Establishing Environmental Flows for the Los Angeles River

Technical Advisory Committee Special Webinar December 18, 2020

LA River's Changing Water Use Practices

What are the potential impacts (+ or -) to existing and potential future instream beneficial uses in the Los Angeles River caused by reductions of wastewater treatment plant discharges and/or stormwater capture?

LA River Environmental Flows Project Goals

- 1. Develop technical tools that quantify the relationship between various flow regimes and the extent to which aquatic life and non-aquatic life beneficial uses are achieved
- 2. Engage affected parties to reach consensus about appropriate flow needs and optimal allocation of flow reduction allowances from multiple wastewater reclamation plants, in consideration of other proposed flow management actions
- 3. Evaluate various flow management scenarios in terms of their effect on uses in the LA River

 Support the State Water Resource Control Board's decision-making under Water Code Section 1211.

Anticipated Products and Outcomes

Products

- Process for establishing flow criteria
- Application of process to develop potential flow criteria for LA River
- Tools to evaluate management scenarios necessary to achieve criteria

Outcomes

 Determination of beneficial use attainment

- Implementation plan/strategy
 - Monitoring
 - Adaptive management

 Roadmap for application to other areas

Summary of Coordination and Outreach

Year-long scoping process – 4 stakeholder meetings

Five previous TAC meetings since January 2019

Four stakeholder workgroup meetings

Two workshops on recreational uses

 Numerous briefings and presentations to community groups and associated LA River programs

Today's Objectives and Agenda

Meeting Objectives:

- Discuss approach for synthesizing flow recommendations
- Review sensitivity curve approach for scenario analysis
- Discuss how to incorporate analysis of stormwater capture

AGENDA

- Introductions and meeting goals 9:00 9:15
- Review major findings of baseline conditions report 9:15 9:45
- Discuss approach for developing overall flow recommendations 9:45 10:45
 - Synthesizing needs of different species/life stages
 - Preview of product for final recommendations
- Break 10:45 11:00
- Review sensitivity curves approach 11:00 11:45
 - Examples for evaluating reduced WRP discharge
 - Consideration of reduced stormdrain discharge and stormwater capture
- Wrap-up, action items and next steps 11:45 12:00

TAC Webinar #5: May 12, 2020

RECAP FROM LAST MEETING

Summary of May 2020 TAC Meeting

- Discussed overall goals of the analysis
 - Evaluate moderate-high probability of flows being able to support focal species
 - NOT to capture the entire range of potential conditions that could support focal species; more appropriate for a restoration planning
- Reviewed details of flow ecology analysis
- Solicited feedback from TAC on details of curve development
- Prepared a detailed response matrix distributed to the TAC

Key Recommendations

 Address within channel microhabitats explicitly or spatially interpolate between them

 Add details on any species curve/threshold validation and appropriate caveats and limitations of flow-ecology analysis

Update data on Santa Ana Sucker

Revisit thresholds for several species

Explore more complex models for Typha

Follow Up From TAC Meeting

Key updates to species habitat models:

- Removal of data from certain species curves
 - Santa Ana Sucker (depth & velocity models)
- Removal of Santa Ana Sucker (Spawning)
 - Due to data limitations
- Updates to species thresholds and curves
 - Steelhead
 - Santa Ana Sucker Fry
 - Adult Willow
 - Boundaries added to Santa Ana Sucker depth curves
 - Review Willow Seedling ~ Shear Stress

Details provided in species model section of presentation

Baseline Conditions Report - Current Status

- Hydrologic and biologic models are complete
- Current conditions report revisions nearly complete
- Developing preliminary flow recommendations and sensitivity curves

Thank you for your input!

Assessment of Aquatic Life Use Needs for the Los
Angeles River:

Los Angeles River Environmental Flows Project

Eric D. Stein¹, Jordyn Wolfand², Reza Abdi³, Katie Irving¹, Victoria Hennon³, Kris Taniguchi-Quan¹, Daniel Philippus³, Anna Tinoco², Ashley Rust³, Elizabeth Gallo³, Colin Bell³, Terri S. Hogue³

¹Southern California Coastal Water Research Project

²Shiley School of Engineering, University of Portland

³Civil and Environmental Engineering, Colorado School of Mines

Draft - October 15, 2020

Finalizing the Baseline Conditions Report

- Updated hydraulic analysis
- Update water quality figures based on model output
- Expanded temperature analysis along mainstem
- Clarified that models assume static upwelling vs. managing groundwater at specific level of discharge
- Updated and revised species occurrence curves
- Separated results for species/habitats between those that are currently supported vs. those that are not currently supported

Today's Meeting

- Review species curve development and thresholds
- Discuss approach for synthesizing flow recommendations
- Review sensitivity curve approach for scenario analysis
- Discuss how to incorporate analysis of stormwater capture

Summary from Baseline Report

RECAP OF HYDROLOGIC ANALYSIS

Analysis Domain

Hydrologic Model (SWMM)

- Discharge
- Continuous (Water Year 2011-2017)
- 115 Subcatchments
- 76 Nodes and Reaches
- 18 Key Reporting Nodes

Hydraulic Model (HEC-RAS)

- Velocity, Depth, Shear Stress
- Steady State
- 34 Output Nodes 18 Reporting Nodes
- >3000 Cross Sections

Temperature Model (i-Tree Cool River)

Study Focus

Coupled SWMM & HEC-RAS Model

^{*}Rating curves for main channel(s) and overbanks; does not capture edge water conditions

Functional Flow Metrics from State Env. Flows Framework

Flow Component	Flow Characteristic	Flow Metric	
Fall pulse flow	Magnitude (cfs)	Peak magnitude of fall season pulse event (maximum daily peak flow during event)	
	Timing (date)	Start date of fall pulse event	
	Duration (days)	Duration of fall pulse event (# of days start-end)	
	Magnitude (cfs)	Magnitude of wet season baseflows (10th and 50th percentile of daily flows within that season, including peak flow events)	
Wet-season base flows	Timing (date)	Start date of wet season	
pase nows	Duration (days)	Wet season baseflow duration (# of days from start of wet season to start of spring season)	
Peak flow	Magnitude (cfs)	Peak-flow magnitude (50%, 20%, 10% exceedance values of annual peak flow> 2, 5, and 10 year recurrence intervals)	
	Duration (days)	Duration of peak flows over wet season (cumulative number of days in which a given peak-flow recurrence interval is exceeded in a year).	
	Frequency	Frequency of peak flow events over wet season (number of times in which a given peak-flow recurrence interval is exceeded in a year).	
	Magnitude (cfs)	Spring peak magnitude (daily flow on start date of spring-flow period)	
Spring	Timing (date)	Start date of spring (date)	
recession flows	Duration (days)	Spring flow recession duration (# of days from start of spring to start of summer base flow period)	
	Rate of change (%)	Spring flow recession rate (Percent decrease per day over spring recession period)	
Dry-season base flows	Magnitude (cfs)	Base flow magnitude (50th and 90th percentile of daily flow within summer season, calculated on an annual basis)	
	Timing (date)	Summer timing (start date of summer)	
	Duration (days)	Summer flow duration (# of days from start of summer to start of wet season)	

www.ceff.ucdavis.edu

Sensitivity of Metrics to Reductions in WRP Discharge

Wet-Season Base Flow

Dry-Season Base Flow

Additional Analyses

More details in baseline conditions report:

- ✓ Verified soft-bottom channel cross sections
- ✓ Created hydraulic relationships
- Incorporating tidal reaches (in development)

Habitat Modeling

REVIEW OF SPECIES CURVE DEVELOPMENT

Objective: Develop Probability Relationships Based on Observed Species Life History Traits/Occurrences

Repeat this process:

- All species & habitats
- All life stages

Species & Habitats

Habitat	End member species	Description
	Santa Ana Sucker	Not currently present, but
Cold water habitat	Unarmored threespine stickleback	could potentially be in the future
Migration habitat	Steelhead/Rainbow trout	Currently, only designated for Reach 1, but could potentially occur in other reaches in the future. Overlays with other habitats
Wading shorebird habitat	Cladophora spp	Green algae to support prey of wading birds
Freshwater marsh habitat	Typha	
riesiiwatei iliaisii ilabitat	Duckweed	
Riparian habitat	Black Willow	
Warm water habitat	African clawed frog	Surrogate for invasive spp.
waim water nabitat	Mosquitofish	Habitat

- Not associated with currently designated beneficial uses
- Not currently observed in LA River

Overall Process

- 1. Data compilation for focal species habitat conditions
 - Primary and grey literature (surveys, experiments)
- 2. Species curves/thresholds created from appropriate models
 - Models dependent on data (e.g. probability distribution, linear regression)
- 3. Apply species model to hydraulic variables at each node
 - Use rating curve to define threshold of flow
- 4. Calculate amount of time each node is within flow thresholds
 - Estimate suitability of baseline conditions
- 5. Apply management scenarios to species curves

Species Curves & Thresholds

- Where possible curves were built to explain the relationship with habitat variable (e.g. Seedling ~ depth)
- In some cases, data limitations meant that thresholds were applied in place of curves (e.g. Migration)
 - Not as flexible as curves
 - But resulted in important species/life stage ~ habitat relationships being retained in the model
 - Thresholds were defined using habitat suitability reports and advice from TAC members

Habitat Modeling

ENDMEMBER SPECIES ASSOCIATED WITH CURRENT BENEFICIAL USES

Willow

Life Stages & Model Types

Life Stage	Habitat Variable	Model Component
Germination	Inundation/depth	Threshold
	Shear stress	Linear model
Seedling	Inundation/depth	Linear model with
		quadratic term
Adult	Stream Power	Threshold

Thresholds

Life Stage	Hydraulic Metri	c Value	Citation
Germination	Depth	> 5 cm (85-280 days)	Nakai and Kisanuki (2007)
Adult	Stream Power	< 4000 W/m ²	Bendix (1999)

Willow

Seedling

Pasquale et al (2004)

Colored datapoints show linear relationship annually

Tallent-Halsell and Walker 2002 Vandersande et al. 2001

Typha

Life Stage	Habitat Variable	Model Component
Seedling	Depth	Linear model with quadratic term
Adult patch	Depth	Linear model with quadratic term
	Velocity	Logistic regression

- Modelled with two species (*Typha latifolia* & *Typha domingensis*)
- Highest probability of seedling survival from
 10cm

Simple model retained

Typha

Asaeda et al (2005) Jones (2003) Grace & Wetzel (1981, 1982) Waters & Shay (1992a,b) Bjornn & Reiser (1991)

Depth: Both very dry and very wet conditions will reduce the probability of occurrence Velocity: Higher velocities reduce the probability of occurrence

Cladophora

Habitat Variable	Model Component
Depth	Linear model with quadratic term
Velocity	Logistic regression
Shear Stress	Upper limit = 16.9 Pa (Biggs and Thomsen 1995)

Cladophora

Biomass decreases with depth

Flynn et al (2020)

Probability of occurrence increases with velocity Shear stress threshold added in replace of an upper velocity limit

Habitat Modeling

ENDMEMBER SPECIES NOT ASSOCIATED WITH CURRENT BENEFICIAL USES

Santa Ana Sucker

Life Stages and Model Types

Life Stage	Hydraulic	Туре
Adult	Depth, Velocity	Probability distribution
Juvenile	Depth, Velocity	Probability distribution
Fry	Depth, Velocity	Thresholds

Fry Thresholds

Depth	3-10cm
Velocity	Negligible/undetectable (< 0.05 m/s)

Haglund & Baskin (2003) Feeney & Swift (2008)

Santa Ana Sucker

Probability distribution

Velocity

Wulff et al (2015, 2016, 2017) Saiki (2000)

Haglund & Baskin (2003, 2004)

Depth

Same process for Juvenile

Bound at 0.1

Steelhead

Migration Events	Velocity (Burst)	Depth (low)
Adult	<3.1m/s	>18cm
Smolt	N/A	>12cm

Migration Event	Velocity (Prolonged)	Depth (high)
Adult	<2m/s	>23 cm
Smolt	N/A	>12cm

Flosi et al (2010) McEwan & Jackson (1996) Raleigh et al (1984) Oroville Facilities Licensing (2004)

- Thresholds taken from habitat suitability Reports
- Two models:
 - 1. Burst swimming speeds and low depth
 - 2. Prolonged swimming speeds and higher depth

Caveats & Limitations

- Data are sourced from a variety of locations to increase data density
 - Some locations are more or less relevant to LA river
 - Includes appropriate information to extrapolate to LA River (where some species are not currently present)
- Range of habitat variables limited to available data and model output from SWMM/HEC-RAS
 - Some caution is needed in interpretation, full range of conditions may not be represented (e.g. substrate)
- Observational validation only possible for species that currently occur
 - Statistical validation on species curves that are not currently present
 - Limited to comparison to values from critical habitat reports and reviewed by TAC.

Developing Flow Recommendations

APPLICATION OF SPECIES MODELS

Overall process

- 1. Data compliation for local species habitat conditions
 - Primary and grey literature (surveys, experiments)
- 2. Species curves/thresholds created from appropriate models
 - Models dependent on data (e.g. probability distribution, linear regression)
- 3. Apply species model to hydraulic variables at each node
 - Use rating curve to define threshold of flow
- 4. Calculate amount of time each node is within flow thresholds
 - Estimate suitability of baseline conditions
- 5. Apply management scenarios to species curves

Relate habitat suitability curves to "Flow" Using Watershed Models

Identify High and Low Probability Thresholds from Distribution Curves

Repeat this process:

- All species & habitats
- All life stages

Suitability Criteria

General suitability criteria	Habitat suitability curves	Habitat suitability thresholds
Class	Criteri	a
	Probability values for every hydraulic	
	variable are high for minimum 75%	
	overall & 21 days of each month	All hydraulic variables are
High	during critical period	classed as suitable
	Probability values for one hydraulic	
	variable are low for maximum 25%	
	overall & 7 days of each month	One hydraulic variable classed
Low	during critical period	as unsuitable*
	All other combinations* (e.g. high	
	suitability for majority of variables	
Partial	but low suitability for one variable)	N/A

Critical Time Period

			Functional Flow	
Species	Suitability Type	Critical period	Component	
			Dry-Season Baseflow,	
	Adult survival	all year	Wet-Season Baseflow	
Santa Ana Sucker	Growth	March – July	Dry-Season Baseflow	
	Adult survival	all year	Peak flows	
Willow	Growth	April – September	Dry-Season Baseflow	
			Dry-Season Baseflow,	
	Adult survival	all year	Wet-Season Baseflow	
Typha spp	Growth	April – September	Dry-Season Baseflow	
	Adult (in)	December – June	Wet-Season Baseflow	
Migration	Smoltification (out)	December – July	Wet-Season Baseflow	
Cladophora			Dry-Season Baseflow,	
	Growth	All year	Wet-Season Baseflow	

Map of Example Locations

Baseline conditions

		R	Riparian (Willo	ow)	Freshwater marsh (Typha)		Wading bird Coldwater fish (SAS)		Migration			
Reach	Node	Adult	Germination	Seedling	Adult	Seedling	Cladophora	Fry	Adult	Juvenile	Smolts	Migration
LAR 2 - Below Compton Creek	F319	High	Low	High	Partial	Low	Partial	Low	Partial	Partial	High	High
LAR 5 - Glendale Narrows	GLEN	High	Low	High	Partial	Partial	Low	Low	Partial	Partial	High	High

Associated with current beneficial use

Not associated with current beneficial use

* Ratings pertain only to flow conditions and do not account for other potential limitations (e.g. temperature, substrate)

Sample Flow Recommendations Table

4	C C.	al:4: a	/:i	d b - b:4-4-		
-(current co	onaitions	II.e species	and nabitats	currently supported)	

IN-RIVER FLOW RECOMMENDATIONS

• • •			summer basefl	ow	wir	nter baseflo	W	winter p	eak flows	spring re	cession f	low
Species (habitat)	Life Stage	Reaches magnit	ude duration	timing	magnitude	duration	timing	magnitude	frequency	magnitude duration	timing	rate of change
Willow (riparian birds)	growth	5-7										
Willow (riparian birds)	adult	5-7										
Willow (riparian birds)	growth	10										
Willow (riparian birds)	adult	10										
Typha (Freshwater marsh)	growth	1										
Typha (Freshwater marsh)	adult	1										
Typha (Freshwater marsh)	growth	5-7										
Typha (Freshwater marsh)	adult	5-7										
Typha (Freshwater marsh)	growth	10										
Typha (Freshwater marsh)	adult	10	tor each	cell, we	would pro	ovide a ra	nge of t	lows base	d on low - l	high probability o	Ť	
Wading shorebirds	adult	1-2	supportin	ng the sp	pecific spe	ecies or re	creatio	nal use. R	anges cou	ld also be express	ed and	l
Wading shorebirds	adult	5-6	quantitat	ive prol	bability ra	nges, e.g	. 25%. 5	50%. 75% r	robability	of supporting the	use	
Wading shorebirds	adult	10	quantition		odioinity i d		,, _	, c, c, r c, c p	, could may	or only bortung und		
					•							
Recreational Uses												
kayaking	na	5-7										
fishing/wading	na	1-2										
fishing/wading	na	5-7										

Example recommendations for Willow

Flow recommendations
will be provided for
relevant life stages, habitat
variables and time period

- Critical Time Period:
 - Growth (March September)
 - Adult (All year)
- Important life stages:
 - Seedling
 - Germination
 - Adult
- Important habitat variables:
 - Depth
 - Shear Stress
 - Stream Power

Example Recommendations for Willow

Current Conditions (i.e., species and habitats currently supported)

			summer baseflow			winter peak flows	spring recession flow	
Species (habitat)	Life Stage	Reaches	Magnitude (cfs)	duration	timing	Magnitude (cfs)	Magnitude (cfs)	
Willow (riparian birds)	growth	5	22-452 (High) 22-594 (Med) 22-706 (Low)	March - September	March		<452 (High) <594 (Med) <706 (Low)	
Willow (riparian birds)	adult	5				< 40590		

for each cell, we would provide a range of flows based on low - high probability of supporting the specific species or recreational use. Ranges could also be expressed and quantitative probability ranges, e.g., 25%, 50%, 75% probability of supporting the use

*Preliminary values based on Glendale Narrows

Sample Application of Flow Recommendations

Separate table provided for flow recommendations for potential future beneficial uses, i.e., species and habitats not currently supported

Approach to Using Flow Recommendations Table

- A. In-river flow recommendations will be provided for:
 - each reach by species
 - for all relevant seasonal flow components
- B. Flow recommendations will be ranges vs. single numbers
- C. Technical products will include "curves" that relate changes in effluent discharge to resulting changes in in-river flows
- D. Curves can be used to inform decisions regarding relationship between changes in effluent discharge and potential in-river effects by season and by reach

BREAK

WRP and Stormwater Scenarios

DEVELOPMENT OF SENSITIVITY CURVES

Sensitivity Curves Approach

What management options/scenarios can achieve desired flows?

- Develop curves based on sensitivity of response of specific reaches
 - Based on different flow (or hydraulic metrics)
 - Based on different seasonal flow conditions
- Evaluate effects of changes in key hydrologic, hydraulic, or temperature properties vs. specific management scenarios
- Can be used to accommodate many different scenarios or combinations of scenarios
 - Flexible and adaptable

Development of Sensitivity Curves

- Run models under a wide range of WRP discharge and retention conditions
- Predict changes in flow, velocity, depth, and temperature associated with different amounts of discharge and "capture"
- Plot response of key variables to ranges of WRP discharge and stormwater capture
- Evaluate curves across multiple:
 - Functional flow metrics
 - Water year types (i.e., wet, moderate, dry)
 - Nodes

Glendale Narrows

Points are baseflow values from the 500 reuse scenarios from baseline WRP discharge (71 cfs) to no WRP discharge

Water Year Type

- Wet
- Moderate
- Dry

Glendale Narrows

Dry-season baseflow varies depending on the water year type (ie., wet, moderate, or dry)

Water Year Type

- Wet
- Moderate
- Dry

Banded curve that incorporates variability across water year type

Endmember Species Associated with Current Beneficial Uses

Species (babitat)	Life Stage	Poschos	Dry-Season Baseflow
Species (habitat)	Life Stage	Keaches	Magnitude (cfs)
Typha (freshwater marsh)	Growth	5	< 90
Typha (freshwater marsh)	Adult	5	>80 (High) <1242 (Med) <1562 (Low)

Baseline dry-season baseflows are currently suitable for Typha → any reductions in WRP may impact Typha

Endmember Species Associated with Current Beneficial Uses

Endmember Species Associated with Current Beneficial Uses

Could reduce WRP discharge in dry-season by up to 80% and still support Willow

Endmember Species NOT Associated with Current Beneficial Uses

			Dry-Season Baseflow
Species (habitat)	Life Stage	Reaches	Magnitude (cfs)
			100-405 (High)
SA Sucker (cold water)	Adult	5	23-516 (Med)
			23-40590 (Low)
			35-274 (High)
SA Sucker (cold water)	Juvenile	5	<349 (Med)
			23-40590 (Low)
SA Sucker (cold water)	Fry	5	<22 (Threshold)

Current dry-season flows too low to support Santa Ana Sucker adult (high probability)

Endmember Species NOT Associated with Current Beneficial Uses

			Dry-Season Baseflow		
Species (habitat)	Life Stage	Reaches	Magnitude (cfs)		
			100-405 (High)		
SA Sucker (cold water)	Adult	5	23-516 (Med)		
			23-40590 (Low)		
			35-274 (High)		
SA Sucker (cold water)	Juvenile	5	<349 (Med)		
			23-40590 (Low)		
SA Sucker (cold water)	Fry	5	<22 (Threshold)		
,	1 1 y	J	\22 (1111E31101u)		

Could reduce WRP discharge by up to 60% and flows may still support Santa Ana Sucker juvenile (high probability) and adult (medium probability)

Preliminary Recommendations: Glendale Narrows

- Could reduce WRP discharge in dry-season by up to 80% and still support Willow
 - However, may impact Typha ← baseline dry-weather conditions are currently suitable
- If trying to restore flows for Santa Ana Sucker:
 - Could reduce WRP by up to 60% and flows could still support adult (medium probability) and juvenile (high probability)
 - Adult (high probability): Baseflows are currently too low in dry season
 - Fry: Need edge-water habitat, beyond resolution of hydraulic model

Example recommendations that can be derived from the scenario analysis

Library of Curves

Sensitivity curves will be developed for:

- Multiple locations
- Multiple metrics

Discussion

How do you feel about the overall approach?

 Should we use the wide-band curve or create separate curves by water year type?

 Should we relate WRP discharge to probability of supporting species?

Stormwater Scenario Curves Process

- Develop stormwater runoff and urban baseflow capture scenarios based on SCMP
 - Combined with WRP scenarios
- Run model scenarios and validate with reductions from SCMP
- Develop sensitivity curves

SWMM Model Outputs at each node Urban Stormwater runoff Baseflow Non-**BMPs** Captured Resulting timeseries at each SUSTAIN Node

Stormwater Scenario Modeling

CSM Team has developed SUSTAIN model for stormwater scenarios

- For stormwater scenarios, we will evaluate reductions in:
 - Stormwater runoff
 - Non-storm urban discharge*

*Currently includes any discharge from urban drool, industrial sources, dams, and upwelling \rightarrow For final analysis, we will not include dams and upwelling as urban discharge

Next slides illustrate a simple example of removing all non-storm urban discharges

*Note: urban baseflow includes upwelling and dam discharges so the green curve is an overestimation of reduction in baseflow.

*Note: urban baseflow includes upwelling and dam discharges so the green curve is an overestimation of reduction in baseflow.

Preliminary Recommendations: Glendale Narrows

- If all urban baseflows captured, could reduce WRP discharge by up to 68% and still support Willow
 - With no urban capture, up to 80% WRP reduction

 Under baseline conditions, removing all urban baseflows leads to a 16% reduction in dry-season baseflow

Example recommendations that can be derived from the scenario analysis

Preliminary Scenario Summary: Glendale Narrows

Scenario	Instream Dry-Season Baseflow Magnitude	Reduction in Dry-Season Baseflow Magnitude		Aquatic Life Use	
	cfs	%	cfs	Willow	Typha
Baseline	80	0	0	High	High
Baseline + no urban baseflow	67	16	13	High	Medium/Low
WRP 50% reduction	47	41	33	High	Medium/Low
WRP 50% reduction + no urban baseflow	37	54	43	High	Medium/Low
WRP 100% reduction	13	84	67	Low	Medium/Low
WRP 100% reduction + no urban baseflow	3	96	77	Low	Medium/Low

Example summary table that can be derived from the scenario analysis

General Feedback and Next Steps

- Finalize baseline conditions report (early January)
- > Technical report on flow recommendations and sensitivity curves
 - > Draft late January 2021
 - Review and comments February 2021
- ➤ Monitoring and adaptive management recommendations Feb-March 2021
- > Stormwater scenario modeling
- Water quality modeling
- > Temperature analysis
- Restoration opportunities

Flow Recommendations Report

Project overview and objectives

Late Jan. 2021

- Brief recap of methods and results detailed in the baseline conditions report
 - Additional details on development of sensitivity curves
- Summary of flow/hydraulic tolerances for focal species
 - Presented as ranges or probabilities of response vs. "bright line" thresholds
- Recommended flow ranges necessary to support:
 - Current beneficial uses
 - Potential future beneficial uses
- Sensitivity curves for wastewater and stormwater scenario analysis
- Opportunities to "mitigate" potential effects through other management actions

Questions

Eric Stein

erics@sccwrp.org

Katie Irving

katiel@sccwrp.org

Kris Taniguchi-Quan

kristinetq@sccwrp.org

www.sccwrp.org

Terri Hogue

thogue@mines.edu

Jordy Wolfand

wolfand@up.edu

Liz Gallo

emgallo@mymail.mines.edu

Daniel Philippus

dphilippus@mymail.mines.edu

Reza Abdi

rabdi@mines.edu

Victoria Hennon

vhennon@mymail.mines.edu

www.mines.edu