

Bundesinstitut für Risikobewertung

Uptake of orally ingested polystyrene microplastic particles *in vitro* and *in vivo*

Valerie Stock

Junior Research Group Nanotoxicology, German Federal Institute for Risk Assessment

Latest developments

Plastics and microplastics

Uptake and effects of microplastics following ingestion

Study design

Caco-2 based transwell systems

Study design

Caco-2 based transwell systems

Polystyrene, 1 µm, 4 µm, 10 µm

- \rightarrow Size comparison
- \rightarrow model comparison

Polystyrene, 1 µm, 4 µm, 10 µm

- \rightarrow Size comparison
- \rightarrow model comparison

Polystyrene, 1 µm, 4 µm, 10 µm

- \rightarrow Size comparison
- \rightarrow model comparison
- \rightarrow In vivo experiment
- \rightarrow cellular effects

- \rightarrow Size comparison
- \rightarrow model comparison
- \rightarrow In vivo experiment
- \rightarrow cellular effects

- \rightarrow Size comparison
- \rightarrow model comparison
- \rightarrow In vivo experiment
- \rightarrow cellular effects

→ Material comparison

In vitro uptake - transwell experiments

Incubation with high, non-toxic particle concentrations, 24 h

What is the absorption/transport rate of microplastic particles *in vitro*? Is there a size or material dependence?

Page 12 **Tr BfR**

In vitro uptake - transwell experiments with PS

□ on top of cells □ inside cells

Uptake

In vitro uptake - transwell experiments with PE, PP, PET and PVC

□ on top of cells □ inside cells

Uptake

In vitro uptake and transport - transwell experiments

In vivo study

Treatment	Dose [3 x/week]	Number of mice
0.5% (w/v) carboxymethyl cellulose		
(vehicle)		5
Mixture of		
1 µm	4.55 x 10 ⁷ particles	
4 µm	4.55 x 10 ⁷ particles	5
10 µm	1.49 x 10 ⁶ particles	
polystyrene	-	

In vivo study - uptake

Jejunum

 \rightarrow Very low particle burden

 \rightarrow Only 1 µm particles were taken up

 \rightarrow Uptake limited to the intestine, no particles in other organs

In vivo study - uptake

\rightarrow No indication of oxidative stress

Microplastics Health Effects Workshop, 09.11.2020

Page 19 **Fr BfR**

Summary

- In vitro:
- Particle uptake increases by use of more complex intestinal models and may be material-dependent
- Low particle transport
- Particle uptake and transport are not strictly size-dependent, but rather depend on the combination of cell culture model, particle size and material
- In vivo:
- Extremely low particle absorption into intestinal cells
- no particle transport to other organs
- No indications of oxidative stress

Conclusions

- In vitro intestinal barrier models overestimate particle uptake, but can be used for a hazard ranking
- In vivo uptake of PS microplastic particles is extremely low
 → future studies should rather concentrate on nanoplastic particles or other plastic materials

Bundesinstitut für Risikobewertung

Thank you for your attention

Valerie Stock

Cellular effects - apoptosis

INTRINSIC APOPTOSIS

Page 23

Cellular effects - cytotoxicity

Microplastics Health Effects Workshop, 09.11.2020

Cellular effects – apoptosis: Caspase-3 activity

Microplastics Health Effects Workshop, 09.11.2020

Cellular effects – apoptosis: Caspase-8 and -9 activity

Cellular effects – lysosomal acidification

Cellular effects – uptake

Cellular effects - apoptosis

INTRINSIC APOPTOSIS

Page 29 **The BfR**

PS4

PS10

PS1

