The ways in which microplastics can impact organisms in the ambient environment

Ocean Conservancy

Chelsea M. Rochman Assistant Professor, University of Toronto

Contamination is widespread

Courtene-Jones et al., 2017 Environ Pollut

Peeken et al., 2018 Nature Communications

Contamination is widespread

Tosetto et al., 2017

Contamination is widespread

915 particles - Munno et al., in review

3850 particles - Maes et al., 2020

What are the effects of microplastics in ambient environments?

Fate of microplastics

Provencher, Ammendolia, Rochman & Mallory 2018, Environmental Reviews

Modes of Impact: Physical

Mice: Deng et al., 2017 Scientific Reports

Fish: Bucci et al., in review ES&T

0.03

Modes of Impact: Chemical (plastic-specific)

Figure 6. Fathead minnows exposed to the leachates from the CO_2 experiments at 600 ppm a) control; b) Tire 1; c) Tire 2. The black bar represents 1 mm.

Kolomijeca et al., 2020 ES&T

Kim et al., 2020 ES&T

Modes of Impact: Chemical (ambient)

Number of deformities (n=5, 20 fish per replicate tank)

PE	Scoliosis	Edema	Hatch	Tail	Other	Total
Control	0	0	0	0	0	0
Chem-Low	0	0	0	0	0	0
Chem-High	0	1	0	0	0	1
Phys-Low	0	0	0	0	0	0
Phys-High	0	3	0	0	0	3
PP						
Control	0	2	0	0	0	2
Chem-Low	0	0	0	0	0	0
Chem-High	0	1	0	0	0	1
Phys-Low	1	1	1	0	0	3
Phys-High	0	0	0	0	0	0

LO						
Control	0	1	0	0	0	1
Chem-Low	1	4	1	1	0	7
Chem-High	0	5	0	0	1	6
Phys-Low	1	2	1	2	0	6
Phys-High	1	11	2	1	0	15

Bucci et al., in review: ES&T

Rochman et al., 2013, Scientific Reports

Adams et al. 1989

Multiple Scales

of Papers with: Plastic and (pollution or debris) 2010 - 2020 2010 - 2020 2000 - 2010 2000 - 2010 1990 - 2000 1990 - 2000 1980 - 1990 1980 - 1990 1970 - 1980 1970 - 1980 1960 - 1970 1960 - 1970 1950 - 1960

4000

5000

0

1000

2000

3000

of Papers with: microplastic

Ecological Applications, 0(0), 2020, e02044 © 2019 by the Ecological Society of America

What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review

K. BUCCI, M. TULIO, AND C. M. ROCHMAN¹

Department of Ecology and Evolutionary Biology, University of Toronto-St. George Campus, Toronto, Ontario M5S3B2 Canada

Citation: Bucci, K., M. Tulio, C. M. Rochman. 2019. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecological Applications 00(00):e02044. 10.1002/ eap.2044

Assemblage 14

Species 13

Population 12

Organism 11

Organ System 10

Organ 9

Tissue 8

Cell 7

Organelle 6

Molecular Assemblies 5

Macromolecules 4

Small Molecules 3

Atoms 2

nm

μm

Subatomic Particles 1

Impacts described were grouped by size of debris and level of biological organization.

mm cm

m

km

Update with the literature through November 26th, 2017

Kennedy Bucci

Matthew Tulio

The Evidence Demonstrating Impacts to aquatic biota is Growing

Level of biological organization

Size of debris Bucci, Tulio & Rochman, et al. 2020 *Ecological Applications*

Through 2013

Through 2017

Effect was Tested And Demonstrated

Level of biological organization

Effect Detected vs Not Detected

Bucci, Tulio & Rochman, et al. 2020 Ecological Applications

What makes an effect detected vs not detected?

- dose
- shape of microplastic
- type of microplastic
- taxa
- size of microplastic
 experimental design

Concentration (particles/mL; log transformed)

The known and unknowns about the effects of plastic pollution on wildlife

Study	Organism	Effect	Plastic Type	Size	Length of Exposure	Shape	LC50 Concentration
Ogonowski et al., 2016	Daphnia Magna	Death	Unknown (from Cospheric)	4 µm	14 d	Sphere	1 M particles/mL
Au et al., 2015	Hyalella azteca	Death	PP	20- 74μm	10 d	Fiber	46,400 particles/mL
n neondolaeon a transmission	Hvalella azteca	Death	PE	10- 27μm	10 d	Fragment	71.43 particle/mL
Frydkeiar et al., 2017	Daphnia magna	Immobilization	PE	10- 75μm	48 h	Fragment	65 mg/L
Ziajahromi et al., 2017	Ceriodaphnia dubia	Death	PE	1-4µm	48 h	Sphere	2.2 mg/L
	Ceriodaphnia dubia	Death	PE	1-4µm	48 h	Fiber	1.5 mg/L
Rehse et al., 2016	Daphnia magna	Immobilization	PE	lμm	96 h	Sphere	57.42 mg/L
Kim et al., 2017	Daphnia magna	Immobilization	PS	200nm	48 h	Sphere	0.04 mg/L

In Summary:

- There are a lot more studies testing hypotheses about the effects of plastics on organisms.
 - This includes studies testing effects at higher levels of organization.
- For large plastic debris, there is no doubt that plastic harms wildlife. For microplastics, there is evidence that it can cause harm, but when and how is complicated and further work is needed to understand this.
- We need more studies testing hypotheses about microplastics:
 - That recognize their complexity
 - In freshwater and terrestrial environments
 - That help us understand the environmentally relevant effects: more field studies, using relevant concentrations and sizes (includes better measurement in nature)

Thank you!

