High Medium Low 
Channel type (< 0.15) (0.15 to 0.20) (> 0.20) 
Natural 5 67 28 
Engineered 10 90 0 
Hardened 7 93 0 
Soft 11 88 1 
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Alameda County 

The Bay Area Aquatic Resource Inventory (BAARI) stream dataset, provided a shapefile with 
engineered channel types for Alameda County (“San Francisco Bay” HUC8 watershed; Table 
10). All fluvial engineered channel types (i.e., ditch, subsurface drainage, and engineered 
channel) were aggregated and re-classified as Natural/Engineered and Natural/Soft/Hardened 
and then transferred to the NSI dataset. NSI Channels that did not overlap with the engineered 
channels were assumed to be natural, and verified using NLCD Impervious layers. The resulting 
network showed that Alameda County contained 1681 stream-km, 90% of which are natural, 3% 
are soft-bottom, and 7% are hard-bottom. The NSI did not contain errors requiring further 
modification for creating an LSN. The aggregated CSCI scores from 118 samples in Santa Clara 
County ranged from 0.22 to 1.28, with a mean score of 0.69.  

 

Table 10. Classification of channel types in Alameda County. 

Natural Streams 
Engineered – hard-bottomed 
streams 

Engineered – soft-bottomed 
streams 

Fluvial Channel (FC) Fluvial Subsurface Drainage (FSD) Fluvial Ditch (FD) 
  Fluvial Engineered Channel (FEC)   

 

As with the three other counties, the best non-spatial model for predicting CSCI scores was 
based on percent imperviousness in the watershed, plus a binary variable indicating whether the 
channel was engineered or natural (Table 11). Adding a spatial component to the environmental 
model (specifically, a Euclidean and a tail-up component; see Figure 1) greatly improved model 
performance. A pure spatial model had slightly higher error rates than the combined 
environmental + spatial model, so the combined model was used for further analysis, as it had 
the highest precision in most regions of the county. The RMSPE of the selected (spatial and 
environmental) model was 0.14, which is lower than the variability in CSCI scores among 
reference sites (i.e., 0.16; Mazor et al. 2016). As with the Ventura and Santa Clara County 
models, this low error suggests that the model may be suitable for predicting which streams are 
in likely altered condition (i.e., CSCI scores <0.79, or 0.21 points below the expected value of 
1.00), but may not be suitable for detecting streams in possibly altered condition (i.e., CSCI 
scores < 0.92, or 0.08 points below the expected value of 1.00). 
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Table 11. Summary of models for the Alameda County case study. Each X indicates if an 
environmental factor or spatial component was included in the model. AIC: Akaike Information 
Criterion. RMSPE: Root-mean square prediction error. Highlighting indicates the selected model. 

Environmental factors   Spatial components     

Imperviousness 
Natural vs. 
engineered 

Natural vs. 
Hardened vs. 
Soft-bottom   

Tail-
up Tail-down Euclidean AIC RMSPE 

Pure spatial (only top-performing model shown) 

    X  X -63 0.150 
Spatial and environmental 

X X   X  X -60 0.139 
Non-spatial (pure environmental) 

X X      -26 0.189 
X  X     -17 0.188 

 X      -12 0.219 

  X     -10 0.219 
X             -1 0.225 

 

We created a set of prediction-points located every ~250 m along the stream network, and used 
the spatial + environmental factor model to predict CSCI scores (along with prediction errors) at 
each point (Figure 9). We then used these points to update the Alameda County stream network 
to create a map showing likely scores throughout the county. Good conditions (i.e., CSCI ≥ 0.79) 
were predicted in the undeveloped hillsides surrounding the urban baylands, the Livermore 
Valley, and Arroyo Mocho.  
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Figure 9. Predicted CSCI scores in Alameda County streams. 

 

Nearly half of the watershed (i.e., 48% of stream-miles) were predicted to have CSCI scores 
below 0.79, comparable to Santa Clara county. Precision was better here than in any other case 
study: only 17% of stream-miles had poor precision (i.e., standard error >0.2), and 10% had good 
precision (i.e., standard error <0.15) (Figure 10). Like Ventura County, precise estimates were 
more frequent in engineered channels than in natural channels, although in Alameda County, 
soft-bottom channels were more precisely estimated than hardened channels (Table 12). 
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Figure 10. Prediction standard errors for the top models in Alameda County. 

 

Table 12. Percent of stream-miles with high, medium and low precision (based on ranges of 
standard error shown in parentheses) in Alameda County. 

 High Medium Low 
Channel type (< 0.15) (0.15 to 0.20) (> 0.20) 
Natural 8 74 18 
Engineered 29 69 2 
Hardened 23 75 1 
Soft 43 53 3 
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APPENDIX: A GUIDE TO CREATING SPATIAL STATISTICAL NETWORK (SSN) 
MODELS FOR BIOASSESSMENT DATA IN CALIFORNIA WATERSHEDS 
Who is this guide for?  

This guide is written for technical staff at watershed management agencies working in California 
who are familiar with spatial statistical network models and want to develop them for watersheds 
in California. The guide provides links to resources, walks through major analytical steps, and 
provides support for interpreting results, all with a specific focus on evaluating bioassessment 
data in California. The guide is intended to supplement SSN training materials produced by 
Peterson (2019) and Ver Hoef et al. (2014).  

Getting started 

What software do you need? 

To create SSNs, you need the following software: 

1. ArcGIS version > 10.6 
2. Advanced license and the Spatial Analyst extension 
3. STARS version > 2.0.7 geoprocessing toolbox for ArcGIS 

(https://www.fs.fed.us/rm/boise/AWAE/projects/SpatialStreamNetworks.shtml) 
4. Python version > 2.7.14 
5. PythonWin: must be downloaded and installed separately from Python. Go to this 

website: http://sourceforge.net/projects/pywin32/files/pywin32, click on Build 221, and 
download this file: pywin32-221.win32-py2.7.exe. 

6. R version > 3.5 (https://cran.r-project.org/) 
7. The SSN package for R version > 1.1.6 (https://cran.r-project.org/) 

Data requirements  

Certain datasets are required to generate the spatial data needed to fit a spatial stream-network 
model. As a convenience, several California-specific data sets have been bundled together in a 
package for download from SCCWRPs FTP site: 

http://ftp.sccwrp.org/pub/download/PROJECTS/CASQA_SSN/CASQA_SSN_DataPackage.zip 

Dataset Format Required Where to get 
Shapefile defining 
area of interest (e.g., 
watershed 
delineation, county 
boundary). 

Polygon shapefile Required Provided by user 

Topologically correct 
stream network 
hydrography (e.g., 
NSI). 

Polyline shapefile Required Data package 

Observed CSCI 
scores with latitude 
and longitude 

CSV or excel spreadsheet 
with one row per site (no 
replicates) 

Required Data package (should be supplemented with 
additional data when possible) 

Landcover data (e.g., 
StreamCat) 

CSV spreadsheet with 
one row per COMID 

Optional Selected data from StreamCat appended to 
NSI in data package. Full StreamCat data are 

https://www.fs.fed.us/rm/boise/AWAE/projects/SpatialStreamNetworks.shtml
http://sourceforge.net/projects/pywin32/files/pywin32
https://cran.r-project.org/
https://cran.r-project.org/
http://ftp.sccwrp.org/pub/download/PROJECTS/CASQA_SSN/CASQA_SSN_DataPackage.zip
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available here: https://www.epa.gov/national-
aquatic-resource-surveys/streamcat 

Channel engineering 
data 

Polyline shapefile, with 
simple classes (e.g., 
natural vs. engineered, or 
natural vs. hard-bottom 
vs. soft-bottom) in 
attribute table 

Optional Provided by user 

 

A shapefile representing the network: The National Stream Internet (NSI) 

Although the National Hydrography Dataset Plus (NHD Plus, MacKay et al. 2012) represents 
nation-wide stream coverage with reasonably high spatial accuracy, it does not always reflect 
hydrologic connectivity with sufficient accuracy for SSN model development. For example, 
reaches may be isolated from each other, and braided sections may be represented as multiple 
stream-segments. Nagel et al. (2015) modified the NHD Plus to more accurately reflect these 
hydrologic relationships, as needed for spatial modeling.  

The data package provides an excerpt of the NSI for the entire state of California, updated with 
environmental data from the StreamCat dataset (Hill et al. 2016, described below). In general, 
California watershed managers should not need to create or greatly modify the NSI for their 
watersheds. Exceptions may include watersheds that span international boundaries. The full NSI 
network for the United States can be accessed from 
https://www.fs.fed.us/rm/boise/AWAE/projects/NationalStreamInternet.html. 

Observed data with location information 

CSCI scores and location information are required to calibrate an SSN model. As a rule of 
thumb, we recommend having at least 30 locations sampled to attempt modeling, although 
smaller data sets may be useful as well. 

The data package includes CSCI scores calculated at 3,254 sites throughout the state of 
California, dating from 2000 to 2016. Sources of data include bioassessment samples collected 
by the Surface Water Ambient Monitoring Program, the stream survey of the Stormwater 
Monitoring Coalition in southern California, and other samples found in the California 
Environmental Data Exchange Network (CEDEN).  

California watershed managers may want to update these data as newer samples in the watershed 
of interest become available. 

Landcover information 

Although SSN models can be built without environmental covariates, models that include 
covariates tend to outperform purely spatial models (sometimes greatly so). Environmental 
covariates should be included only if there is a plausible relationship between the covariate and 
biological condition. For example, increased urban or agricultural land cover could degrade 
CSCI scores by altering watershed hydrology or introducing contaminants in a stream (Beck et 
al. 2019). 

https://www.epa.gov/national-aquatic-resource-surveys/streamcat
https://www.epa.gov/national-aquatic-resource-surveys/streamcat
https://www.fs.fed.us/rm/boise/AWAE/projects/NationalStreamInternet.html
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The StreamCat dataset (Hill et al. 2016) provides estimates of land use within the riparian zone 
(i.e., a 100-m buffer on each side of a stream segment), the local catchment (i.e., nearby 
landscape flowing directly into the immediate stream segment, excluding upstream segments), 
and the entire upstream watershed for each stream-segment in NHD Plus (the basis for the NSI). 
Many of the metrics in StreamCat were derived from the 2006 National Land Cover Database 
(Fry et al. 2011).  

The NSI shapefile in the data package has been updated with selected metrics from StreamCat 
known to be useful for predicting CSCI scores. The full StreamCat data set can be accessed from 
https://www.epa.gov/national-aquatic-resource-surveys/streamcat. Note that any StreamCat 
metric expressed percentages (e.g., impervious surfaces, agricultural land use) must be converted 
to total area (e.g., km2) in order to successfully run the STARS tools. Specifically, this should be 
done for catchment-scale metrics by multiplying them by the catchment area (in km2), then 
dividing by 100. Metrics expressed as densities (e.g., road density, road crossing density) must 
be similarly treated by multiplying the catchment-scale metric by catchment area. As a 
convenience, the California data package includes these metrics in both percentage/density and 
raw forms. 

Channel engineering information 

Stormwater agencies may have shapefiles representing location and composition of engineered 
channels, typically for the purposes of tracking operations and maintenance of infrastructure. We 
provide instructions below on how to update the NSI with this information. Ideally, these data 
contain basic information about the composition of beds and banks, such that they can easily be 
grouped into a few classes (e.g., fully hardened vs soft bottom, with or without low-flow 
channels, etc.). The format and content of the data may vary widely among sources, so care 
should be taken when combining multiple shapefiles. 

 

Creating an SSN 

Reviewing your input data for adequacy 

Before proceeding, check the following: 

• Do you have the required software installed to run the STARS toolbox? 
o ArcGIS version 10.6 or higher 
o Python version 2.7.14 or higher 
o STARS toolbox 2.0.7 or higher 

• Do you have the required data? 
o A shapefile delineating the area of interest 
o NSI hydrography 
o A spreadsheet with CSCI scores and coordinates 

• Do you have the desired non-required data? 
o A spreadsheet with landcover data for each COMID 
o A shapefile with channel engineering information 

 

https://www.epa.gov/national-aquatic-resource-surveys/streamcat


 
 

27 
 

Installing STARS package 

The STARS geoprocessing toolbox is written in Python version 2.7.14 for ArcGIS version 10.6. 
The STARS toolbox (Figure 11) contains three toolsets: Pre-processing, Calculate, and Export.  

 

Figure 11. Contents of the STARS toolbox for ArcGIS. From Peterson (2019). 

These tools are specifically designed to analyze, reformat, and export the spatial data as a .ssn 
(“dot s-s-n”) object. The .ssn object can be directly imported to R statistical software (R Core 
Team 2019) using the SSN package (Ver Hoef et al. 2014), where spatial stream-network models 
can be fit to streams data. 

1. Open ArcMap. 
2. Add the STARS toolbox. In ArcToolbox, right click on ‘ArcToolbox’, and select ‘Add 

Toolbox’. Navigate to the STARS toolbox and click OK. Then, right click on 
ArcToolbox, scroll down, select Save Settings, and click on To Default. Make sure that 
there are no spaces in the pathname where the STARS tools reside. 

3. Change Environment Settings. Go to Menu, click on Geoprocessing, and select 
Environments. Expand M Values and set Output has M Values to Disabled. Repeat these 
steps for Z Values and click OK. 

4. Overwrite outputs by default. In the menu, select Geoprocessing > Geoprocessing 
Options and check the box next to Overwrite the outputs of geoprocessing operations. 

Data pre-processing 

Open a new ArcMap session with a new to create a new LSN (doing so helps limit error). Also, 
make sure there are no spaces in the pathnames where the datasets reside (e.g., 
C:\MyData\gisdata is good; C:\My Data\gisdata is bad). 
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Prepare data inputs 

1. Create a shapefile of observed CSCI scores. 
o If necessary, update the data in the data package with additional CSCI scores. 
o Import into ArcGIS as a points shapefile called “Observed_CSCI”. 

2. Customize the input shapefiles to the area of interest: 
o NSI. In general, we recommend using “intersect” rather than “clip”, as clipping 

tends to introduce topological errors and artificial “outlets” in the stream network. 
See section on topological errors below for more details. 

o Observed data points and rename “Observed_CSCI_Clip”. 
3. If desired, update the NSI with additional environmental data at this point. The shapefile 

in the California data package has already been updated with basic landcover 
information, such as percent imperviousness. 

4. Review shapefile for missing environmental data. Data gaps for a variable preclude its 
use in modeling. If data gaps can’t be filled, it may be necessary to exclude stream 
segments (or environmental variables) from further analysis. Make sure that when you 
drop a stream segment, you avoid introducing topological errors (see Figure 12a below 
for examples of topological errors introduced by removing segments downstream of a 
confluence). 

Update the NSI with channel engineering information 

In general, stormwater infrastructure information is not registered to NHD Plus, meaning that 
some effort is required to update the NSI with this information. We describe a process for this 
update below. 

1. If necessary, create a simple classification in the channel engineering shapefile. For 
example: 

o Natural vs. Engineered 
o Natural vs. Hard-bottom vs. Soft-bottom 

More complex classifications are not recommended.  
2. If the channel engineering shapefile has COMIDs, use this first to update the NSI where 

COMIDs match.  
o Create a left-join based on COMID 
o Add a field called “Status” to the NSI. (Multiple fields may be added if multiple 

classifications are needed.) 
o Use Field Calculator to update this field with the appropriate field in the channel 

engineering shapefile. 
o Save the new shapefile. 

3. If the channel engineering shapefile lacks COMIDs, use the Transfer Attributes tool 
found in the Editing Toolbox (see Figure 12).  

o Create a backup of the NSI feature.  
o In the Transfer Attributes tool, the Source Features is the channel engineering 

shapefile and the “Target features” is your copy of the clipped NSI layer. Set 
search distance to 50 m and leave all other fields blank. This will “transfer” the 
status from the channel engineering shapefile to the NSI based on a proximity of 
50 m. 
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Figure 12. Example setup for the "Transfer Attributes" tool. 

 
4. Several segments in the NSI will not have any assigned class. It may be sufficient to 

presume that these are natural channels. However, you can infer class from landcover or 
other information. For our case studies, we made the following assumptions: 

o Channel engineering shapefiles included all hard-bottom engineered channels. 
However, soft-bottom engineered channels could be missing. 

o These missing soft-bottom engineered channels were likely associated with a high 
degree of local imperviousness. Specifically, we assumed that stream segments 
with more than ~15% at the riparian-catchment scale (based on the Imp2011CRB 
field in the updated NSI layer that is included in the data package) is an 
engineered, soft-bottom channel. 

5. Verify that there are no segments with missing data. Unless there is evidence to the 
contrary, assume that segments without channel engineering status represent natural 
channels. 
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After making these assignments, compare classifications to aerial imagery to assess the 
accuracy of the updated NSI. Make manual corrections as needed.  

Creating a Landscape Network (LSN) in ArcGIS 

A landscape Network (LSN) is a type of graph that is used to represent spatial context and 
relationships with additional geographic information (Theobald et al. 2006). An LSN is stored as 
an ESRI personal geodatabase and has four distinguishing features (Theobald et al. 2005): 

• The LSN has the ability to store both the topology of a graph and the geometry of the 
nodes, reaches, and reach contributing areas (RCAs). Note that the terms “reach” and 
“segment” are both used to refer to a single line-segment in the polyline streams dataset 
(i.e., NSI). 

• Nodes represent confluences, stream sources, or stream outlet points. 
• Edges represent flow paths from node to node. 
• RCAs represent the aerial extent that would theoretically contribute overland flow to a 

given edge in the absence of other hydrologic processes such as infiltration or 
evaporation. 

Create the LSN 

1. Load the required datasets into ArcGIS: 
a. The updated and clipped NSI shapefile 
b. The updated and clipped CSCI shapefile 

2. Create a new folder to hold the LSN, with no other folders in this folder. 
3. Open the “Polyline to Landscape Network” tool: STARS > Pre-processing >Polyline to 

Landscape Network 
4. Set the pathnames and click OK (see Figure 12).  

Note: Do not use a shapefile named edges.shp. Doing so will lead to errors in the 
relationship tables of the LSN. 

Be sure to include the file extensions .shp and .mdb. 

 

Figure 13. Example setup for the "Polylines to Landscape Network" tool. 
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5. Load the LSN into ArcMap. 

Note: An Unknown Spatial Reference warning box may appear indicating that the nodes 
feature class is missing spatial reference information. Click OK. 

If everything works correctly, the message FINISHED Polyline to Landscape Network 
Script will be shown in green. The tool produces a personal geodatabase with five 
components: 

• NODES (POINT FEATURE CLASS) 
• EDGES (POLYLINE FEATURE CLASS) 
• RELATIONSHIPS (TABLE) 
• NODERELATIONSHIPS (TABLE) 
• NODEXY (TABLE) 

The program fails to produce an LSN if any of these components are missing. 

Review and correct topological errors 

Although the NSI has been carefully edited to remove nearly all of the topological errors in the 
NHD Plus, a few may remain. These errors must be corrected to ensure that hydrologic distances 
and spatial relationships are calculated properly. There are two tools provided in the STARS 
toolset to help identify these errors:  

• Check Network Topology  
• Identify Complex Confluences 

Topological errors are identified in the edges feature class, but they must be manually corrected 
in the streams.shp dataset that was used to build the LSN. The new LSN must be re-evaluated in 
an iterative process. 

Correcting errors can be a difficult and time-consuming process. Despite its improvements over 
the NHD Plus, the NSI retains several errors, which may be important in certain regions. In 
addition, the act of subsetting the NSI for the region of interest may introduce new errors.  

There are several types of errors, and the tools may flag errors that are in fact correct. For 
example, the tool may flag “outlets” (i.e., stream segments that flow into the ocean or outside the 
area of interest) that look like errors. Most of these errors can be safely ignored. However, one 
type of error requires close attention and must always be eliminated from an LSN: Converging 
streams. Convergence errors occur when two tributaries combine at a confluence, but the 
confluence has no outlet (Figure 12). 
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Figure 14. Examples of topological errors requiring connection. In both panels, two tributaries 
combine, but lack a downstream outlet. In panel A, the downstream segment is entirely missing, 
whereas in panel B, the downstream segment is disconnected from the node. Figure from 
Peterson (2019). 

 

When modifying a shapefile that produces convergence errors, you have a few options: 

• Re-subset the NSI, making sure to include the stream-segment downstream of the 
convergence. This is a good choice when the error was created by the subset process but 
won’t help if the convergence error is intrinsic to the NSI. 

• Delete the entire network upstream of the convergence. This is a good choice when the 
network is small and contains no data. 

• Clip the NSI above the convergence, creating two new outlets 
• Manually snap the upstream tributaries to the downstream segment. 

Choosing an option depends on the amount of time available, your comfort editing shapefiles in 
GIS, and the importance of the affected area to management questions or analysis. 

Once the errors are corrected in the shapefile, a new LSN must be built: It is not possible to ‘fix’ 
the LSN. Run the Check Network Topology and the Identify Complex Confluences tools on each 
new LSN to ensure that it is free of topological errors and convergent streams. 

Note: The development of a topologically corrected stream network can be the most time-
consuming aspect of the modelling process. You may need to try more than one approach to 
fixing topological errors. Some fixes may work one time then not work on a similar instance. As 
you work through this project, take note of which techniques resolved certain types of errors. Do 
your best to resolve all errors to the best of your ability but be aware of time vs. effect on final 
output. It’s easy to get lost in a sea of topological errors. 

Please see the STARS Tutorials for more information on identifying and resolving topological 
errors. 
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Generate prediction points 

Prediction points are the locations where the SSN model will be used to estimate CSCI scores. In 
general, you want a high density of prediction points, with multiple points on every segment of 
the NSI. The latest version of the STARS toolkit includes the Create Prediction Points tool to 
facilitate the creation of prediction points.  

If you already have a set of prediction points, move to the next section. 

You need to use the original NSI shapefile with the .shp extension. Do not use the edges file in 
the LSN generated above. 

1. Go to STARS v2.0.7 > Pre-processing > Create Prediction Points. This will open the Create 
Prediction Points window. 

a. Set the argument values (see Figure 15). Note that the interval is in map units and in 
this example the units are meters. 

 

Figure 15. Example setup for the "Create Prediction Points" tool. 

 

Incorporate points with observations into the LSN 

1. Go to STARS > Pre-processing > Snap Points to Landscape Network. This will open the 
Snap Points to Landscape Network window. 

2. Set the path names as needed. If the sites have already been edited and snapped to the 
appropriate edges, set the Search Radius = 1. Otherwise, examine the data and choose an 
appropriate search radius based on the maximum distance between sites and segments. 
We recommend keeping this radius below 10 m; larger distances may be ok but require 
careful review to ensure that sites are “snapped” correctly. 

Note: Your path name may be different. Be sure that the file extensions .shp and .mdb are 
included 

3. Click OK. The tool may take a few minutes to run.  
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If the tool runs successfully, the message Finished Snap Points to Landscape Network Edges 
will appear.  

A new sites feature class will be written to the LSN geodatabase if the survey locations are 
successfully incorporated. The new sites attribute table will contain some new fields, two of 
which are the ratio and rid fields. The rid field indicates which edge the site has been 
snapped to. The ratio for each site provides the exact location along the edge. 

4. Compare the total number of sites in the feature class to the total number of sites in the 
shapefile to ensure that all of the sites have been incorporated into the LSN. 

Calculate watershed attributes 

The watershed attributes assigned to the edges represent the watershed attribute for the 
downstream node of each edge. However, survey sites can fall anywhere along an edge. The 
Calculate > Watershed Attributes tool enables watershed attributes to be estimated for any site 
that has been incorporated into the LSN. 

Streamcat data is presented in watershed area. We have provided 3 columns at the end that are 
site specific.  

To convert attributes to a percentage simply divide it by the total watershed area at the site and 
then multiply it by 100 to get the percentage. 

Go to STARS > Calculate > Watershed Attributes. This will open the Watershed Attributes 
window.  

1. Set the argument values.  
2. Watershed attributes may be calculated for multiple site feature classes simultaneously 

(i.e., observed and prediction sites).  
3. The Edge Watershed Attribute Name must be an accumulated field found in the edges 

attribute table.  
4. The Edge RCA Attribute Name should be the RCA field that was accumulated to produce 

the Edge Watershed Attribute Name field.  

If the program finishes without errors, a green message will appear: Program finished 
successfully. A new field will be added to the sites attribute table that contains the watershed 
attribute for each site. If the tool is run separately for multiple sites feature classes (i.e., observed 
and then later prediction sites), ensure that the New Site Watershed Attribute Name is identical 
in all of the feature classes. 

Calculate upstream distance 

Calculate Upstream Distance – Edges  

1. Double click on STARS > Calculate > Upstream Distance - Edges. This will open the 
Upstream Distance – Edges window.  

2. Set the Edges Feature Class argument, select the Shape_Length attribute from the 
dropdown list, and click OK.  
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You should see a green message Program finished successfully. In addition, a new field should 
appear in the edges attribute table named upDist.  

Calculate Upstream Distance – Sites  

1. Double click on STARS > Calculate > Upstream Distance - Sites. This will open the 
Upstream Distance – Sites window.  

2. Set the arguments and click OK.  

If no errors occurred, a green message, Program finished successfully, will appear. 

Note: The upDist attribute must be present in the edges attribute table before the Upstream 
Distance – Sites tool can run. 

Calculate Segment Proportional Influence 

1. Calculate the watershed area for each edge in the LSN using the STARS > Calculate > 
Accumulate Values Downstream tool (see section 12 for instructions). Set ‘Field to 
Accumulate’ to rcaAreaKm2 and name the new field ‘h2oAreaKm2’.  

2. Double click on the STARS > Calculate > Segment PI  
3. Set the arguments (below) and click OK.  

A green message will appear, Program finished successfully, if it runs without errors.  

This tool adds a new field to the edges attribute table that contains the segment PI values. In this 
example, it is named areaPI.  

If any PI values are greater than 1, then an error has occurred, and the segment PIs should be 
recalculated. 

4. Check the areaPI field to ensure that values range between 0 and 1. 
5. Open the edges attribute table, right click on the areaPI field, scroll down and select 

Statistics. This will open the Statistics of edges window, which contains summary statistics for 
the areaPI field. 

6. Examine the minimum and maximum values to ensure that they range between 0 and 1. 

Calculate Additive Function 

Calculate Additive Function – Edges  

1. Go to STARS > Calculate > Additive Function - Edges. This will open the Calculate 
Additive Function - Edges tool.  

2. Set the arguments and click OK.  

If the script runs without errors, a green message will appear: Finished Get Additive Function 
Script.  

Calculate Additive Function - Sites  
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1. Go to STARS > Calculate > Additive Function - Sites. This will open the Calculate 
Additive Function - Sites tool.  

2. Set the arguments and click OK.  

When the tool finishes running, a green message should appear: Finished Additive Function 
Script.  

The Additive Function tools create new fields in both the sites and edges attribute table 
representing the AFV values. The AFV is a product of proportions (segment PI values) and so 
the AFV should always range between 0 and 1. Check to ensure that this is the case. 

Create the SSN object 

The purpose of the Create SSN Object tool is to reformat the LSN as a Spatial Stream Network 
(.ssn) object. The .ssn object represents the spatial data and the topology of the network in a 
format that can be easily accessed and efficiently stored and analyzed in R statistical software 
using the SSN package. 

The .ssn object contains the spatial, attribute, and topological information of the LSN. It always 
contains at least two shapefiles edges and sites, as well as multiple text files containing the edge 
binary IDs.  

To create an .ssn object:  

1. Double click on STARS > Export > Create SSN Object. This will open the Create SSN 
Object tool.  

2. Set the parameters and click OK.  

The tool can be run with the "StationID" as the Site ID Field.  

The Create SSN Object tool may take a while to run depending on the number of edges and sites 
in the LSN. When the tool has finished successfully, a green message, Successfully Finished 
Create SSN Object Script, will appear. An .ssn object will also be created in the same directory 
as the LSN used to create it. 

 

Creating a model with your SSN in R 

Once you’ve created an SSN object in ArcGIS, you can import it into R and use it to develop 
models that predict CSCI scores or other variables you included in your sites data set. Currently, 
the SSN package in R supports the development of generalized linear models (GLMs); more 
complex models (such as generalized additive models) are not currently supported. 

Before you begin 

The structure of SSN objects is very complex, so it is difficult to modify the data at this point. If 
you want to add new variables or experiment with transformations of the data, it is probably 
simpler to create a new SSN object by repeating the steps above than to modify one you’ve 
already created. 
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Software requirements 

• R version 3.5 or later (https://cran.r-project.org/) 
• SSN package for R, version 1.1.6 or later (https://cran.r-project.org/) 
• R studio (recommended) (https://rstudio.com/) 

Import the SSN object 

To import an SSN object, you must use the importSSN() function and specify the path name. At 
the same time, you can import the prediction points as well with the predpts argument. 

mySSN<-importSSN("P:/AbelSantana/Raph/LSN.ssn", 
predpts="sitesPP") 

This step may take a few minutes, particularly for large or complex SSNs. 

Optional: Visualize spatial variability by creating torgegram 

Spatial variability can be explored by examining pairs of sites with observed data, plotting 
variability on the y-axis and distance separating the sites on the x-axis. These types of graphs are 
called variograms, and when they are applied to SSNs, they are called torgegrams (Figure 13). 
Examining a variogram or torgegram can give a sense of whether spatial persistence is high (i.e., 
sites are similar, even when far apart) is low (i.e., sites differ greatly, even when close together). 

Use the Torgegram() function to create a torgegram: 

myTorg<-Torgegram(object=mySSN, ResponseName="CSCI") 

where object is the SSN object, and ResponseName is the name of the variable you want to 
predict. 

You can visualize the torgegram with the plot() function: 

plot(myTorg) 

https://cran.r-project.org/
https://cran.r-project.org/
https://rstudio.com/
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Figure 16. Torgegram showing how semivariance of CSCI scores relate to stream distance in the 
Santa Clara watershed. Dots show the mean standard deviations of CSCI scores between pairs of 
points separated by distances shown on the x-axis. The size of the dot is proportional to the 
number of pairs of sites used in the calculation. Green dots show pairs of sites not connected by 
flow (e.g., two sites on adjacent tributaries above a confluence), and blue dots show flow-
connected pairs (e.g., sites that are up- or downstream of each other). 

 

The semivariance (i.e., the standard deviation between pairs of sites) is plotted separately for 
flow-connected sites (blue dots) and for flow-unconnected sites (green dots); the size of the dot 
corresponds to the numbers of pairs used to calculate the standard deviation. 

Calibrating the model 

There are many ways to calibrate a model and determine the best combination of predictor 
variables for optimizing model performance. Whatever approach you use, it is generally easier to 
first select the best non-spatial model, then improve it by adding spatial components. The SSN 
package has a built-in function called InfoCritCompare() to facilitate comparisons among 
several models based on a variety of factors, such as the Akaike Information Criterion (AIC). We 
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will walk through examples of how to use this function to select the best non-spatial model, and 
then compare it to equivalent spatial models. 

In this example, we consider three environmental factors to predict CSCI scores: 

• PctImp20_1: The % imperviousness in the watershed from 2011 NLCD data. 
• NvE: The status of the channel (natural vs. engineered) 
• NvSH: The status of the channel (natural vs. soft-bottom vs. hard-bottom) 

Calibrate a non-spatial model 

We use the glmssn() function to create non-spatial models based on each of these predictors, 
one at a time: 

glmssn.imp<-glmssn(CSCI~PctImp20_1, mySSN, CorModels = NULL, 
EstMeth ="REML") 

glmssn.nve<-glmssn(CSCI~NvE, mySSN, CorModels = NULL, EstMeth 
="REML") 

glmssn.nvsh<-glmssn(CSCI~NvSH, mySSN, CorModels = NULL, EstMeth 
="REML") 

Model formulas are specified using standard R notation, with the dependent variable (CSCI) to 
the left of the tilde, and the independent variables to the right. By specifying CorModels = 
NULL, the resulting model has no spatial component. By specifying EstMeth ="REML", all 
estimates are based on restricted maximum likelihood. 

We can also use standard formulas to specify two-term models to account for both land cover 
and channel engineering.  

glmssn.nve_imp<-glmssn(CSCI~NvE + PctImp20_1, mySSN, CorModels = 
NULL, EstMeth ="REML") 

glmssn.nvsh_imp<-glmssn(CSCI~NvSH + PctImp20_1, mySSN, CorModels 
= NULL, EstMeth ="REML") 

If we believe that land cover and channel engineering have a combined impact, we can also 
specify interaction terms: 

glmssn.nve_i_imp<-glmssn(CSCI~NvE * PctImp20_1, mySSN, CorModels 
= NULL, EstMeth ="REML") 

glmssn.nvsh_i_imp<-glmssn(CSCI~NvSH * PctImp20_1, mySSN, 
CorModels = NULL, EstMeth ="REML") 

To compare all these models, first combine them into a list: 

list.mods_nonspatial<-list(glmssn.imp, 

             glmssn.nve, 
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             glmssn.nvsh, 

             glmssn.nve_imp, 

             glmssn.nvsh_imp, 

             glmssn.nve_i_imp, 

             glmssn.nvsh_i_imp) 

 

Then use the InfoCritCompare() function: 

infocrit_nonspatial <- InfoCritCompare(list.mods_nonspatial) 

 

Several useful model evaluation metrics are included in this object, a few of which are described 
here. 

Akaike’s Information Criterion (AIC) is a widely used measure of quality for statistical 
model that quantifies the amount of information provided by a model, penalized by its 
complexity (i.e., the number of predictors). The lower the number indicates the more 
informative model. In the example shown above, the model in the 6th row (i.e., the one 
based on an interaction between percent imperviousness and a two-state classification of 
channel engineering) is best. 

Bias is a measure of how different predicted CSCI scores are from observed scores, 
averaged across observations. Ideally, bias is close to zero. Bias is very low in all 
examples shown above.  

Root Mean Square Prediction Error (RMSPE) is a measure of error in predictions. Lower 
values are better. Again, the model in the 6th row is best, although the 5th row is close 
behind. 

cov.80, cov.90, and cov.95 are measures of how frequently observed values were within 
the 80th, 90th, or 95th prediction intervals, respectively. Ideally, these proportions should 
be close to 0.8, 0.9, or 0.95, respectively.  
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When selecting a final model, consider a number of selection criteria, as well as other factors, 
such as the interpretability or ease of calculation of the selected predictors. 

Based on these criteria, we identify the best non-spatial model as the one based on an interaction 
between percent imperviousness and a two-state classification of channel engineering: 

CSCI ~ NvE * PctImp20_1 

Create spatial versions of the selected non-spatial model 

The glmssn() function can now be used to calibrate models that include a spatial component. 
There are two major factors to consider when calibrating an SSN model. 

1. What spatial components do you want to use? 
There are three spatial components that can be included in an SSN model: Euclidean, tail-
up, and tail-down. Euclidean components describe overland “as the crow flies” distances 
between sites. Tail-up components describe flow-connected distances from downstream 
sites to upstream sites within a network. Tail-down components describe flow-connected 
and flow-unconnected distances among sites within a network. Because CSCI scores are 
based on benthic macroinvertebrates, which can disperse upstream, downstream, and 
overland, it makes sense to consider all three components as a starting point.  

2. What function should be used to approximate these components? 
The SSN package includes many options for approximating these components, but in 
general, we recommend using one of two simpler functions: spherical functions (which 
are appropriate when spatial persistence declines gradually with distance), and 
exponential functions (which are appropriate when spatial persistence declines abruptly 
with distance). 

As a general recommendation, we suggest including all three spatial components with 
exponential functions as a starting point and exploring other combinations as-needed. 

Calibrate models using the same glmssn() function, but this time, specify spatial components 
and functions: 

glmssn.nve_i_imp_etu.etd.eeu<- 
glmssn(CSCI~NvE * PctImp20_1, mySSN,  

CorModels = c("Exponential.tailup", "Exponential.taildown", 
"Exponential.Euclid"), 

EstMeth ="REML", 
addfunccol="afvArea")  

In this example, the three spatial components are specified with the CorModels argument. 
Whenever a tail-up component is included, you also need to use the addfuncol argument to 
specify which variable to use to define spatial weights; typically, these weights are based on 
area, meaning that the variable is called afvArea, if the LSN is created as described above. 

Use the InfoCritCompare() function to compare the spatial model and non-spatial model. In 
this example, we create a model that includes the same predictors we selected before, plus 
Euclidean and a tail-down spatial components. Then, we compare the two models: 
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> glmssn.nve_i_imp_etd.eeu<-glmssn(CSCI~NvE * PctImp20_1, mySSN, CorModels = c("E
xponential.taildown","Exponential.Euclid"), EstMeth ="REML", addfunccol="afvArea"
) 
> InfoCritCompare(list(glmssn.nve_i_imp,glmssn.nve_i_imp_etd.eeu)) 
                  formula EstMethod 
1 CSCI ~ NvE * PctImp20_1      REML 
2 CSCI ~ NvE * PctImp20_1      REML 
                                 Variance_Components  neg2LogL       AIC 
1                                             Nugget -212.6763 -210.6763 
2 Exponential.taildown + Exponential.Euclid + Nugget -376.3207 -366.3207 
           bias      std.bias     RMSPE       RAV std.MSPE    cov.80    cov.90 
1 -0.0002853227 -0.0005102794 0.1751214 0.1750937 1.000155 0.8016529 0.9146006 
2  0.0003789994  0.0007441929 0.1308863 0.1301758 1.001969 0.8099174 0.9090909 
     cov.95 
1 0.9586777 
2 0.9559229 
 

The spatial model is considerably improved over the non-spatial version by most measures, 
particularly its greatly reduced AIC and RMSPE. 

Save the best model in your working directory: 

best.mod<-glmssn.nve_i_imp_etd.eeu 
save(best.mod, file="best.model.Rdata") 

Troubleshooting 

If you were unable to remove or address all topological errors in the stream network, the 
resulting SSN object may contain asymmetrical distance matrices, which may prevent you from 
creating models with a tail-up component. In these cases, you will receive an error as follows: 

> glmssn.nve_i_imp_etu<-glmssn(CSCI~NvE * PctImp20_1, mySSN, CorModels 
= c("Exponential.tailup"), EstMeth ="REML", addfunccol="afvArea") 
Error in fn(par, ...) : covariance matrix is not positive definite 

You can either go back to the stream network and correct the topological errors (perhaps even by 
excluding the problematic segments from the analysis), or proceed without a tail-up spatial 
component (e.g., simply include Euclidean and tail-down components). The latter solution may 
be the most expedient way forward. 

Getting useful info out of your model 

Estimating variance components 

Analyzing variance components can help determine the relative usefulness in predicting CSCI 
scores from spatial vs. non-spatial information. The varcomp() function is an easy way to access 
this information: 
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> varcomp(best.mod) 
               VarComp  Proportion 
1    Covariates (R-sq) 0.009826274 
2 Exponential.taildown 0.128202814 
3   Exponential.Euclid 0.670901807 
4               Nugget 0.191069104 

 

Environmental factors are represented in the first rows, labeled “Covariates”. In this example, 
information about landscape and channel structure provided only a small marginal benefit to 
predicting CSCI scores, compared to information about CSCI scores at nearby sites. The small 
variance component associated with covariates is typical of spatial models in environmental 
sciences. 

Making Predictions 

The predict() function can estimate CSCI scores (along with their standard errors): 

my.preds_spatial<-predict(best.mod, predpointsID="sitesPP") 

To extract these predictions for plotting in ArcGIS or other programs, use the following code: 

my.preds_spatial.df<-
cbind(getSSNdata.frame(my.preds_spatial,"sitesPP"), 
as.data.frame(mySSN@predpoints@SSNPoints[[1]]@point.coords)) 

You can just as easily generate predictions from the non-spatial models: 

my.preds_nonspatial<-predict(best.nonspatial.mod, 
predpointsID="sitesPP")  

my.preds_nonspatial.df<-
cbind(getSSNdata.frame(my.preds_nonspatial,"sitesPP"), 
as.data.frame(mySSN@predpoints@SSNPoints[[1]]@point.coords)) 

At this point, it may be useful to classify prediction-points based on the predicted CSCI score 
(e.g., greater than 0.79 vs. lower) or standard error (e.g., high vs low precision): 

my.preds_spatial.df$CSCI_class<-
ifelse(my.preds_spatial.df$CSCI<0.79, "poor score","good 
score") 

my.preds_spatial.df$Precision<-
ifelse(my.preds_spatial.df$CSCI_se<0.15, "high 
precision","low precision") 

You can export this dataframe with the read.csv() function and import it into ArcGIS to make 
a map. The coordinates are in the original projection of the spatial features used to create the 
LSN (e.g., UTM11, a typical projection for California).  
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Creating a map 

Open a new session of ArcGIS, and load these files (Figure 14): 

• The final modified NSI file or the edges feature in the LSN database. 
• The prediction points, with predictions and standard errors as a points shapefile 

 

Figure 17. Example ArcGIS workspace showing NSI flowlines and points with CSCI predictions for 
the Santa Clara watershed. 

 

Use the Data Management Tools > Feature Class > Integrate tool. 

Add the two shapefiles as inputs, and set the XY tolerance to 1 meter (Figure 15): 
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Figure 18. Set-up for the "Integrate" tool. 

 

Use the Data Management Tools > Features > Split Line at Point tool.  

Enter the NSI layer for the Input Features, and the prediction points for the Point Features. For 
Search Radius, enter 1 meter (Figure 16). 

Because you have split each line up, it may be good to create a new field indicating the line 
length using the “Calculate Geometry” tool. 
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Figure 19. Set-up for the "Split Line at Point" tool. 

 

Use the Analysis Tools > Overlay > Spatial Join tool. 

Enter the newly split line layer for the Target Features, and the prediction points for the Join 
Features. Join Operation should be JOIN_ONE_TO_ONE, and “Keep All Target Features” 
should be checked. You can select the specific fields you want, or include all of them. Set Match 
Option to “INTERSECT” and “Search Radius” to 1 m—do not leave this blank! (Figure 17) 
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Figure 20. Set-up for the "Spatial Join" tool. 

 

The resulting shapefile should have CSCI predictions and standard errors associated with each 
segment of the NSI (Figure 18). 
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Figure 21. Example output showing flowlines updated with predicted CSCI scores. 

 


	1143_ SpatialStatisticalNetworks(SSNs)ForCalWatersheds150dpi
	CASQA SSN SOP_v6_edited_rdm
	Acknowledgements
	Executive Summary
	Lessons from the case studies

	Table of Contents
	Introduction
	Background and purpose
	Why would you want an SSN?
	Four California case studies
	Summary of the data
	Ventura County
	Los Angeles County
	Santa Clara County
	Alameda County


	Cited Literature
	Appendix: A guide to creating Spatial Statistical Network (SSN) models for bioassessment data in California watersheds
	Who is this guide for?
	Getting started
	What software do you need?
	Data requirements
	A shapefile representing the network: The National Stream Internet (NSI)
	Observed data with location information
	Landcover information
	Channel engineering information


	Creating an SSN
	Reviewing your input data for adequacy
	Installing STARS package
	Data pre-processing
	Creating a Landscape Network (LSN) in ArcGIS
	Create the LSN
	Review and correct topological errors
	Generate prediction points
	Incorporate points with observations into the LSN
	Calculate watershed attributes
	Calculate upstream distance
	Calculate Segment Proportional Influence
	Calculate Additive Function
	Create the SSN object


	Creating a model with your SSN in R
	Before you begin
	Software requirements
	Import the SSN object
	Optional: Visualize spatial variability by creating torgegram
	Calibrating the model
	Calibrate a non-spatial model
	Create spatial versions of the selected non-spatial model


	Troubleshooting
	Getting useful info out of your model
	Estimating variance components
	Making Predictions
	Creating a map




