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ARTICLE INFO ABSTRACT

Keywords: Mismanaged waste threatens the environment and human health. To better understand waste sources and im-
Wilderness pacts along recreation trails, we surveyed the entire 4,270 km Pacific Crest Trail, conducting 251 waste surveys
Waste

(1 km every 16 km). Surveys counted and classified waste within 2 m of the trail. We estimated that there were
53,000 pieces (12,000-130,000) of waste along the trail in 2023, based on a mean count of 12.5 pieces per km.
Waste count had a negative log-log linear relationship with distance to the nearest road. Far in the backcountry
(survey start 10 km from a road), waste was sparse (0.4 pieces per km), but close to roads (10 m from a road),
waste increased to 13 pieces per km. The most common material types were soft plastic (36 %), metal (11 %),
and sanitary waste (10 %). The most common morphologies were fragments (47 %), package ends (7 %), and
wipes (6 %). Brands visible on waste were rare (48 pieces). We assessed the bias of this survey method, showing
that it underestimated waste counts by 50 % compared to conducting the survey twice or with twice the number
of surveyors. Surveying trail sections with snow cover or at night also reduced observed counts. These findings
suggest that cleanup near roads, waste handling education, reduced plastic use, and innovation from outdoor
consumer product producers could reduce trail waste. We propose that a baseline value of 0.4 pieces per km
should be a waste management target to achieve for all spaces.

Plastic pollution
Recreation trails
Pacific Crest Trail
Land management

1. Introduction

Mismanaged waste (e.g., plastic, sanitary products, tobacco prod-
ucts) is a major concern for the environment and human health
(Thompson et al., 2024; Umar Donuma et al., 2024). There are clear
impacts on terrestrial organisms from ingesting waste, which can cause
intestinal blockage leading to death (Eriksen et al., 2021; Hailat et al.,
1997; Meyer et al., 2023). Additionally, waste may leach hazardous
chemicals (Coffin et al., 2018) and fragment with time into smaller
pieces (Andrady, 2011), becoming a dominant source of anthropogenic
microparticles (e.g., microplastics) with additional ecological conse-
quences (Barnes et al., 2009). Waste can also present hazards to humans,

such as biological illnesses (e.g., contaminated tissue paper), invasive
species (e.g., food waste), or lacerations (e.g., broken glass or metal).
The backcountry (> 10 km from roads) is an important system for
preservation of animals and enjoyment of humans (Mittermeier et al.,
2003) and waste should not be present, but it is. Wilderness waste is
difficult to remediate due to access limitations, and materials like plastic
can persist (Chamas et al., 2020) for hundreds of years, accumulating in
the environment. Trails are one of the primary conduits that humans use
to participate in the wilderness (Snead et al., 2011).

To date, few surveys have been conducted on trail waste to quantify
abundance, type, and controls. An early study in 1989 (Cutter et al.,
1991) found that waste along pathways in New Jersey state parks (6600
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pieces per km) had 50 % less waste than urban areas and that cigarette
waste was the most prevalent type. A more recent study (2009) of rec-
reational trails in New Hampshire and Maine found 1-6 pieces per km,
with motorized trails having 5 times more waste than non-motorized
trails (Wilkerson and Whitman, 2009). In contrast, a survey of macro-
plastics on trails in the Italian Central Western Alps found that food
packaging was the most prevalent, with 2-26 items per km, demon-
strating the waste impact from mountaineering activities (Parolini et al.,
2021). Along term study of trail waste in Poland found that mismanaged
waste generated per hiker decreased by 30 % between 2012 and 2017
(Religa and Adach, 2020). These studies highlight the complexity of
managing wilderness waste due to the diversity of waste abundance,
type, sources, hotspots, and management opportunities, and underscore
the need for continued scientific investigation.

The Pacific Crest Trail travels 4,270 km from the United States
border with Mexico to Canada through California, Oregon, and Wash-
ington, crossing through 7 national parks, 24 national forests, and 48
congressionally designated wilderness areas. It is estimated that hun-
dreds of thousands of people (“PCT visitor use statistics,” 2024) use the
trail annually with most use happening during Spring, Summer, and
Fall. Trails are an extension of the human transportation network into
the wilderness, although distinct from roads by management and use
(Snead et al., 2011). Some sections of the Pacific Crest Trail even walk
along the side of a major road. California is leading the way for the
country as one of the first states in the United States to define targets for
low waste abundance in roadside environments (~100 pieces per road
km) and mandate monitoring, mitigation, and reporting (CalTrans 2023
Trash Assessment and Implementation Plan, 2023). The 100 pieces per km
threshold has emerged from over a decade of research to determine a
baseline value for “low” waste conditions on roadsides that all roads in
California must reach. It is bold and already having positive impacts on
the environment. We asked the question, how close is this threshold to
the cleanliness of a typical wilderness trail? Reaching that target would
ensure that roads do not contribute to waste in the environment more
than a typical wilderness trail would. The diversity in management,
ecosystem, and visitor use makes the Pacific Crest Trail ideal for con-
ducting generalizable research that applies to many wilderness man-
agement groups and policy applications.

The study aimed to assess the abundance and type of waste (> 1 cm)
across the entire Pacific Crest Trail, identify waste sources, establish
baseline conditions of waste, develop a new method for reproducibly
measuring trail waste, and identify opportunities for improved wilder-
ness waste management. We estimated the total waste along the trail
and calculated the average concentration to establish a baseline and
assess hotspots. Our primary hypothesis was that waste abundance
correlated with the distance to the nearest road. If so, we planned to use
that relationship to estimate average conditions near roads versus
backcountry conditions. Additionally, we evaluated the percentage of
each type of waste to identify priority pollutants that could be targeted
for prevention efforts to reduce wilderness waste. A new method for
surveying trail waste was validated which when repeated will be able to
assess trends through time. We thoroughly evaluated the biases associ-
ated with the methods employed and provided recommendations for
improving future methodologies. Lastly, we discussed the management
opportunities apparent from the findings. The novelty of this study
comes from the total distance covered (4270 km), number of waste
surveys (251), and scope (deep wilderness > 10 mi from a road). The
next most extensive study we could find covered 335 km and conducted
112 surveys, mostly on easily accessible motorized trails (Wilkerson and
Whitman, 2009). This provided us with high statistical power to address
the stated aims and enabled us to tackle regional to national scale
questions about wilderness trail waste management.
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2. Methods
2.1. Survey approach

The study surveyed waste along the 4270 km Pacific Crest Trail from
March to September 2023. A power analysis prior to the start of the
study estimated that 204 surveys were required to obtain a 7 % uncer-
tainty in waste concentration and characterization methods (Cowger
et al., 2024a). The survey was designed to maximize data quality and
richness, while minimizing survey time and effort to increase the like-
lihood of success in completing a long trail survey. The surveyors con-
ducted waste surveys every 16 km (10 mi) on the Pacific Crest Trail
(Fig. 1), resulting in a total of 251 unique surveys (1/16th of the entire
trail length). Thirteen surveys were skipped due to trail closures or
unsafe trail conditions. Surveys began at the US-Mexico border and
extended to the US-Canada border. Sections of the trail through the
California Sierra Nevada mountains from km 1132 (lat-lon = 36.024,
—118.134) to 2144 (lat-lon = 40.261, —121.338) were initially skipped
due to record-breaking snowpack. After completing the section from km
2144 to the US-Canada border, the surveyors finished the skipped sec-
tion going north to south.

The start point of each survey was identified using the Far-Out app
([AuthorError] et al., 2024), which tracks GPS position relative to the
trail distance. The Rubbish app (Rubbish, 2024a) and a Garmin watch
were activated to record waste data and the 1 km distance surveyed,
respectively. Rubbish is a cell phone application for collecting waste
data. It allows for recording survey tracks, images, waste labels, time
stamps, and geolocations. A georeferenced photo of the trail survey start
was taken with a phone camera. The surveys were typically completed
by one or two primary surveyors. To achieve the broader impact goal of
engaging hikers about waste management, additional volunteers occa-
sionally assisted with the surveys and were trained in the survey
methodology. The number of surveyors was recorded in the notes of the
Rubbish app for each survey to track potential surveyor number bias.
Survey conditions were not always predictable, and to conduct as many
surveys as possible safely, the surveyors occasionally had to survey at
night and in snow-covered conditions (both conditions were expected to
reduce waste counts). Night and snow surveys were labeled in the notes
of the Rubbish app.

During the survey, surveyors would walk in the center of the trail,
one behind the other. Any waste observed on the trail or within
approximately 2 m (hiking poles out with arms extended) of either side
of the trail was recorded. Using the Rubbish app, every piece of waste
was recorded by taking an image of the item and labeling it by manually
selecting the material type from a list of categories that were uploaded to
the app ahead of the study. The eighteen material type categories
recorded in the app were: glass, ceramic, plastic foam, plastic rubber,
soft plastic, hard plastic, sanitary waste, feces, leather, food, wood,
paper, cardboard, cloth, metal, tobacco-related, concrete or asphalt, and
other litter. At the time of writing, image-based Al classification is also
available in Rubbish, but this functionality was not available at the time
of the study and was not used. Voice recognition to command the app
was trialed in 2 surveys but did not provide improved time efficiency
over manual entry because few pieces of waste were found per survey
and some of the voice automated entries had to be reentered manually.
For each image taken, Rubbish kept track of geolocation and timestamp
using the phone’s readings, and merged the data across the two sur-
veyors’ devices. Waste was collected and removed whenever possible.
Each survey ended after a 1 km distance was covered (as measured by
the Garmin watch) or 100 pieces were logged, whichever came first. The
100-piece limit was set to ensure that high-quality data was collected for
all items by avoiding survey fatigue, and to prevent safety issues that
could arise from unexpectedly staying in a remote area for too long
without sufficient supplies. Recording 100 pieces takes approximately 1
h for a team of 2 and results in a 10 % uncertainty in waste type and
abundance for the individual site, based on power analysis. To complete
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Fig. 1. Map of the Pacific Crest Trail. Trail centerline in green stretches from Mexico to Canada through three of the United States states labeled on the map. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the survey, a georeferenced photo was taken of the end of the trail and
the surveyors added additional notes within the Rubbish app describing
the trail conditions (e.g., the number of surveyors, snow cover on the
trail, whether the survey was conducted at night) (Fig. 2). Although a
specific application (Rubbish) was used to record data during the sur-
veys, there is no reason why a different waste recording application or
approach could not record comparable data, so long as the field team has
access to the date and time, their location relative to the trail distance, a
camera to take photos of the waste, and a way to record observed waste
types and counts.

Eight surveys were repeated (trail kilometers: 640, 960, 1440, 1904,
2400, 2912, 3360, 3840) immediately after survey completion, with the
same number of surveyors, to assess the amount of waste that may have
been missed during the first survey. Because these surveys required an
additional 2 km of hiking in the opposite direction, repeat surveys were
minimized to conserve resources. A detailed standard operating pro-
cedure and video explaining the data collection method are available in
the supplemental information.

2.2. Analysis

2.2.1. Data cleanup

All data were aggregated from the Rubbish application programming
interface (API), a data portal (Rubbish, 2024b). The API provided im-
ages, waste categories assigned by the surveyors, survey location,
timestamp, saved notes, and other data that we did not leverage in this
study. Survey locations were georeferenced to the nearest mile marker
from the Pacific Crest Trail Association dataset, which provides geo-
spatial points of each mile marker location (Data and [WWW Docu-
ment], 2024). Quality control surveys, where surveyors reassessed the
same stretch of trail, were labeled as such and used only for calculating
the single-survey bias. Data were quality-checked by the study authors.
Images and survey locations were visually inspected to verify that the
waste characteristics described by the surveyors were accurate and not
double-counted. Records that the trail crew confirmed as inaccurate
were corrected or removed from the dataset.

Data were standardized to prepare for statistical analysis, which
assessed waste abundance and type. Waste categories were standardized
to closely follow the categorization recommendations in the Trash

Taxonomy (Hapich et al., 2022, 2024). The Trash Taxonomy is a cate-
gorization framework developed to enhance comparability and inter-
pretability between waste surveys. Waste material types (described in
2.1) were the only characteristics labeled in the field, while waste
morphology and brand were extracted from the images. Determining the
material type often requires handling the object, whereas morphology
and brand can be determined from the images. For sites where the
surveyors reached 100 pieces before the end of the 1 km survey (n = 2),
we extrapolated the counts to the full survey length by multiplying the
observed count by the ratio between 1 km and the distance surveyed
before reaching the 100th piece. Waste was not detected in 35 % of
surveys. These zero counts can be highly problematic for regression and
other statistical tests, producing inaccurate results (e.g., zero values
cannot be log-transformed). It is considered best practice to replace
these values with realistic values between zero and the limit of detection
(here a count of 1)(Eriksen et al., 2023; Helsel, 2006). We corrected the
zero values for abundance assessment only (not waste type) by using a
regression on ordered statistics (cenros) model (Lee, 2020) to predict
count values between one and zero. The model assumed the true un-
derlying data came from a log-normal distribution and used the distri-
bution of the data above one to predict the zero values. Waste
abundance was estimated by calculating the mean count observed and
multiplying it by the entire length of the trail. Confidence intervals (95
%) for all mean estimates were estimated using bootstrapping with
replacement (n = 10,000) of the mean values.

2.2.2. Result Calculations

Waste abundance was calculated as the total waste observed in each
survey divided by the survey distance. The relationship between dis-
tance to roads and trail waste abundance was assessed by taking the
beginning mile marker of each survey and buffering it by 36 1.25-factor
increases: from 9 m up to 22,959 m. The buffers were then searched to
determine if a road occurred within the buffer in Open Street Map
(OpenStreetMap contributors, 2017) and the smallest buffer was
assigned the distance to nearest road value for that point. A log-log
linear regression was used to assess the relationship.

The most common waste materials and morphologies were assessed
by calculating the mean percentage across all surveys. To do this, we
first calculated the percentage of each type during each survey and then



V. McGruer et al.

Data collection

Before study Step 1: Start survey
* Download Rubbish app * Take photo of trail
« Createteam « Start tracking in app

* Upload waste categories + Walkand look for waste

rubbish

Waste Management 206 (2025) 115063

Step 3: End survey
End survey tracking
Type additional notes
Take photo of trail

Step 2: Record waste
* Take photo of waste (in app) *
* Manually select category .
* AltoolsNOT usedinstudy

e QD -
Rubbish Run Summary (223

=

LY y
k g
Data analysis
Step 1: Data export from Rubbish mobile app
Eoto Lat Long ID Waste yQ i description

URL

URL 36.303 -118.12 NTT1 tobacco 1 mile 730, 2 surveyors

URL 36.396 -118.16 NTT2 soft plastic 1 mile 740, 2 surveyors

URL 36.397 -118.15 NTT2 metal 1 mile 740, 2 surveyors

Step 2: Manual data cleaning

v" Cross-validate location data using start/end photos
v" Manually classify waste morphology from saved image
v’ Classify the survey conditions from the transect description

Fig. 2. Data collection: Before the start of the study, the surveyors downloaded the Rubbish IOS application and created a team called “no trace trails” so that all
surveys conducted by the team would be grouped in the app interface. A predetermined list of waste categories was uploaded to the app for use in categorizing items
found. On trail, at the start of each survey (step 1), a georeferenced photo of the start of the survey was taken with a phone camera, and a GPS watch was used to track
the distance of the transect (1 km). The surveyors then began walking down the trail, looking for waste on the trail or within approximately 2 m of the trail. When
waste was encountered (step 2), a photo was taken using the Rubbish mobile app, and the waste was manually categorized according to the previously uploaded list.
Note: The Al tools available in the Rubbish app were not used in this study. When the surveyors reached the end of the transect (step 3), the survey was ended in the
Rubbish app, and the surveyors added additional notes for use in downstream data analysis (e.g., the number of surveyors, snow cover on the trail, whether the
survey was conducted at night). Data analysis: Data collected during the survey was exported through the Rubbish data portal. The Rubbish application did not
process the images or data outside of recording the surveyor’s direct input and location tracking. Data locations were cross-validated using georeferenced start and
end photos collected throughout the survey. All data were checked by the study authors. Exported images of the waste were assessed by the authors, and waste

morphology was manually categorized. Notes added at the end of each transect were used to categorize the survey conditions.

averaged (mean) across the surveys. Confidence intervals (95 %) for all
mean estimates were estimated using bootstrapping with replacement
(n = 10,000) of the mean values.

There were several survey conditions that we thought could bias the
calculation of the mean waste count. Rather than excluding these sur-
veys, these conditions were recorded and then assessed for their effect
on the mean waste counts. The conditions evaluated included the effect
of surveying at night by headlamp (n = 4; 2 % of surveys), the effect of
surveying snow-covered trails (n = 22; 9 % of surveys), and the effect of
having different numbers of surveyors (20 surveys had > 2 surveyors; 8
% of surveys). Additionally, we evaluated data from the eight surveys (3
% of surveys) that were repeated to estimate the amount of waste that
may have been missed in the first survey. We estimated the bias of the
night and snow effects by dividing the mean waste counts observed
during surveys under these conditions by the mean waste counts
observed during all other surveys. The resurvey bias was assessed by
dividing the mean count observed on the first survey by the mean count
observed on the second survey. The effect of the number of surveyors
was assessed by fitting a linear regression between the waste count per
km and the number of participating surveyors. One survey, which
involved 5 people, was excluded from this specific analysis due to its
outsized influence on the relationship, as the observed waste count in
the survey was zero. Twelve surveys did not report a value for the
number of surveyors. These surveys were excluded from the regression

analysis but were used for all other analyses, including waste count
estimation purposes. Missing surveyor numbers were replaced with the
mean number of surveyors for the waste count estimation. This regres-
sion was then used to predict the mean waste count if all surveys had
been completed with four surveyors. The predicted mean was then
compared with the raw mean. We did not intend to correct for these
biases in the final estimates, as this research is still in development;
however, we assessed how a theoretical correction might impact the
observed mean counts.

Statistics were calculated in R (R Core Team, 2020) (version 4.3.3)
using packages jsonlite (Ooms, 2014), data.table (Dowle and Srinivasan,
2020), dplyr (Wickham et al., 2020), sf (Pebesma, 2018), tidyverse
(Wickham et al., 2019), mapview (Appelhans et al., 2022), mapdata
(Becker, 2022), RcolorBrewer (Neuwirth, 2022), httr (Wickham, 2023),
ggplot2 (Wickham, 2016), rvest (Wickham, 2022), NADA (Lee, 2020),
tidyr (Wickham and Girlich, 2022), ggbreak (Shuangbin et al., 2021),
stringr (Wickham, 2019). All data and code are shared openly with this
manuscript, ensuring the entire data analysis workflow is reproducible.

3. Results and Discussion
3.1. Abundance

Waste counts at the start of the trail in Southern California were
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relatively high, decreasing as hikers entered the Sierra Nevada moun-
tains, then increasing closer to Oregon, and decreasing as hikers traveled
further north into Washington (Fig. 3). Waste was found in 65 % of the
surveys. Several large waste concentrations were apparent in the data.
High waste sections of the trail were found to be related to the proximity
of the trail section to roads, with less remote areas like Southern Cali-
fornia and Oregon having a higher abundance of waste than the more
remote Sierra Nevadas and Northern Washington (Fig. S2).

We estimated the total waste count on the trail to be 53,189 pieces
(95 % confidence interval: 12,396-129,742) using the mean count per
km of 12.5 (95 % confidence interval: 2.9-30.4) and extrapolating it to
the entire trail. This average is similar to the 2.4 — 26.4 pieces/km range
reported for macroplastics on trails in the Italian Alps (Parolini et al.,
2021) and waste counts reported on trails in Maine and New Hampshire
of 1.2-5.5 pieces/km (Wilkerson and Whitman, 2009). Given that the
effects of resurveying and the number of surveyors suggested under-
reporting, this estimate is likely low by a factor of 2. However, for now,
we feel more confident in the raw estimate and maintain that more
research is needed to fully understand these biases before using them for
extrapolation.

We compared the mean waste abundance on the Pacific Crest Trail
(12.5 pieces per km) to concentrations in two other USA west coast
systems studied by the authors using similar methodologies. A study in
the Inland Empire of California found an average waste generation rate
of 40,349 pieces per km per year (three orders of magnitude greater) on
urban roadsides (Cowger et al., 2022), and a separate study found 2,697
pieces per km (two orders of magnitude greater) in urban river riparian
areas in Pinole, California (Cowger et al., 2023). The Pacific Crest Trail
was relatively pristine in comparison to either of these urban settings.

A clear and expected relationship existed between distance to the
nearest road and survey count (Fig. 4). The log-log linear regression
statistics were log10(count) = -0.5 * log10(distance) + 2, slope p value
=102, y intercept p value = 102, adjRsquared = 0.2. This relationship
could be used to predict a baseline of waste that regulators, land man-
agers, and wilderness users can set a goal to achieve. We estimate the
backcountry (10 km away from roads) has a count of 0.4 pieces per km
(i.e., 50 % chance of finding one piece per 1 km). We used the same
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Fig. 3. Counts observed along the trail with trail location on the x axis and
waste abundance on the y axis. Blue smooth line with gray confidence intervals
shows a generalized additive model with a smoothing spline to give an idea of
the rough moving average. The center flat black line is the 1 count line; all data
points below the line are extrapolated using cenros nondetect techniques. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 4. Observed waste counts per km (y axis) versus distance to nearest road
(m) (x axis). Both axes are log; scaled. A log-log linear regression (blue line)
and 95% confidence interval (gray area) is shown. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

model to estimate that near-road (survey start 10 m from a road)
stretches of the trail had 13 pieces per km. Future work could improve
upon the model’s R? of 0.2 (20 % of variance explained). It is likely that
confounding factors, such as locations of waste receptacles, proximity to
parking lots, trail popularity (e.g., average number of people on the trail
each day), or information from hiking social networking applications (e.
g., AllTrails) could explain some of the remaining variance.

3.2. Types

The most common waste materials were soft plastic (36 %), metal
(11 %), sanitary waste (10 %), and hard plastic (8 %) (Fig. 5). Soft plastic
is commonly ingested by animals, leading to intestinal issues (Ayala
et al., 2023). We did observe soft plastic inside coyote scat (Fig. S 1)

soft plastic | NN s
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Fig. 5. The top material types found on the trail. The mean percentage is
plotted on the x-axis, and the y-axis represents the type of waste material. Bars
represent the mean percentage, and whiskers indicate the 95% confidence in-
tervals. Types are sorted from greatest (top) to least (bottom).
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during one of the surveys, demonstrating that this impact may be rele-
vant to the Pacific Crest Trail. However, this was only observed once, so
its prevalence remains uncertain. Sanitary waste (e.g., soiled toilet
paper) was the third most common waste material on the trail and
presents biohazards to humans and animals. Textile pieces were one of
the least common material types (2 %) observed on the trail, but
microfibers are the most prevalent microplastic on trails (Forster et al.,
2023). This suggests that microfibers in the environment may primarily
come from textile shedding during use rather than fragmentation of
large objects discarded on the trail. Food was the fifth-highest category
(6 %), typically consisting of orange peels and sunflower seeds. These
non-indigenous biodegradable materials are one of the lesser-known
considerations for land stewardship. However, it is essential for
normal ecosystem functioning to avoid introducing non-native biolog-
ical materials into the wilderness (Marion et al., 2016). Leaving food
waste encourages animals to interact with hikers and could introduce
non-native species. Variation in waste materials across the trail did not
follow a clear or consistent pattern (Fig. S 3).

Fragments (47 %), package ends (7 %), and wipes (6 %) were the
most prevalent waste morphologies (Fig. 6). Fragments come from the
breakdown of larger products (Julienne et al., 2019), are typically close
to the particle size range of microplastics (< 5 mm), and are often more
numerous by count but less abundant by mass (Kaandorp et al., 2023).
Package ends come from the corners of rip-off tops of soft plastic
packages meant for outdoor use (typically food packages). Generally,
the prevalence of food-related morphologies (package ends, food
wrappers, sunflower seeds, bottles, bottle caps) is unsurprising (Cowger
et al., 2024b; Morales-Caselles et al., 2021; Parolini et al., 2021) as food
is often consumed on the go, has a very short lifetime, and the packaging
has a very low utility after the food is consumed compared to the other
waste morphologies. Food packaging is common in other systems
(Cowger et al., 2024b; Morales-Caselles et al., 2021) and has also been
found in other trail waste studies (Parolini et al., 2021). Additionally, at
the top of the list were morphologies not typically found in other eco-
systems, such as outdoor gear list tape and hiking pole ends (2 % each)
(Morales-Caselles et al., 2021). These products are used abundantly by
hikers but are less likely to be used along roadsides or at beaches, for
example. We collected data on visible brands on waste, but only found
48 pieces with identifiable brands. Fragments (the most prevalent type)
do not typically have a brand on them. Future work could develop new
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Fig. 6. The top morphological types found on the trail. The mean percent is on
the x-axis, and the y-axis is the waste morphology. Bars represent the mean
percentage, and whiskers indicate the 95% confidence intervals. Only mor-
phologies larger than 1% are shown. Types are sorted from greatest (top) to
least (bottom).
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methods for identifying producers of these fragments, as we are unaware
of any suitable techniques, and these metrics would benefit companies
tracking progress on their environmental and sustainability goals.

3.3. Method assessment

3.3.1. Night effect

Occasionally, the surveyors reached a survey location after dark
because there were insufficient camping locations prior to the survey.
While this was rare, instead of skipping the survey, four surveys were
conducted at night using headlamps to spot waste. The surveyors
observed unique types of waste during these surveys, which were
reflective under the direct headlamp light and waste that they thought
may not be as visible under day conditions. The average count of waste
found during daylight surveys was 12.3 (2.9-29.9), and the average
during night surveys was 1.3 (0.1-4.0). We did not conduct a large
enough assessment of these differences to be highly confident in the
results, but this initial evidence suggests that night surveys may un-
derestimate the waste count (potentially due to low ability to see the
waste). However, correcting the night surveys using this relationship
only changed the mean count per km estimate for all surveys from 12.5
to 12.6 because there were so few night surveys. Future work could
explicitly be designed to assess if some waste types are more visible at
night and by splitting the total number of surveys to have half of each

type.

3.3.2. Snow effect

Several survey locations (21 out of 251) were covered with snow
during the survey. Instead of skipping these surveys, the effect of snow
cover on the waste counts was evaluated. The mean waste count of
snow-covered sites was 0.9 (0.5—1.4), and the mean waste count of
sites without snow was 13.6 (3.2——33.6). Snow significantly affected
the ability to observe waste, resulting in a 94 % reduction in recorded
waste. This was expected because fresh snow would cover waste on the
trail, and therefore, only very recent waste would be observable. Cor-
recting the snow surveys using this relationship would change the mean
waste count per km estimate from 12.5 to 13.5. Similar to the night
effect, the relatively small overall impact on waste count per km is likely
because few survey locations were snow-covered, and the adjustment
would only apply to them. However, future studies may want to consider
this effect in their survey design by avoiding snow-covered sites or
conducting surveys during snowless seasons to standardize the
assessment.

3.3.3. Resurvey effect

Eight surveys were repeated to determine if the surveyors had missed
any waste during their initial pass. The mean waste count of first-pass
surveys was 6.5 (1—13.7), while the repeat survey detected an addi-
tional 2.9 (0.5—5.9) pieces on average. The 44 % underestimation of
the waste count from the first-pass survey alone was large, suggesting
that additional repeat surveys could have improved accuracy. If we
corrected all surveys using this relationship to predict the waste counts if
all surveys were repeated, the mean count per km estimate would in-
crease from 12.5 to 28.4, suggesting this effect could greatly impact true
counts. California waste monitoring surveys in rivers have been
demonstrated to have a similar magnitude of bias (Moore et al., 2021).
Future studies could improve on this method by increasing the number
of repeat surveys and further validating this effect. While we repeated
approximately 3 % of our surveys, increasing the number of repeated
surveys to 10 % of all surveys, as time and resources allow, would
provide a more accurate estimate.

3.3.4. Number of surveyors effect

The number of surveyors ranged from 1 to 4, with 59 surveys
involving 1 person, 163 surveys involving 2 people, 16 surveys involving
3 people, and 4 surveys involving 4 people. The mean number of people
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was 1.9. A log-linear regression analysis was performed between the
logio-transformed waste count and the raw number of surveyors (Fig. 7).
The regression statistics were log10(count) = 0.2(surveyors) — 0.3, with
a slope p-value of 0.04, an intercept p-value of 0.06, and an adjusted R-
squared of 0.01. If we corrected all surveys using this relationship to
estimate the waste counts that would have been observed if 4 people had
conducted all surveys, it would change the mean waste count per km
estimate from 12.5 to 25.8. This factor of two increase is likely because
two surveyors conducted most surveys. The resurvey effect and the
number of surveyors effect were similar in size and impact, suggesting
that resurveying has a similar effect to doubling the number of people,
adding further evidence to support the validity of the observed effects.
Future surveys could improve on the methods of this study by having a
larger team (> 4) conduct all surveys.

3.4. Management recommendations

Based on the results found in this study, we propose three priority
actions to reduce waste on the trail: cleanup, reengineering of materials,
and adjusting waste management targets. To make the best progress on
any of these recommendations, all pillars of society (government,
community, and business) should work together. Road proximity
strongly correlated to waste abundance, suggesting that targeted
cleanups near roads, e.g., at trailheads, would greatly reduce waste on
the trail. Wilderness waste management education for hikers appears to
be keeping waste at low levels, relative to near-road conditions, even
though many people hike the Pacific Crest Trail each year. The practices
of hikers cleaning up after themselves and others should continue (Hu
et al., 2018).

Manufacturers of goods used outdoors also have a role in helping
address waste. Plastics were prevalent and are known to be persistent in
the environment; there are likely better alternatives. Many outdoor food
products come in individually wrapped packages, which could be
replaced by bulk goods and reusable packaging wherever possible
(Bergmann et al., 2023). Package ends were also prevalent, indicating a
design flaw, as packages with serrated rippable ends are made to be
broken into many small pieces easily. Packages that are designed to
remain intact would be better to avoid environmental loss. Hiking pole
tips and clothing tags often have a similar issue; they frequently fall off
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Fig. 7. Observed waste counts per km (y-axis log scaled) versus number of
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during use and could be better secured to the product. Wet wipes used
for hygiene were prevalent on the trail. These products are often mar-
keted as “flushable” which gives the perception that they are degradable
or environmentally friendly, but they are neither (Allison et al., 2023).
Manufacturers must rectify this inaccurate messaging and enhance their
marketing efforts to promote the responsible use and management of
their products (e.g., “wipes should be packed out of the wilderness and
disposed of in a waste receptacle”). The composition of waste detected
on the Pacific Crest Trail reflects the composition of products people use
in the wilderness; therefore, producers should consider the toxicity,
persistence, and health implications of products marketed for outdoor
use.

Road waste management in California has established a threshold for
acceptable conditions of 100 pieces per km (CalTrans 2023). A road
waste threshold higher than the current near-road wilderness baseline
estimates (13 pieces per km) could lead to increased wilderness impacts
from road waste. This finding suggests that the current California
thresholds should be at least one order of magnitude lower to maintain
near-road wilderness conditions. Ideally, the long term goal would be to
achieve the backcountry baseline of 0.4 pieces per km along all road-
sides. We fully acknowledge that achieving a wilderness target on a road
is a lofty goal and one that will not come without considerable effort and
time. However, perhaps there are already roads out there that meet this
threshold, and they should be modeled after and celebrated.

4. Conclusions

We estimate that there were 53,189 pieces of waste on the Pacific
Crest Trail in 2023. The strongest predictor of trail waste abundance was
proximity to nearest road with trails close to roads having the highest
waste abundance. The most prevalent waste types were soft plastic and
fragments. Assessment of this new method demonstrated that it under-
estimated waste abundance, with resurveys and doubling the number of
surveyors increasing observed counts by 100 %. Night surveys and
surveying snow-covered areas also considerably reduced observed
counts in those locations, but few surveys were conducted under such
conditions, so they did not have a significant impact on the research
findings. All pillars of society, including government, community, and
business, should collaborate to address trail waste, beginning with tar-
geted cleanups, developing new products with reduced environmental
footprints, and advocating for ambitious waste management goals.
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