
Establishing Environmental Flows for the Los Angeles River

Technical Advisory Committee Meeting #1 – January 28, 2019

Meeting Objectives and Agenda

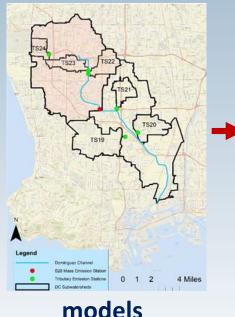
Meeting Objectives:

- Provide overview of major project tasks and deliverables
- Discussed roles and expectations of the TAC

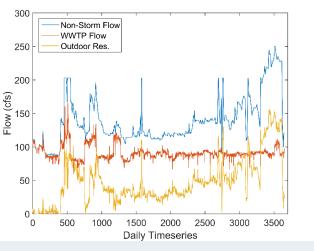
AGENDA

- 1. Introductions
- 2. Project overview
- 3. Role and expectations of the TAC
- 4. Introduction to hydrologic modeling
- 5. Wrap-up, action items and next steps

PROJECT OVERVIEW

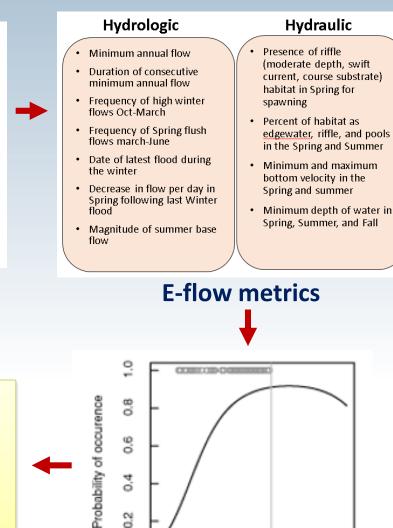

Los Angeles River Environmental Flows Project Goals

- 1. Develop technical tools that quantify the relationship between various alternative flow regimes and the extent to which aquatic life and non-aquatic life beneficial uses are achieved
- 2. Evaluate various flow management scenarios in terms of their effect on uses in the LA River.
- 3. Engage multiple affected parties to reach consensus about appropriate flow needs and optimal allocation of flow reduction allowances from multiple WRPs in consideration of other proposed flow management actions


LAR Case Study Benefits

- Develop tools and approaches for assessing effects and optimizing water use management scenarios
- Support decision making under water code section 1211 wastewater change petitions
- Prototype for consideration of establishing environmental flows in urban (effluent dominated) systems
- Case study for implementation of Tier 2 of statewide environmental flows framework

Overall Process for Developing Flow Criteria



Time series output

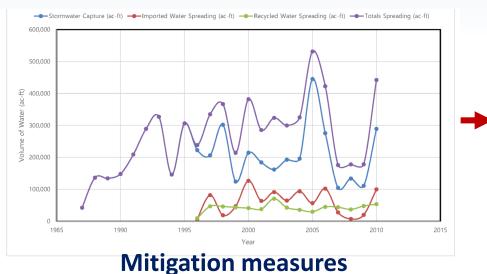
✓ by reach and season

õ

0.2

8

Management/mitigation recommendations


Flow Criteria

Agreed upon criteria

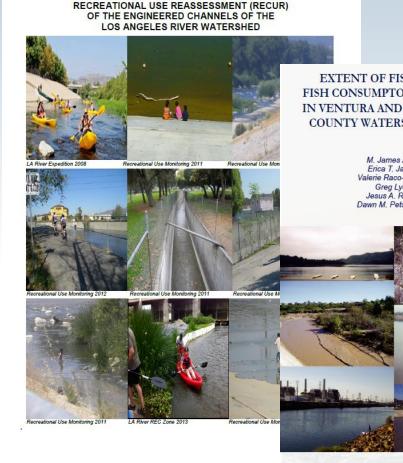
Flow-ecology relationships

Environmental variable

ICCORD BR

Assessing Environmental Flows for LAR

Activity 1

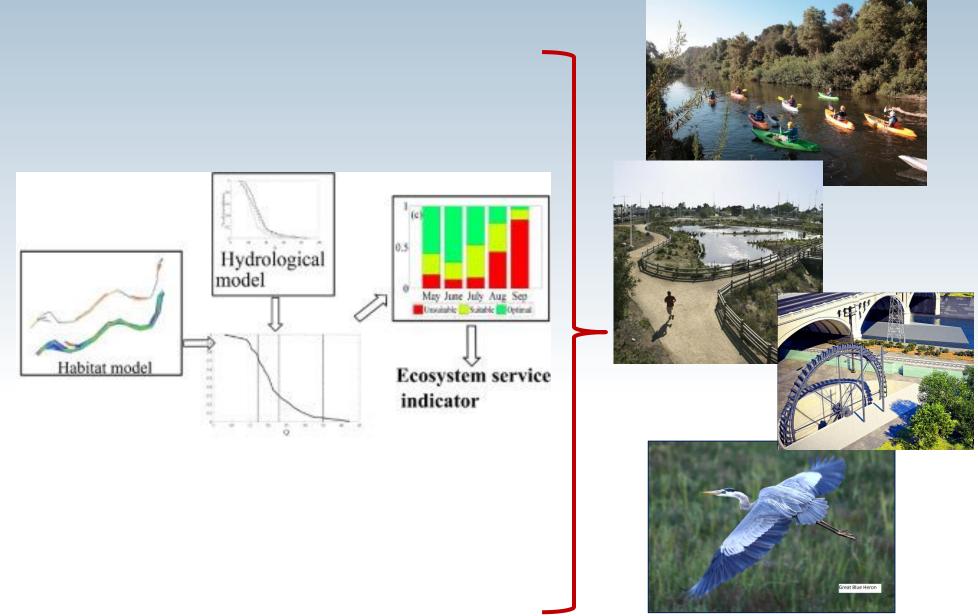

Community outreach and stakeholder coordination

- Coordinate with stakeholders on technical approach and desired outcomes
- State Water Board to take the lead on this effort
- Partner with existing efforts to avoid duplication and stakeholder fatique
 - LA River Master Plan
 - MRCA/RMC planning efforts

Activity 2 – Assessing Non-aquatic Life Uses

Goal: Identify key non-aquatic life uses and determine hydrologic needs for those uses

- Survey existing reports
- Interview key individuals
- Produce list of uses by reach
- Establish flow needs for each use
 - Past reports
 - Interviews/BPJ


EXTENT OF FISHING AND FISH CONSUMPTON BY FISHERS IN VENTURA AND LOS ANGELES **COUNTY WATERSHEDS IN 2005**

> Frica T Janvis Valerie Raco-Ran Greg Lyon lesus A. Reve

Research Project Southern California Coastal Water Technical Report 574 - September 200

Relate Flow Patterns to Uses

Social Choice Voting: Indicators and Flow Management Scenarios

Plurality- largest number of 1st place rankings

Boarda count- point system (higher for best alternative), highest sum is preferred

Pairwise comparisons – preference score (total or average) weighted by intensity of preference, confidence in management scenario, or stakeholder group

Activity 2 – Assessing Non-aquatic Life Uses Potential Product/Outcome

Reach	Uses	Flow Needs
a. 1	a. Fishingb. Bird watching	a. Depth and flow during all seasonsb. Minimum depth to provide foraging area during non-storm periods
2	a. Community educationb. Recreation/kayaking	a. No substantive flow restrictionsb. Min flow and depth during spring and summer
3	a. Fishingb. Recreation/wading	a. Depth and extent of inundation during spring and summerb. Min flow and velocity during spring and summer
4	TBD	
5	TBD	
6	TBD	

- Flow, depth and velocity needs to be quantified to the extent possible
- Season considerations to be included

Activity 3 – Aquatic Life Use Assessment

• **Goal:** Develop flow-ecology relationships for key aquatic species or habitats in the LA River

- Approach:
 - Task 3A Assess hydrologic baseline
 - Task 3B Identify and categorize ecological endpoints of management concern
 - Task 3C Determine flow-ecology relationships for stream endpoint
 - Task 3D Determine flow-ecology relationships for marsh and estuary habitats

Activity 3 – Aquatic Life Use Assessment: Task 3A: Assess Hydrologic Baseline

• Survey existing models and report

- Determine trends and patterns
 - Wet vs. dry years
 - Trends due to conservation practices

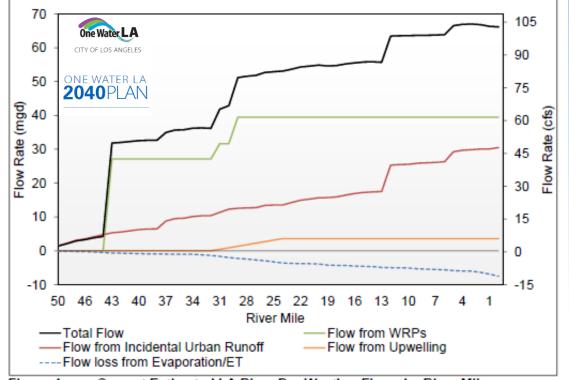
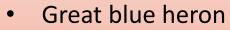


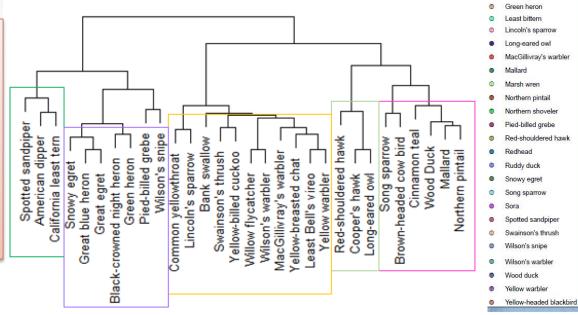
Figure 4 Current Estimated LA River Dry Weather Flows by River Mile

 Coordinate with technical and stakeholder workgroups

Activity 3 – Aquatic Life Use Assessment: Task 3B: Identify and Characterize Ecological Endpoints

0


0


0

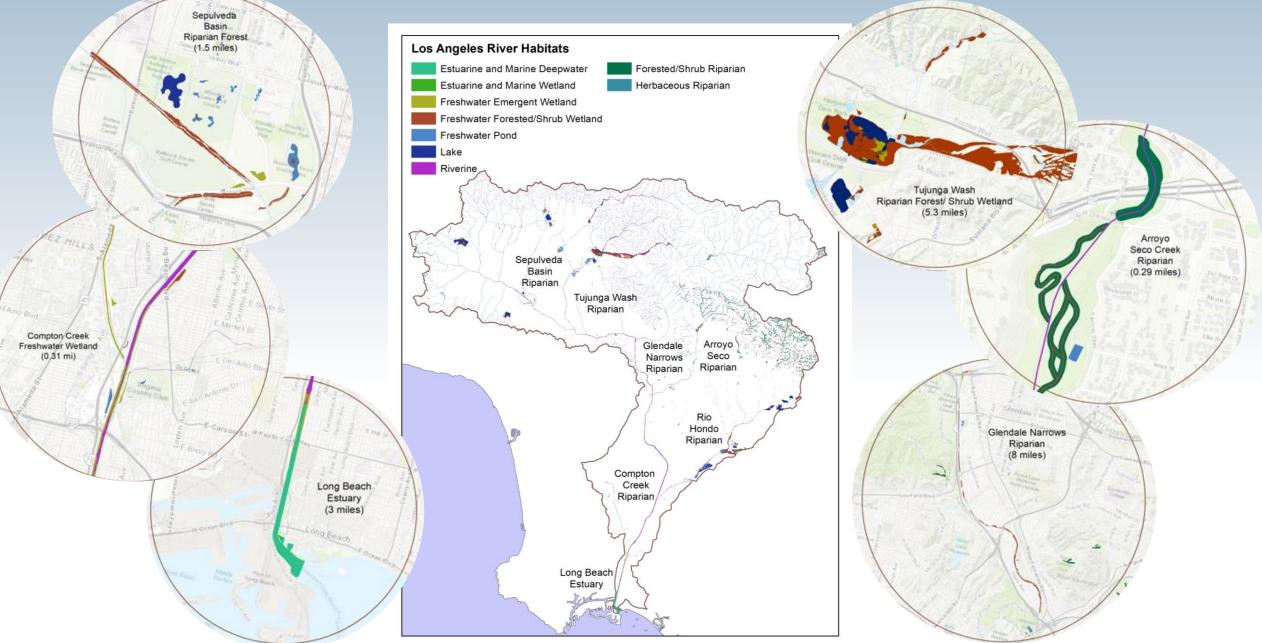

- Use existing data compilations of species/habitats
- Group based on similar flow needs
- Agree on priority species/habitat groups for each reach of study area

Hierarchical Clustering for Riparian Birds

- Southern steelhead
- Santa Ana sucker
- Arroyo chub
- Southwestern pond turtle
- Arroyo toad
- Yellow warbler

Other riparian birds in region not shown: California least tern Data Sources: Global Biodiversity Information Facility (2005-2017) The Nature Conservancy (2014)

Biological Data Sources


SPECIES

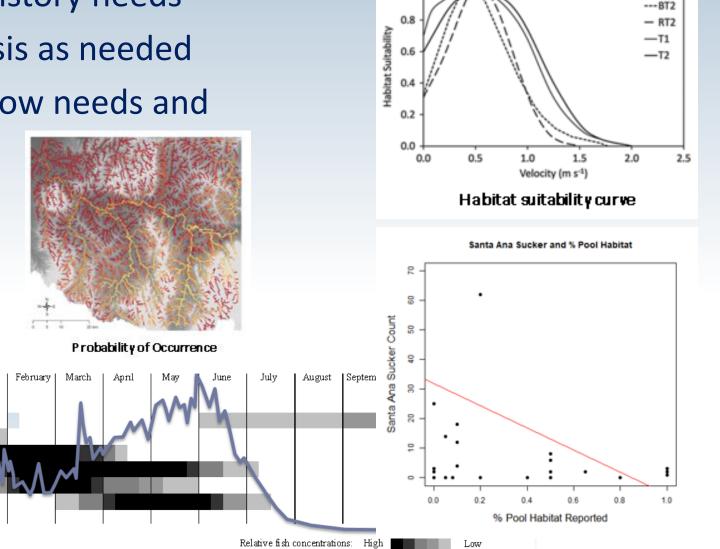
- Center for Biological Diversity
- California Natural Diversity Database (CNDDB)
- Nature Conservancy/Aquarius/Nature Serve
- USFWS threatened and endangered species
- eBird
- Global Diversity Information Facility (GBIF)
- HerpNET Natural History Museums
- iNaturalist
- CDFW Wildlife Action Plan
- Various species survey reports


HABITATS

- Significant ecological areas
- National wetlands inventory
- California Native Plant Society
- CalVeg
- Numerous study plan reports from various planning efforts

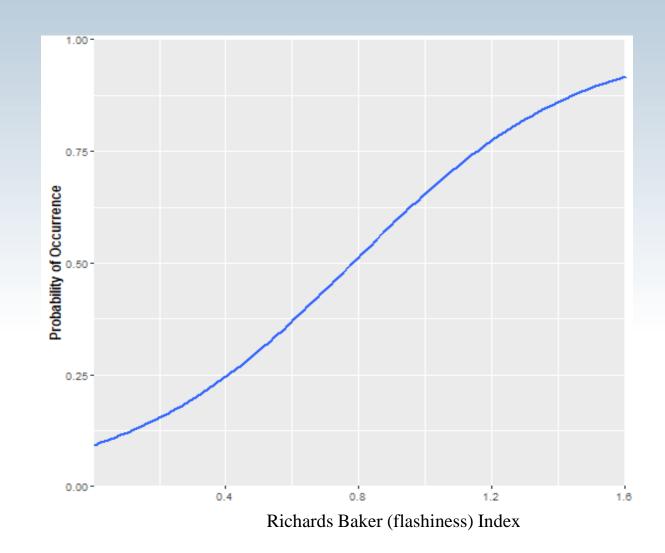
Preliminary Habitat Mapping

Preliminary Species Mapping


Los Angeles River Species of Concern Candidate Endangered, Southern Mountain Yellow-legged Frog Special Concern, California brown pelican Special Concern, Arroyo chub Special Concern, Rainbow trout Endangered, Least Bell's Vireo Special Concern, Long-billed curlew + Special Concern, Santa Ana sucker Endangered, Western Yellow-billed Cuckoo Endangered, Tri-colored blackbird Endangered, Willow Flycatcher • Special Concern, White-tailed kite - Los Angeles River Special Concern, California Red-legged Frog Special Concern, Yellow-billed cuckoo Special Concern, Coast Range Newt Special Concern, Two-striped Gartersnake Special Concern, Western Pond Turtle Special Concern, Yellow Warbler Special Concern, Yellow-breasted Chat Threatened, Bank Swallow Tujunga Wash erdugo Wash 0 200 Arroyo Seco Ck Rio Hondo Ck Compton Creek

Activity 3 – Aquatic Life Use Assessment: Task 3C: Determine Flow Ecology Needs

- Use existing databases on life history needs
- Augment with additional analysis as needed
- Model relationships between flow needs and probability of occurrence

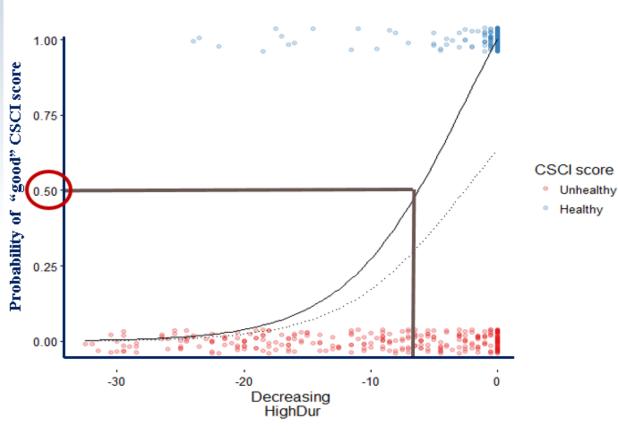

January

Life History	Requirements	
Spawning	 Feb-Aug (June-July mostly) Quiet edge waters or pool 14-22°C 	
Fry	Quiet edge waters with no-slight flowAquatic vegetation	
Juvenile	 Quiet edge waters Aquatic vegetation 0.5%-2.5% gradient 	
Adult	 10-24°C Slow-moving streams or backwater/ponded sec Sand, gravel, cobble, boulder Adapted to fast 0.8m/s streams Depth>40cm 0.5%-2.5% gradient, <2% in upper San Gabriel Pools and glides Emergent vegetation 	Immigration ^{«,b,c,A} Spawning ^{«,d,e} Incubation ^{«,e,f} Juvenile rearing ^{«,d,g,j} Fry emigration ^{c,d,g,g} Smolt emigration ^{c,d,g,g}

Example Flow Criteria: Arroyo Chub

- Two year storm magnitude
- Richards Baker (flashiness) Index
- Duration of high flow (average)
- Median number of zero flow days
- Average annual minimum flow

Activity 3 – Aquatic Life Use Assessment: Potential Product of Flow Ecology Assessment


		Flow Needs						
Endpoint	Reaches	Fall	Winter	Spring	Summer			
Great blue heron	1-3		 Peak flow > X High flow cfs duration between x and y days 		 Depth of water between x and y meters 			
Riparian habitat/vireo	3-5		 Peak flows > X at least every Y years Sustained high flow > x days 	 Recession rates over 3 weeks to promote seed establishment 	 Baseflow duration of 3 weeks 			
SW pond turtle	2, 4, 6	 Flushing flows > X days and Y cfs 			 Baseflow > x cfs Baseflow duration through Aug 			
Benthic Invertebrates	2-6		 Frequency of high flow events > x Peak flows between x and y 	 Recession rates through June No scouring flows after X date 	 Flow > ponding through Aug 			

Activity 4 – Quantify Effects of Flow Management:

- **Goal:** Evaluate effect of flow management/alteration on both aquatic life and non-aquatic life uses in the LA River
- Approach:
 - Task 4A Determine appropriate hydrologic tools and update modeling analysis
 - Task 4B Analyze tolerances of system to flow modification
 - Task 4C Analyze water use scenarios
 - Task 4D Evaluate stormwater capture scenarios
 - Task 4E Evaluate groundwater interactions
 - Task 4F Evaluate habitat management offsets for flow reductions
 - Task 4G Evaluate effects of flow alteration on tidal portions of the river
 - Task 4H Establish recommended flow targets w/stakeholder coordination

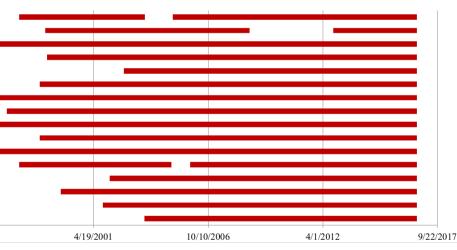
Activity 4 – Quantify Effects of Flow Management: Determine Flow Targets

Logistic regression: <u>Likelihood</u> of healthy biology at each level of hydrologic alteration

Hydrograph Component	Metric Definition	Critical precipitation condition	Threshold
Duration (days)	longest number of consecutive days that flow is between the low and high flow threshold	Average	64
	longest number of consecutive days that flow was greater than the high flow threshold	Wet	3
Magnitude (cms)	Maximum mean monthly streamflow	Wet	1.5
	streamflow exceeded 99% of the time	Wet	32
Variability (unitless)	Richards-Baker index of stream flashiness	Dry	.25
Frequency (# of events)	number of events that flow was greater than high flow threshold	Dry	3

Activity 4 – Quantify Effects of Flow Management: *Potential Product of Flow Target Determination*

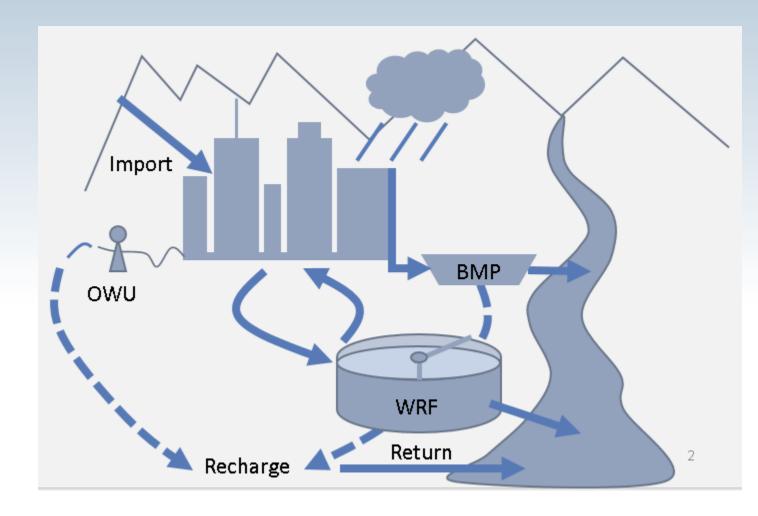
Reach	Season	Flow Target	Species or Habitat	General Relationship to Non- aquatic Life Use
	Fall	Target 1	Wading shorebirds	Promotes fishing
	Winter	Target 2	Shorebirds, riparian habitat (scour)	No winter uses
1	Spring	Target 3	Benthic invertebrates, pond turtle	Potential conflict with recreational uses
	Summer	Target 4	Pond turtle	Consistent with recreation
2	Fall			
	Winter			
	Spring			
	Summer			

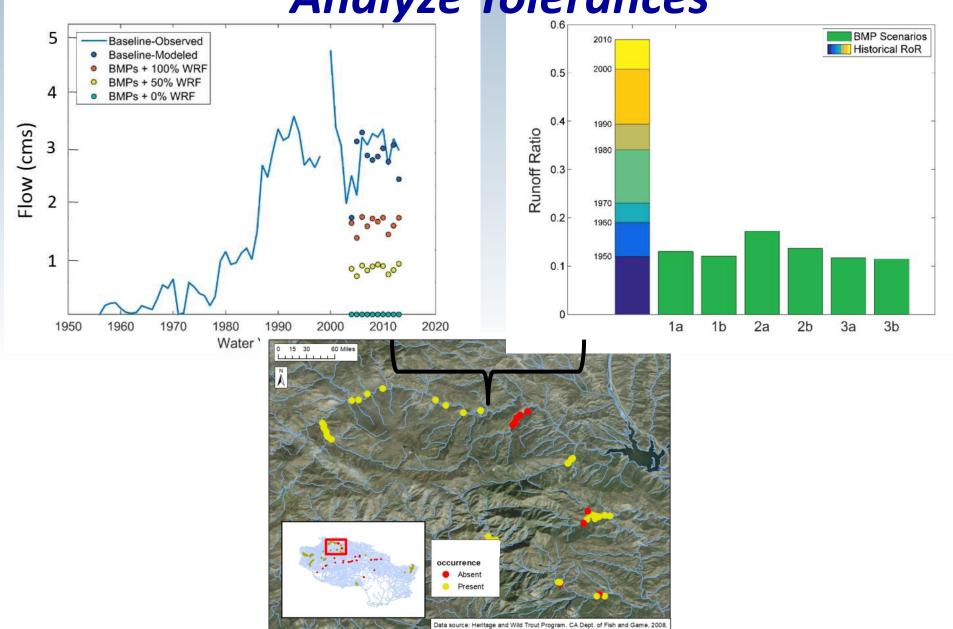

- Number of endpoints and targets based on input from workgroups
- Relationship to non-aquatic life uses will help inform scenario analysis

Activity 4 – Quantify Effects of Flow Management: Task 4A: Determine Appropriate Tools; Update Models

- Review past studies of LAR
- Coordinate with TAC for best modeling strategies
- Update model input data

LAR Flow Gage Data Coverage


F277-R ARROYO SECO below Devils Gate Dam F168-R BIG TUJUNGA CREEK below Big Tujunga Dam F342-R BRANFORD STREET CHANNEL below Sharp Avenue E285-R BURBANK WESTERN STORM DRAIN at Riverside Dr. F37B-R COMPTON CREEK near Greenleaf Drive F57C-R LOS ANGELES RIVER above Arroyo Seco F300-R LOS ANGELES RIVER at Tujunga Avenue F34D-R LOS ANGELES RIVER below Firestone Blvd. F118B-R PACOIMA CREEK FLUME below Pacoima Dam F305-R PACOIMA DIVERSION at Branford Street F252-R VERDUGO WASH at Estelle Avenue F119C-R SANTA ANITA CREEK below Santa Anita Dam F319-R LOS ANGELES RIVER below Wardlow River Road F271-R EATON WASH below Eaton Wash Dam F342-R BRANFORD STREET CHANNEL below Sharp Avenue F45B-R RIO HONDO above Stuart and Gray Road 10/28/1995


The Los Angeles County Watershed Management Modeling System Loading Simulation Program in C++ User's Manual SWMM 5.1 - ServiceArea1-Grev-Green-Public in a 🐴 ?(] 🛞 🥳 🔳 🐜 🚟 🥅 Climatolog Hydrology Hydraulics Quality Curves Time Series Time Pattern Map Labels + - 4 * * 24 itle/Notes Auto-Length: Off 🔻 Offsets: Depth 👻 Flow Units: CFS 👻 🗳 Zoom Level: 100% X,Y: 9710.468, 10000.000

Activity 4 – Quantify Effects of Flow Management Modeling Analysis

- More details to come in presentation by Colin Bell and Terri Hogue: Colorado School of Mines
- Model baseline hydrologic conditions
- Model scenarios based on choices made by project Executive Committee

Activity 4 – Quantify Effects of Flow Management Analyze Tolerances

Activity 4 – Quantify Effects of Flow Management Analyze Water Use Scenarios

- Evaluate effects of various water use and flow management scenarios on ecological and human use endpoints
- Core scenario
 - Reduced WRP discharges
- Additional scenarios
 - Stormwater capture
 - Changes to groundwater upwelling
 - Conservation practices
 - Habitat restoration (offsets)

Activity 4 – Quantify Effects of Flow Management Establish Recommended Flow Criteria

- Determine recommended flow criteria that balance need to support multiple uses / management objectives
 - Specific reaches
 - Specific seasons or climatic conditions
- Optimization based on prioritization or weighting developed in coordination with stakeholder and technical workgroups
- Explore the effects of mitigation measures on reduced flows
 - Habitat restorations / invasive plant removal
 - Supplemental discharges
 - Seasonal management actions (based on critical conditions)
- Develop recommended flow management strategies based on agreed upon criteria

Activity 4 – Quantify Effects of Flow Management Example Management or Mitigation Measures

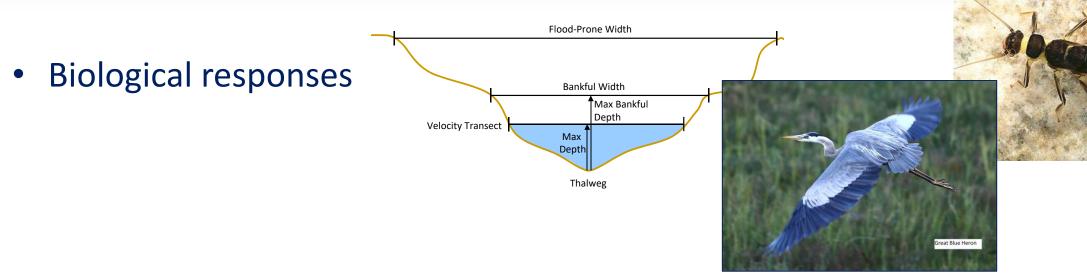
Activity 4 – Quantify Effects of Flow Management: Potential Products of Flow Criteria Analysis

Scenario	Reach 1	Reach 2	Reach 3	Reach 4	Reach 5-6
50% WRP diversion	 Potential habitat/species impacts Effects on non-aquatic uses Recommended targets Potential mitigation measures 				
100% WRP diversion					
WRP diversion + stormwater capture					
WRP diversion + additional recharge					
WRP diversion + conservation +BMP					

- Criteria may vary by reach, by season, or by climatic condition
- Management and mitigation measures determined in coordination with workgroups

Activity 5 – Monitoring and Adaptive Management

• **Goal:** Develop a recommended monitoring strategy with potential triggers for adaptive management


- Approach: work with stakeholders and technical team to develop monitoring strategies
 - Leverage existing monitoring and assessment programs (e.g. SMC)
 - Provide data to improve model performance
 - Evaluate efficacy of criteria and management actions

Activity 5 – Monitoring and Adaptive Management

Components of a monitoring strategy:

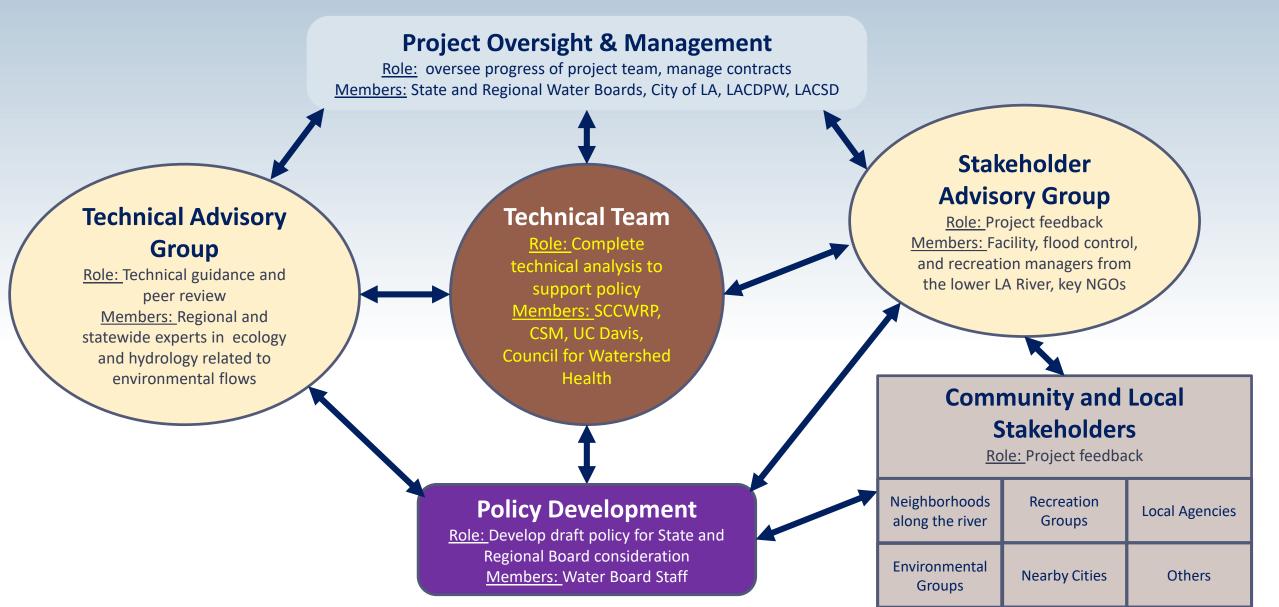
- Permanent flow monitoring stations
- Flow or physical habitat following critical storm events or specific times of year

Major Products

- List of current and potential uses by reach
- Map of key species and habitats
- Flow needs and tolerances associated with aquatic and nonaquatic uses
- Evaluation of potential effects associated with various water use/reuse scenarios
- Suggested mitigation/management measures that could offset potential effects
- Proposed monitoring approach/strategies

ROLE OF THE TAC

Role of the TAC


- Provide input on hydrologic modeling approach
 - Coordination with existing modeling efforts
 - Assistance with data sources
- Input and review on ecological modeling approach
 - Review of assumptions about species/habitat uses and groupings
 - Review of habitat-flow relationships
 - Review of conclusions about potential effects
- Input on scenarios and potential mitigation/management approaches
- Review of draft products

Process for TAC Interaction

- Seven quarterly meetings
- Most meetings will be via webinar
 - Is there value/willingness for approximately 2 in-person meetings?
- Email review of interim products
- Review of draft project report
- Potential for summary memo of TAC findings and recommendations??

Is there a need for additional expertise or key individuals on the TAC?

Relationship of TAC to Other Groups (e.g. SAG)

HYDROLOGIC MODELING DETAILS

HYDROLOGY & HYDRAULIC MODELING: OVERVIEW, RELEVANT WORK & DATA GAPS

Drs. Terri Hogue, Colin Bell, Nasrin Alamdari, Jordy Wolfand

Schedule

Activity / Sub-Tasks	2018 Q4	2019 Q1	2019 Q2	2019 Q3	2019 Q4	2020 Q1	2020 Q2	2020 Q3	2020 Q4
Activity 1 - Stakeholder coordination									
Activity 2 - Non-aquatic Life Use Assessment									
Activity 3 - Aquatic Life Beneficial Use Assessment									
Activity 4 - Apply Environmental Flows/Evaluate Scenarios									
Activity 5 - Monitoring and Adaptive Mangement Plan									
Activity 6 - Summary of results/reporting									

TAC meetings to occur quarterly

Stakeholder coordination meeting

Action Items and Next Steps

- Compile information on existing modeling efforts
 - Potential follow up survey on modeling directions
- Key hydrologic data needs
 - LIDAR
 - Flow
- Key ecological data needs
 - Habitat mapping
 - Species occurrence data
- Next TAC meeting APRIL web-based or in-person?

Questions

Eric Stein erics@sccwrp.org www.sccwrp.org