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A B S T R A C T

Mismanaged waste threatens the environment and human health. To better understand waste sources and im
pacts along recreation trails, we surveyed the entire 4,270 km Pacific Crest Trail, conducting 251 waste surveys 
(1 km every 16 km). Surveys counted and classified waste within 2 m of the trail. We estimated that there were 
53,000 pieces (12,000–130,000) of waste along the trail in 2023, based on a mean count of 12.5 pieces per km. 
Waste count had a negative log–log linear relationship with distance to the nearest road. Far in the backcountry 
(survey start 10 km from a road), waste was sparse (0.4 pieces per km), but close to roads (10 m from a road), 
waste increased to 13 pieces per km. The most common material types were soft plastic (36 %), metal (11 %), 
and sanitary waste (10 %). The most common morphologies were fragments (47 %), package ends (7 %), and 
wipes (6 %). Brands visible on waste were rare (48 pieces). We assessed the bias of this survey method, showing 
that it underestimated waste counts by 50 % compared to conducting the survey twice or with twice the number 
of surveyors. Surveying trail sections with snow cover or at night also reduced observed counts. These findings 
suggest that cleanup near roads, waste handling education, reduced plastic use, and innovation from outdoor 
consumer product producers could reduce trail waste. We propose that a baseline value of 0.4 pieces per km 
should be a waste management target to achieve for all spaces.

1. Introduction

Mismanaged waste (e.g., plastic, sanitary products, tobacco prod
ucts) is a major concern for the environment and human health 
(Thompson et al., 2024; Umar Donuma et al., 2024). There are clear 
impacts on terrestrial organisms from ingesting waste, which can cause 
intestinal blockage leading to death (Eriksen et al., 2021; Hailat et al., 
1997; Meyer et al., 2023). Additionally, waste may leach hazardous 
chemicals (Coffin et al., 2018) and fragment with time into smaller 
pieces (Andrady, 2011), becoming a dominant source of anthropogenic 
microparticles (e.g., microplastics) with additional ecological conse
quences (Barnes et al., 2009). Waste can also present hazards to humans, 

such as biological illnesses (e.g., contaminated tissue paper), invasive 
species (e.g., food waste), or lacerations (e.g., broken glass or metal). 
The backcountry (> 10 km from roads) is an important system for 
preservation of animals and enjoyment of humans (Mittermeier et al., 
2003) and waste should not be present, but it is. Wilderness waste is 
difficult to remediate due to access limitations, and materials like plastic 
can persist (Chamas et al., 2020) for hundreds of years, accumulating in 
the environment. Trails are one of the primary conduits that humans use 
to participate in the wilderness (Snead et al., 2011).

To date, few surveys have been conducted on trail waste to quantify 
abundance, type, and controls. An early study in 1989 (Cutter et al., 
1991) found that waste along pathways in New Jersey state parks (6600 
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pieces per km) had 50 % less waste than urban areas and that cigarette 
waste was the most prevalent type. A more recent study (2009) of rec
reational trails in New Hampshire and Maine found 1–6 pieces per km, 
with motorized trails having 5 times more waste than non-motorized 
trails (Wilkerson and Whitman, 2009). In contrast, a survey of macro
plastics on trails in the Italian Central Western Alps found that food 
packaging was the most prevalent, with 2–26 items per km, demon
strating the waste impact from mountaineering activities (Parolini et al., 
2021). A long term study of trail waste in Poland found that mismanaged 
waste generated per hiker decreased by 30 % between 2012 and 2017 
(Religa and Adach, 2020). These studies highlight the complexity of 
managing wilderness waste due to the diversity of waste abundance, 
type, sources, hotspots, and management opportunities, and underscore 
the need for continued scientific investigation.

The Pacific Crest Trail travels 4,270 km from the United States 
border with Mexico to Canada through California, Oregon, and Wash
ington, crossing through 7 national parks, 24 national forests, and 48 
congressionally designated wilderness areas. It is estimated that hun
dreds of thousands of people (“PCT visitor use statistics,” 2024) use the 
trail annually with most use happening during Spring, Summer, and 
Fall. Trails are an extension of the human transportation network into 
the wilderness, although distinct from roads by management and use 
(Snead et al., 2011). Some sections of the Pacific Crest Trail even walk 
along the side of a major road. California is leading the way for the 
country as one of the first states in the United States to define targets for 
low waste abundance in roadside environments (~100 pieces per road 
km) and mandate monitoring, mitigation, and reporting (CalTrans 2023
Trash Assessment and Implementation Plan, 2023). The 100 pieces per km 
threshold has emerged from over a decade of research to determine a 
baseline value for “low” waste conditions on roadsides that all roads in 
California must reach. It is bold and already having positive impacts on 
the environment. We asked the question, how close is this threshold to 
the cleanliness of a typical wilderness trail? Reaching that target would 
ensure that roads do not contribute to waste in the environment more 
than a typical wilderness trail would. The diversity in management, 
ecosystem, and visitor use makes the Pacific Crest Trail ideal for con
ducting generalizable research that applies to many wilderness man
agement groups and policy applications.

The study aimed to assess the abundance and type of waste (> 1 cm) 
across the entire Pacific Crest Trail, identify waste sources, establish 
baseline conditions of waste, develop a new method for reproducibly 
measuring trail waste, and identify opportunities for improved wilder
ness waste management. We estimated the total waste along the trail 
and calculated the average concentration to establish a baseline and 
assess hotspots. Our primary hypothesis was that waste abundance 
correlated with the distance to the nearest road. If so, we planned to use 
that relationship to estimate average conditions near roads versus 
backcountry conditions. Additionally, we evaluated the percentage of 
each type of waste to identify priority pollutants that could be targeted 
for prevention efforts to reduce wilderness waste. A new method for 
surveying trail waste was validated which when repeated will be able to 
assess trends through time. We thoroughly evaluated the biases associ
ated with the methods employed and provided recommendations for 
improving future methodologies. Lastly, we discussed the management 
opportunities apparent from the findings. The novelty of this study 
comes from the total distance covered (4270 km), number of waste 
surveys (251), and scope (deep wilderness > 10 mi from a road). The 
next most extensive study we could find covered 335 km and conducted 
112 surveys, mostly on easily accessible motorized trails (Wilkerson and 
Whitman, 2009). This provided us with high statistical power to address 
the stated aims and enabled us to tackle regional to national scale 
questions about wilderness trail waste management.

2. Methods

2.1. Survey approach

The study surveyed waste along the 4270 km Pacific Crest Trail from 
March to September 2023. A power analysis prior to the start of the 
study estimated that 204 surveys were required to obtain a 7 % uncer
tainty in waste concentration and characterization methods (Cowger 
et al., 2024a). The survey was designed to maximize data quality and 
richness, while minimizing survey time and effort to increase the like
lihood of success in completing a long trail survey. The surveyors con
ducted waste surveys every 16 km (10 mi) on the Pacific Crest Trail 
(Fig. 1), resulting in a total of 251 unique surveys (1/16th of the entire 
trail length). Thirteen surveys were skipped due to trail closures or 
unsafe trail conditions. Surveys began at the US-Mexico border and 
extended to the US-Canada border. Sections of the trail through the 
California Sierra Nevada mountains from km 1132 (lat-lon = 36.024, 
− 118.134) to 2144 (lat-lon = 40.261, − 121.338) were initially skipped 
due to record-breaking snowpack. After completing the section from km 
2144 to the US-Canada border, the surveyors finished the skipped sec
tion going north to south.

The start point of each survey was identified using the Far-Out app 
([AuthorError] et al., 2024), which tracks GPS position relative to the 
trail distance. The Rubbish app (Rubbish, 2024a) and a Garmin watch 
were activated to record waste data and the 1 km distance surveyed, 
respectively. Rubbish is a cell phone application for collecting waste 
data. It allows for recording survey tracks, images, waste labels, time 
stamps, and geolocations. A georeferenced photo of the trail survey start 
was taken with a phone camera. The surveys were typically completed 
by one or two primary surveyors. To achieve the broader impact goal of 
engaging hikers about waste management, additional volunteers occa
sionally assisted with the surveys and were trained in the survey 
methodology. The number of surveyors was recorded in the notes of the 
Rubbish app for each survey to track potential surveyor number bias. 
Survey conditions were not always predictable, and to conduct as many 
surveys as possible safely, the surveyors occasionally had to survey at 
night and in snow-covered conditions (both conditions were expected to 
reduce waste counts). Night and snow surveys were labeled in the notes 
of the Rubbish app.

During the survey, surveyors would walk in the center of the trail, 
one behind the other. Any waste observed on the trail or within 
approximately 2 m (hiking poles out with arms extended) of either side 
of the trail was recorded. Using the Rubbish app, every piece of waste 
was recorded by taking an image of the item and labeling it by manually 
selecting the material type from a list of categories that were uploaded to 
the app ahead of the study. The eighteen material type categories 
recorded in the app were: glass, ceramic, plastic foam, plastic rubber, 
soft plastic, hard plastic, sanitary waste, feces, leather, food, wood, 
paper, cardboard, cloth, metal, tobacco-related, concrete or asphalt, and 
other litter. At the time of writing, image-based AI classification is also 
available in Rubbish, but this functionality was not available at the time 
of the study and was not used. Voice recognition to command the app 
was trialed in 2 surveys but did not provide improved time efficiency 
over manual entry because few pieces of waste were found per survey 
and some of the voice automated entries had to be reentered manually. 
For each image taken, Rubbish kept track of geolocation and timestamp 
using the phone’s readings, and merged the data across the two sur
veyors’ devices. Waste was collected and removed whenever possible. 
Each survey ended after a 1 km distance was covered (as measured by 
the Garmin watch) or 100 pieces were logged, whichever came first. The 
100-piece limit was set to ensure that high-quality data was collected for 
all items by avoiding survey fatigue, and to prevent safety issues that 
could arise from unexpectedly staying in a remote area for too long 
without sufficient supplies. Recording 100 pieces takes approximately 1 
h for a team of 2 and results in a 10 % uncertainty in waste type and 
abundance for the individual site, based on power analysis. To complete 
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the survey, a georeferenced photo was taken of the end of the trail and 
the surveyors added additional notes within the Rubbish app describing 
the trail conditions (e.g., the number of surveyors, snow cover on the 
trail, whether the survey was conducted at night) (Fig. 2). Although a 
specific application (Rubbish) was used to record data during the sur
veys, there is no reason why a different waste recording application or 
approach could not record comparable data, so long as the field team has 
access to the date and time, their location relative to the trail distance, a 
camera to take photos of the waste, and a way to record observed waste 
types and counts.

Eight surveys were repeated (trail kilometers: 640, 960, 1440, 1904, 
2400, 2912, 3360, 3840) immediately after survey completion, with the 
same number of surveyors, to assess the amount of waste that may have 
been missed during the first survey. Because these surveys required an 
additional 2 km of hiking in the opposite direction, repeat surveys were 
minimized to conserve resources. A detailed standard operating pro
cedure and video explaining the data collection method are available in 
the supplemental information.

2.2. Analysis

2.2.1. Data cleanup
All data were aggregated from the Rubbish application programming 

interface (API), a data portal (Rubbish, 2024b). The API provided im
ages, waste categories assigned by the surveyors, survey location, 
timestamp, saved notes, and other data that we did not leverage in this 
study. Survey locations were georeferenced to the nearest mile marker 
from the Pacific Crest Trail Association dataset, which provides geo
spatial points of each mile marker location (Data and [WWW Docu
ment], 2024). Quality control surveys, where surveyors reassessed the 
same stretch of trail, were labeled as such and used only for calculating 
the single-survey bias. Data were quality-checked by the study authors. 
Images and survey locations were visually inspected to verify that the 
waste characteristics described by the surveyors were accurate and not 
double-counted. Records that the trail crew confirmed as inaccurate 
were corrected or removed from the dataset.

Data were standardized to prepare for statistical analysis, which 
assessed waste abundance and type. Waste categories were standardized 
to closely follow the categorization recommendations in the Trash 

Taxonomy (Hapich et al., 2022, 2024). The Trash Taxonomy is a cate
gorization framework developed to enhance comparability and inter
pretability between waste surveys. Waste material types (described in 
2.1) were the only characteristics labeled in the field, while waste 
morphology and brand were extracted from the images. Determining the 
material type often requires handling the object, whereas morphology 
and brand can be determined from the images. For sites where the 
surveyors reached 100 pieces before the end of the 1 km survey (n = 2), 
we extrapolated the counts to the full survey length by multiplying the 
observed count by the ratio between 1 km and the distance surveyed 
before reaching the 100th piece. Waste was not detected in 35 % of 
surveys. These zero counts can be highly problematic for regression and 
other statistical tests, producing inaccurate results (e.g., zero values 
cannot be log-transformed). It is considered best practice to replace 
these values with realistic values between zero and the limit of detection 
(here a count of 1)(Eriksen et al., 2023; Helsel, 2006). We corrected the 
zero values for abundance assessment only (not waste type) by using a 
regression on ordered statistics (cenros) model (Lee, 2020) to predict 
count values between one and zero. The model assumed the true un
derlying data came from a log-normal distribution and used the distri
bution of the data above one to predict the zero values. Waste 
abundance was estimated by calculating the mean count observed and 
multiplying it by the entire length of the trail. Confidence intervals (95 
%) for all mean estimates were estimated using bootstrapping with 
replacement (n = 10,000) of the mean values.

2.2.2. Result Calculations
Waste abundance was calculated as the total waste observed in each 

survey divided by the survey distance. The relationship between dis
tance to roads and trail waste abundance was assessed by taking the 
beginning mile marker of each survey and buffering it by 36 1.25-factor 
increases: from 9 m up to 22,959 m. The buffers were then searched to 
determine if a road occurred within the buffer in Open Street Map 
(OpenStreetMap contributors, 2017), and the smallest buffer was 
assigned the distance to nearest road value for that point. A log–log 
linear regression was used to assess the relationship.

The most common waste materials and morphologies were assessed 
by calculating the mean percentage across all surveys. To do this, we 
first calculated the percentage of each type during each survey and then 

Fig. 1. Map of the Pacific Crest Trail. Trail centerline in green stretches from Mexico to Canada through three of the United States states labeled on the map. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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averaged (mean) across the surveys. Confidence intervals (95 %) for all 
mean estimates were estimated using bootstrapping with replacement 
(n = 10,000) of the mean values.

There were several survey conditions that we thought could bias the 
calculation of the mean waste count. Rather than excluding these sur
veys, these conditions were recorded and then assessed for their effect 
on the mean waste counts. The conditions evaluated included the effect 
of surveying at night by headlamp (n = 4; 2 % of surveys), the effect of 
surveying snow-covered trails (n = 22; 9 % of surveys), and the effect of 
having different numbers of surveyors (20 surveys had > 2 surveyors; 8 
% of surveys). Additionally, we evaluated data from the eight surveys (3 
% of surveys) that were repeated to estimate the amount of waste that 
may have been missed in the first survey. We estimated the bias of the 
night and snow effects by dividing the mean waste counts observed 
during surveys under these conditions by the mean waste counts 
observed during all other surveys. The resurvey bias was assessed by 
dividing the mean count observed on the first survey by the mean count 
observed on the second survey. The effect of the number of surveyors 
was assessed by fitting a linear regression between the waste count per 
km and the number of participating surveyors. One survey, which 
involved 5 people, was excluded from this specific analysis due to its 
outsized influence on the relationship, as the observed waste count in 
the survey was zero. Twelve surveys did not report a value for the 
number of surveyors. These surveys were excluded from the regression 

analysis but were used for all other analyses, including waste count 
estimation purposes. Missing surveyor numbers were replaced with the 
mean number of surveyors for the waste count estimation. This regres
sion was then used to predict the mean waste count if all surveys had 
been completed with four surveyors. The predicted mean was then 
compared with the raw mean. We did not intend to correct for these 
biases in the final estimates, as this research is still in development; 
however, we assessed how a theoretical correction might impact the 
observed mean counts.

Statistics were calculated in R (R Core Team, 2020) (version 4.3.3) 
using packages jsonlite (Ooms, 2014), data.table (Dowle and Srinivasan, 
2020), dplyr (Wickham et al., 2020), sf (Pebesma, 2018), tidyverse 
(Wickham et al., 2019), mapview (Appelhans et al., 2022), mapdata 
(Becker, 2022), RcolorBrewer (Neuwirth, 2022), httr (Wickham, 2023), 
ggplot2 (Wickham, 2016), rvest (Wickham, 2022), NADA (Lee, 2020), 
tidyr (Wickham and Girlich, 2022), ggbreak (Shuangbin et al., 2021), 
stringr (Wickham, 2019). All data and code are shared openly with this 
manuscript, ensuring the entire data analysis workflow is reproducible.

3. Results and Discussion

3.1. Abundance

Waste counts at the start of the trail in Southern California were 

Fig. 2. Data collection: Before the start of the study, the surveyors downloaded the Rubbish IOS application and created a team called “no trace trails” so that all 
surveys conducted by the team would be grouped in the app interface. A predetermined list of waste categories was uploaded to the app for use in categorizing items 
found. On trail, at the start of each survey (step 1), a georeferenced photo of the start of the survey was taken with a phone camera, and a GPS watch was used to track 
the distance of the transect (1 km). The surveyors then began walking down the trail, looking for waste on the trail or within approximately 2 m of the trail. When 
waste was encountered (step 2), a photo was taken using the Rubbish mobile app, and the waste was manually categorized according to the previously uploaded list. 
Note: The AI tools available in the Rubbish app were not used in this study. When the surveyors reached the end of the transect (step 3), the survey was ended in the 
Rubbish app, and the surveyors added additional notes for use in downstream data analysis (e.g., the number of surveyors, snow cover on the trail, whether the 
survey was conducted at night). Data analysis: Data collected during the survey was exported through the Rubbish data portal. The Rubbish application did not 
process the images or data outside of recording the surveyor’s direct input and location tracking. Data locations were cross-validated using georeferenced start and 
end photos collected throughout the survey. All data were checked by the study authors. Exported images of the waste were assessed by the authors, and waste 
morphology was manually categorized. Notes added at the end of each transect were used to categorize the survey conditions.
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relatively high, decreasing as hikers entered the Sierra Nevada moun
tains, then increasing closer to Oregon, and decreasing as hikers traveled 
further north into Washington (Fig. 3). Waste was found in 65 % of the 
surveys. Several large waste concentrations were apparent in the data. 
High waste sections of the trail were found to be related to the proximity 
of the trail section to roads, with less remote areas like Southern Cali
fornia and Oregon having a higher abundance of waste than the more 
remote Sierra Nevadas and Northern Washington (Fig. S2).

We estimated the total waste count on the trail to be 53,189 pieces 
(95 % confidence interval: 12,396–129,742) using the mean count per 
km of 12.5 (95 % confidence interval: 2.9–30.4) and extrapolating it to 
the entire trail. This average is similar to the 2.4 – 26.4 pieces/km range 
reported for macroplastics on trails in the Italian Alps (Parolini et al., 
2021) and waste counts reported on trails in Maine and New Hampshire 
of 1.2–5.5 pieces/km (Wilkerson and Whitman, 2009). Given that the 
effects of resurveying and the number of surveyors suggested under
reporting, this estimate is likely low by a factor of 2. However, for now, 
we feel more confident in the raw estimate and maintain that more 
research is needed to fully understand these biases before using them for 
extrapolation.

We compared the mean waste abundance on the Pacific Crest Trail 
(12.5 pieces per km) to concentrations in two other USA west coast 
systems studied by the authors using similar methodologies. A study in 
the Inland Empire of California found an average waste generation rate 
of 40,349 pieces per km per year (three orders of magnitude greater) on 
urban roadsides (Cowger et al., 2022), and a separate study found 2,697 
pieces per km (two orders of magnitude greater) in urban river riparian 
areas in Pinole, California (Cowger et al., 2023). The Pacific Crest Trail 
was relatively pristine in comparison to either of these urban settings.

A clear and expected relationship existed between distance to the 
nearest road and survey count (Fig. 4). The log–log linear regression 
statistics were log10(count) = -0.5 * log10(distance) + 2, slope p value 
= 10-12, y intercept p value = 10-12, adjRsquared = 0.2. This relationship 
could be used to predict a baseline of waste that regulators, land man
agers, and wilderness users can set a goal to achieve. We estimate the 
backcountry (10 km away from roads) has a count of 0.4 pieces per km 
(i.e., 50 % chance of finding one piece per 1 km). We used the same 

model to estimate that near-road (survey start 10 m from a road) 
stretches of the trail had 13 pieces per km. Future work could improve 
upon the model’s R2 of 0.2 (20 % of variance explained). It is likely that 
confounding factors, such as locations of waste receptacles, proximity to 
parking lots, trail popularity (e.g., average number of people on the trail 
each day), or information from hiking social networking applications (e. 
g., AllTrails) could explain some of the remaining variance.

3.2. Types

The most common waste materials were soft plastic (36 %), metal 
(11 %), sanitary waste (10 %), and hard plastic (8 %) (Fig. 5). Soft plastic 
is commonly ingested by animals, leading to intestinal issues (Ayala 
et al., 2023). We did observe soft plastic inside coyote scat (Fig. S 1) 

Fig. 3. Counts observed along the trail with trail location on the x axis and 
waste abundance on the y axis. Blue smooth line with gray confidence intervals 
shows a generalized additive model with a smoothing spline to give an idea of 
the rough moving average. The center flat black line is the 1 count line; all data 
points below the line are extrapolated using cenros nondetect techniques. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 4. Observed waste counts per km (y axis) versus distance to nearest road 
(m) (x axis). Both axes are log10 scaled. A log–log linear regression (blue line) 
and 95% confidence interval (gray area) is shown. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 5. The top material types found on the trail. The mean percentage is 
plotted on the x-axis, and the y-axis represents the type of waste material. Bars 
represent the mean percentage, and whiskers indicate the 95% confidence in
tervals. Types are sorted from greatest (top) to least (bottom).
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during one of the surveys, demonstrating that this impact may be rele
vant to the Pacific Crest Trail. However, this was only observed once, so 
its prevalence remains uncertain. Sanitary waste (e.g., soiled toilet 
paper) was the third most common waste material on the trail and 
presents biohazards to humans and animals. Textile pieces were one of 
the least common material types (2 %) observed on the trail, but 
microfibers are the most prevalent microplastic on trails (Forster et al., 
2023). This suggests that microfibers in the environment may primarily 
come from textile shedding during use rather than fragmentation of 
large objects discarded on the trail. Food was the fifth-highest category 
(6 %), typically consisting of orange peels and sunflower seeds. These 
non-indigenous biodegradable materials are one of the lesser-known 
considerations for land stewardship. However, it is essential for 
normal ecosystem functioning to avoid introducing non-native biolog
ical materials into the wilderness (Marion et al., 2016). Leaving food 
waste encourages animals to interact with hikers and could introduce 
non-native species. Variation in waste materials across the trail did not 
follow a clear or consistent pattern (Fig. S 3).

Fragments (47 %), package ends (7 %), and wipes (6 %) were the 
most prevalent waste morphologies (Fig. 6). Fragments come from the 
breakdown of larger products (Julienne et al., 2019), are typically close 
to the particle size range of microplastics (< 5 mm), and are often more 
numerous by count but less abundant by mass (Kaandorp et al., 2023). 
Package ends come from the corners of rip-off tops of soft plastic 
packages meant for outdoor use (typically food packages). Generally, 
the prevalence of food-related morphologies (package ends, food 
wrappers, sunflower seeds, bottles, bottle caps) is unsurprising (Cowger 
et al., 2024b; Morales-Caselles et al., 2021; Parolini et al., 2021) as food 
is often consumed on the go, has a very short lifetime, and the packaging 
has a very low utility after the food is consumed compared to the other 
waste morphologies. Food packaging is common in other systems 
(Cowger et al., 2024b; Morales-Caselles et al., 2021) and has also been 
found in other trail waste studies (Parolini et al., 2021). Additionally, at 
the top of the list were morphologies not typically found in other eco
systems, such as outdoor gear list tape and hiking pole ends (2 % each) 
(Morales-Caselles et al., 2021). These products are used abundantly by 
hikers but are less likely to be used along roadsides or at beaches, for 
example. We collected data on visible brands on waste, but only found 
48 pieces with identifiable brands. Fragments (the most prevalent type) 
do not typically have a brand on them. Future work could develop new 

methods for identifying producers of these fragments, as we are unaware 
of any suitable techniques, and these metrics would benefit companies 
tracking progress on their environmental and sustainability goals.

3.3. Method assessment

3.3.1. Night effect
Occasionally, the surveyors reached a survey location after dark 

because there were insufficient camping locations prior to the survey. 
While this was rare, instead of skipping the survey, four surveys were 
conducted at night using headlamps to spot waste. The surveyors 
observed unique types of waste during these surveys, which were 
reflective under the direct headlamp light and waste that they thought 
may not be as visible under day conditions. The average count of waste 
found during daylight surveys was 12.3 (2.9–29.9), and the average 
during night surveys was 1.3 (0.1–4.0). We did not conduct a large 
enough assessment of these differences to be highly confident in the 
results, but this initial evidence suggests that night surveys may un
derestimate the waste count (potentially due to low ability to see the 
waste). However, correcting the night surveys using this relationship 
only changed the mean count per km estimate for all surveys from 12.5 
to 12.6 because there were so few night surveys. Future work could 
explicitly be designed to assess if some waste types are more visible at 
night and by splitting the total number of surveys to have half of each 
type.

3.3.2. Snow effect
Several survey locations (21 out of 251) were covered with snow 

during the survey. Instead of skipping these surveys, the effect of snow 
cover on the waste counts was evaluated. The mean waste count of 
snow-covered sites was 0.9 (0.5–––1.4), and the mean waste count of 
sites without snow was 13.6 (3.2–––33.6). Snow significantly affected 
the ability to observe waste, resulting in a 94 % reduction in recorded 
waste. This was expected because fresh snow would cover waste on the 
trail, and therefore, only very recent waste would be observable. Cor
recting the snow surveys using this relationship would change the mean 
waste count per km estimate from 12.5 to 13.5. Similar to the night 
effect, the relatively small overall impact on waste count per km is likely 
because few survey locations were snow-covered, and the adjustment 
would only apply to them. However, future studies may want to consider 
this effect in their survey design by avoiding snow-covered sites or 
conducting surveys during snowless seasons to standardize the 
assessment.

3.3.3. Resurvey effect
Eight surveys were repeated to determine if the surveyors had missed 

any waste during their initial pass. The mean waste count of first-pass 
surveys was 6.5 (1–––13.7), while the repeat survey detected an addi
tional 2.9 (0.5–––5.9) pieces on average. The 44 % underestimation of 
the waste count from the first-pass survey alone was large, suggesting 
that additional repeat surveys could have improved accuracy. If we 
corrected all surveys using this relationship to predict the waste counts if 
all surveys were repeated, the mean count per km estimate would in
crease from 12.5 to 28.4, suggesting this effect could greatly impact true 
counts. California waste monitoring surveys in rivers have been 
demonstrated to have a similar magnitude of bias (Moore et al., 2021). 
Future studies could improve on this method by increasing the number 
of repeat surveys and further validating this effect. While we repeated 
approximately 3 % of our surveys, increasing the number of repeated 
surveys to 10 % of all surveys, as time and resources allow, would 
provide a more accurate estimate.

3.3.4. Number of surveyors effect
The number of surveyors ranged from 1 to 4, with 59 surveys 

involving 1 person, 163 surveys involving 2 people, 16 surveys involving 
3 people, and 4 surveys involving 4 people. The mean number of people 

Fig. 6. The top morphological types found on the trail. The mean percent is on 
the x-axis, and the y-axis is the waste morphology. Bars represent the mean 
percentage, and whiskers indicate the 95% confidence intervals. Only mor
phologies larger than 1% are shown. Types are sorted from greatest (top) to 
least (bottom).
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was 1.9. A log-linear regression analysis was performed between the 
log10-transformed waste count and the raw number of surveyors (Fig. 7). 
The regression statistics were log10(count) = 0.2(surveyors) − 0.3, with 
a slope p-value of 0.04, an intercept p-value of 0.06, and an adjusted R- 
squared of 0.01. If we corrected all surveys using this relationship to 
estimate the waste counts that would have been observed if 4 people had 
conducted all surveys, it would change the mean waste count per km 
estimate from 12.5 to 25.8. This factor of two increase is likely because 
two surveyors conducted most surveys. The resurvey effect and the 
number of surveyors effect were similar in size and impact, suggesting 
that resurveying has a similar effect to doubling the number of people, 
adding further evidence to support the validity of the observed effects. 
Future surveys could improve on the methods of this study by having a 
larger team (> 4) conduct all surveys.

3.4. Management recommendations

Based on the results found in this study, we propose three priority 
actions to reduce waste on the trail: cleanup, reengineering of materials, 
and adjusting waste management targets. To make the best progress on 
any of these recommendations, all pillars of society (government, 
community, and business) should work together. Road proximity 
strongly correlated to waste abundance, suggesting that targeted 
cleanups near roads, e.g., at trailheads, would greatly reduce waste on 
the trail. Wilderness waste management education for hikers appears to 
be keeping waste at low levels, relative to near-road conditions, even 
though many people hike the Pacific Crest Trail each year. The practices 
of hikers cleaning up after themselves and others should continue (Hu 
et al., 2018).

Manufacturers of goods used outdoors also have a role in helping 
address waste. Plastics were prevalent and are known to be persistent in 
the environment; there are likely better alternatives. Many outdoor food 
products come in individually wrapped packages, which could be 
replaced by bulk goods and reusable packaging wherever possible 
(Bergmann et al., 2023). Package ends were also prevalent, indicating a 
design flaw, as packages with serrated rippable ends are made to be 
broken into many small pieces easily. Packages that are designed to 
remain intact would be better to avoid environmental loss. Hiking pole 
tips and clothing tags often have a similar issue; they frequently fall off 

during use and could be better secured to the product. Wet wipes used 
for hygiene were prevalent on the trail. These products are often mar
keted as “flushable” which gives the perception that they are degradable 
or environmentally friendly, but they are neither (Allison et al., 2023). 
Manufacturers must rectify this inaccurate messaging and enhance their 
marketing efforts to promote the responsible use and management of 
their products (e.g., “wipes should be packed out of the wilderness and 
disposed of in a waste receptacle”). The composition of waste detected 
on the Pacific Crest Trail reflects the composition of products people use 
in the wilderness; therefore, producers should consider the toxicity, 
persistence, and health implications of products marketed for outdoor 
use.

Road waste management in California has established a threshold for 
acceptable conditions of 100 pieces per km (CalTrans 2023). A road 
waste threshold higher than the current near-road wilderness baseline 
estimates (13 pieces per km) could lead to increased wilderness impacts 
from road waste. This finding suggests that the current California 
thresholds should be at least one order of magnitude lower to maintain 
near-road wilderness conditions. Ideally, the long term goal would be to 
achieve the backcountry baseline of 0.4 pieces per km along all road
sides. We fully acknowledge that achieving a wilderness target on a road 
is a lofty goal and one that will not come without considerable effort and 
time. However, perhaps there are already roads out there that meet this 
threshold, and they should be modeled after and celebrated.

4. Conclusions

We estimate that there were 53,189 pieces of waste on the Pacific 
Crest Trail in 2023. The strongest predictor of trail waste abundance was 
proximity to nearest road with trails close to roads having the highest 
waste abundance. The most prevalent waste types were soft plastic and 
fragments. Assessment of this new method demonstrated that it under
estimated waste abundance, with resurveys and doubling the number of 
surveyors increasing observed counts by 100 %. Night surveys and 
surveying snow-covered areas also considerably reduced observed 
counts in those locations, but few surveys were conducted under such 
conditions, so they did not have a significant impact on the research 
findings. All pillars of society, including government, community, and 
business, should collaborate to address trail waste, beginning with tar
geted cleanups, developing new products with reduced environmental 
footprints, and advocating for ambitious waste management goals.
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