

Findings from the Microplastics in Drinking Water Workgroup Health Effects Report-Out Webinar September 8th, 2021

Scott Coffin, Ph.D. California State Water Resources Control Board

^ohoto: Getty

Senate Bill 1422 Implementation

Dates subject to change

Two Goals of Workgroup:

1. Develop framework for health-based guidance level

- How many values?
- For what purposes?

2. Develop appropriate health-based guidance level(s)

Develop framework for developing health-based guidance level(s)

Success!

Develop Health-Based Guidance Level

(if appropriate)

Quality of data did not allow us to develop guidance level for *regulatory purposes*, however we were able to determine appropriate sampling volume and make recommendations for more studies

<u>Goal 1:</u> Develop Framework

Emerging Contaminant Health-Based Guidance Levels

Noti

≥Health-

Advisory Level	Highest Concern Water advisory notice (e.g. public notice for limited use)
Site/situation specific	Elevated Concern Mitigation strategies recommended
Response Level ◄ ≥ 1x10 ⁻⁴ Cancer Risk ≥ ≥ 10x Notification Level ■	Moderate Concern Monitoring of potential sources, public notification may be issued
fication Level x10 ⁻⁶ Cancer Risk Protective Concentration	Low Concern Monitoring to assess aqueous levels and sources of contamination
nvestigatory Level ৰ	No Concern No action required
	Possible Concern Targeted, investigatory monitoring No responses required

Identify necessary toxicity studies

Re-evaluate thresholds

<u>Goal 2:</u> Develop Health-Based Guidance Levels

(if appropriate)

Three classes of problems

- 1. Effects database inadequate
 - generally poor particle characterization
 - often too few doses
 - limited polymers, shapes, sizes tested
 - few endpoints tested
- 2. Effect Mechanisms Unknown
 - necessary for extrapolation to diverse particle types
- 3. Incomplete exposure data
 - limited information on food, inhalation
 - no information on California drinking water

Values we DID derive

- 1. Recommended concentrations for toxicity studies
 - experiments done at very high concentrations
 - sensitive lower concentrations identified

2. Water volume for monitoring

- vital for exposure characterization in drinking water
- Too much = expensive
- Too little = miss critical concentrations

<u>Framework</u>

1. Hazard Identification

- a. Screening & prioritization
- b. Identify effects

2. Dose-response Assessment

- a. Benchmark dose modelling
- b. Physiological based particokinetic modelling
- c. Uncertainty adjustment

3. Exposure Characterization

- a. Biomonitoring
- b. Concentrations in exposure media
- 4. Risk Characterization
 - a. Data alignment

Completed
 High uncertainties
 Missing Data

Screening and Prioritization Results Relevant Microplastics Hazard Studies (n = 29)Particle **Experimental** Characterization Design **Risk Assessment** Applicability Fit for purpose studies (n = 12)

Screening and Prioritization Results

Endpoints Deemed Reliable by Experts

Effect Mechanisms Poorly Understood

Some Commonly observed mechanisms

- Reactive oxygen species
- Oxidative stress
- Inflammation
- Cell death
- Lipid metabolism
- Energy metabolism

<u>Framework</u>

- **1. Hazard Identification**
 - a. Screening & prioritizationb. Identify effects

2. Dose-response Assessment

- a. Benchmark dose modelling
- b. Physiological based particokinetic modelling
- c. Uncertainty adjustment

3. Exposure Characterization

- a. Biomonitoring
- b. Concentrations in exposure media
- 4. Risk Characterization
 - a. Data alignment

Completed High uncertainties Missing Data

Dose-Response Assessment Results

Rodent to Human Uncertainty Adjustments

Reference Dose
$$\left(\frac{mg}{kg - day}\right) = \frac{Point of departure}{\frac{mg}{kg - day}}$$

Critical effect based on male reproductive toxicity

<u>Framework</u>

- 1. Hazard Identification
 - a. Screening & prioritization
 - b. Identify effects

2. Dose-response Assessment

- a. Benchmark dose modelling
- b. Physiological based particokinetic modelling
- c. Uncertainty adjustment

3. Exposure Characterization

- a. Biomonitoring
- b. Concentrations in exposure media
- 4. Risk Characterization
 - a. Data alignment

Completed
High uncertainties
Missing Data

Incomplete Assessment of Concentrations

in Exposure Media

- Limited food and inhalation data
- Non-standardized methods used for existing data
- No California-specific data

Default assumption: 20% contribution from drinking water

<u>Framework</u>

- 1. Hazard Identification
 - a. Screening & prioritization
 - b. Identify effects

2. Dose-response Assessment

- a. Benchmark dose modelling
- b. Physiological based particokinetic modelling
- c. Uncertainty adjustment

3. Exposure Characterization

- a. Biomonitoring
- b. Concentrations in exposure media

4. Risk Characterization

a. Data alignment

Completed High uncertainties Missing Data

Non-Regulatory Screening Level Derivation

Non-regulatory Reference Dose: 1.7 ng/kg-day*

Relative source contribution (RSC) from drinking water: 20%

California drinking water intake (DWI): 0.053 L/kg-day (70-yr lifetime weighted average)

Non-regulatory Drinking Water Screening Level: 6.4 ng/L*

*based on 5 μm PS spheres

Relating Effects Studies to Exposures

Environmental Microplastics

Effect Studies

Aligned data using methods in Kooi et al (2021), Water Research

Aligned Drinking Water Screening Levels

		TRM Alignments (1 – 5,000 μm)			
size (um)	<i>Unaligned</i> mass Concentration (ng/L)	Mass (particles/L)	Surface Area (particles/L)	Volume (particles/L)	Specific Surface Area (particles/L)
5	6.4	318	257	686	1.2
20	2,550	126,000	25,500	272,000	1.8

Non-regulatory Drinking Water Screening Level

Alignments performed according to Kooi et al (2021), Water Research

Method Inter-laboratory Validation Study

Method Limit of Quantification: ~3,000 particles

FTIR Raman Spectroscopy Spectroscopy

Sampling Volume for Monitoring

$\frac{3,000 \text{ particles}}{1 \text{ particles/L}} = 3,000 \text{ liters}$

1,000 liters suggested for drinking water based on representativeness (Koelmans et al, *Water Research* 2019)

Rapidly Changing Science

Recommendations For Hazard Experiments

- 1. Study diversity of endpoints and organs
- 2. Use \geq 3 exposure concentrations
- 3. Use realistic exposures (shape, size, polymer)
- 4. Characterize particles

Recommended concentrations for toxicity studies

		Concentration
Size (um)	Endpoint	(ug/kg-day)
0.04	Reproduction	100
0.5	Reproduction	25
5	Body Condition	2
5	Reproduction	43
20	Body Condition	675

1. Screening level informs monitoring

2. Values derived not recommended for regulations

3. Funding needed for hazard studies