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Abstract

Environmental DNA (eDNA) and RNA (eRNA) metabarcoding has become a popular tool 
for assessing biodiversity from environmental samples, but inconsistent documentation of 
methods, data and metadata makes results difficult to reproduce and synthesise. A working 
group of scientists have collaborated to produce a set of minimum reporting guidelines for 
the constituent steps of metabarcoding workflows, from the physical layout of laboratories 
through to data archiving. We emphasise how reporting the suite of data and metadata 
should adhere to findable, accessible, interoperable and reproducible (FAIR) data standards, 
thereby providing context for evaluating and understanding study results. An overview of the 
documentation considerations for each workflow step is presented and then summarised 
in a checklist that can accompany a published study or report. Ensuring workflows are 
transparent and documented is critical to reproducible research and should allow for more 
efficient uptake of metabarcoding data into management decision-making.
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Introduction

Environmental DNA (eDNA) methods have become increasingly popular in the 
past two decades due to various advantages compared to traditional methods 
(Darling and Mahon 2011; Schenekar 2023). In particular, eDNA methods have 
been shown to have enhanced sensitivity compared to traditional methods (Lodge 
et al. 2012; Furlan et al. 2016; Qu and Stewart 2019; Fediajevaite et al. 2021), 
enabling non-invasive and non-destructive monitoring for target taxa. The high 
scalability of eDNA methods allow increased spatial and temporal scale moni-
toring, refining the resolution of distributional data (Cristescu and Hebert 2018; 
Garlapati et al. 2019; Veilleux et al. 2021; Morisette et al. 2021). In response to its 
popularity, eDNA research has become a field of its own with annual conference 
sessions, workshops and societies across the globe (US: Stepien et al. 2022; 
Stepien et al. 2023, UK: Handley et al. 2023, Australia/New Zealand: Southern 
eDNA Society, Japan: eDNA Society). However, the adoption of eDNA tools for 
real-world applications has been hindered by the lack of standardised sampling, 
analytical, and data reporting methods. This results in eDNA publications that 
contain highly inconsistent documentation of methods and results (Nicholson 
et al. 2020; Shea et al. 2023; Takahashi et al. 2023). Readers and peer-reviewers 
alike are thus faced with having to interrogate the quality and comparability of 
eDNA data across publications without a consistent framework for doing so.

There is momentum in the eDNA community to develop both formal stan-
dards (e.g. Gagné et al. (2021); Abbott et al. (2023)) and less formal working 
guidelines for species-specific and targeted eDNA approaches (e.g. Borchardt 
et al. (2021); Bruce et al. (2021); De Brauwer et al. (2022a)). Targeted eDNA 
approaches leverage quantitative or digital polymerase chain reaction (qPCR 
and dPCR, respectively), often for invasive and endangered species monitoring 
programmes (e.g. Lodge et al. (2012); Doi et al. (2017); Hunter et al. (2018); 
Postaire et al. (2020); Dimond et al. (2022); Nolan et al. (2023)) and have re-
ceived some attention related to consistent reporting (e.g. Abbott et al. (2021)). 
Environmental DNA metabarcoding is used for multi-species or community lev-
el surveys and there are multiple review papers that have established a founda-
tion of best practices for sample collection and processing, including sample 
volume, filter type, extraction method and primer selection (e.g. Deiner et al. 
(2017); Lear et al. (2018); Minamoto et al. (2021); Bruce et al. (2021); Patin and 
Goodwin (2023)). However, since multiple workflows can satisfy these best 
practices, adequate reporting is essential to ensure the data can be traced to 
the methods used to generate them.

There is currently a lack of guidance on metabarcoding data reporting for 
publication. In order for metabarcoding data to be findable, accessible, interop-
erable and reproducible (FAIR, Wilkinson et al. (2016)), adequate documentation 
of each step in the workflow as well as sample-related data and metadata are 
required (Shea et al. 2023). Minimum information reporting requirements pub-
lished 15 years ago for qPCR data (Bustin et al. 2009) can be used as a model; 
here we suggest researchers and editors who publish environmental metabar-
coding studies follow minimum guidelines of methods and results reporting. 
These guidelines cover the full range of processes in the metabarcoding work-
flow from field sample collection to accessibility of final datasets (Fig. 1).
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The metabarcoding workflow is similar across a variety of starting sam-
ple types often used in biodiversity research, some of which are not typi-
cally referred to as eDNA. Here we follow Ruppert et al. (2019) by including 
samples collected either from environmental matrices (i.e. water, soil, air 
etc.) or from bulk, organismal sampling techniques (e.g. plankton tow nets, 
malaise trap etc.). We also address methods relevant to eRNA metabar-
coding workflows. Thus, we use the term environmental nucleic acid (eNA) 
when a process is similar for both (Littlefair et al. 2022; Bunholi et al. 2023). 
Finally, we provide a checklist (Table 1, Suppl. material 1: file S1) and exam-
ple entries (Suppl. material 1: file S2) for data and metadata reporting as a 
common resource for both authors and reviewers of eNA metabarcoding 
studies. This checklist indicates what details would be beneficial if report-
ed in a metabarcoding study to support open science principles. We do not 
make recommendations on specific methodological approaches as these 
will vary depending on study objectives and are addressed by existing pub-
lished guidelines, papers and standards. For instance, we discuss a number 
of controls that, if used, should be reported, but we do not make recom-
mendations on which controls to use, as controls will vary depending on 
the study's objectives. The checklist provided offers a practical tool to help 
the community consistently and clearly report critical workflow elements, 
which, as an important quality measure, will expedite the adoption of eNA 
data for decision support.

Figure 1. Diagram of an environmental metabarcoding study workflow, including the field (blue), wet laboratory (green) 
and dry laboratory (orange) components. Created with BioRender.com.
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Table 1. A checklist for reporting data and metadata associated with environmental metabarcoding studies. Require-
ments include: ‘Report’ - steps should be reported for FAIR (findable, accessible, interoperable and reproducible) data 
practices, ‘If applicable’ - report if component is relevant to study, ‘Report for eRNA metabarcoding’ - reporting of addi-
tional steps specific to eRNA studies, ‘Optional’ - can be reported. Reporting of these data and metadata will maximise 
study reproducibility and FAIR data practices. See Suppl. material 1: file S2 for a checklist that includes examples.

Step Reporting Requirements Reported

Methods – Laboratory Space

General laboratory space layout Report

Contamination mitigation efforts in the laboratory Report

Methods - Metabarcoding Assay

Target gene name Report

Target amplicon length Report

Target taxa Report

Primers, sequence, reference, modifications to published primers Report

Assay validation Report

Methods - Environmental Sample Collection

Number of field samples Report  

Definition of field sample Report  

Number of field sample replicates If Applicable  

Sampling dates Report  

Sampling times If Applicable  

Sampling locations/Geographic coordinates and geodetic datum used/Non-disclosure statement Report  

Capture methods and materials Report  

Sample processing method Report  

Volume/Mass of sample collected Report  

Volume/Mass of sample processed Report  

Sample preservation method Report  

Sample storage conditions Report  

Sample storage duration Report  

Environmental parameters If Applicable  

Contamination mitigation efforts in the field Report  

Positive and Negative (Site/Field/Process) controls Report  

Methods - Nucleic Acid Extraction

Extraction method (if using a commercial kit, provide name of kit and manufacturer) Report  

Changes/modification to a published method or kit Report  

Amount of sample extracted Report  

Extraction storage conditions and duration Report  

Nucleic acid quantification for each sample and method used to quantify If Applicable  

Any subsequent clean-up methods If Applicable  

Negative extraction controls Report  

Positive extraction controls If Applicable

Methods - Inhibition Detection and Mitigation

PCR inhibition detection and mitigation steps If Applicable  

Methods - PCR Amplification and Library Preparation

Library preparation method Report  

Number of PCR replicates per sample If Applicable  

Are PCR replicates pooled and indexed or indexed separately If Applicable  

Thermal cycling instrument and manufacturer Optional  

Thermal cycling conditions (temperatures, time at temperature, # cycles, annealing temperature(s)) Report  

Master mix composition: Final reaction volume (μl) Report  

Master mix composition: name and manufacturer Report  
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Step Reporting Requirements Reported

Master mix composition: Taq concentration (X) Report  

Master mix composition: Final concentration of each primer (forward and reverse) Report  

Master mix composition: Volume of water added (μl) Report  

Master mix composition: Volume (μl) or concentration of template NA Report  

Master mix composition: Any additives (manufacturers and volumes (μl) or concentrations) If Applicable  

Amplicon visualisation: Method used If Applicable  

PCR clean-up methods Report  

Size selection methods If Applicable  

Size selection: Instrumentation and manufacturer If Applicable  

Normalisation: Method used If Applicable  

PCR controls (Positive PCR, Mock Community, Negative PCR or No-template) and indicate whether 
or not controls were also sequenced

Report  

Methods - PCR Amplification and Library Preparation (Reverse Transcription)

Reverse transcriptase reaction kit and manufacturer Report for eRNA metabarcoding  

Reverse transcriptase reaction conditions (primers, cycling conditions, controls, amount of template) Report for eRNA metabarcoding  

RNA enrichment methods Report for eRNA metabarcoding  

DNA contamination evaluation and mitigation methods Report for eRNA metabarcoding  

Methods – Sequencing

Sequencing instrument/ platform Report  

Sequencing chemistry kit and manufacturer Report  

Sequencing quality control steps Report  

PhiX and percentage (If using Illumina platform) If Applicable  

Methods - Bioinformatics and Reference Database

Database creation: Source of sequences and steps to identify locus of interest Report  

Database creation: Method for sequence curation Report  

Database creation: Link to database or repository Report  

Primer removal (trimming): programme, version, parameters Report  

QC programme: programme, version, parameters Report  

Read pair merging: programme, version, parameters Report  

Chimera removal: programme, version, parameters Report  

Clustering: OTUs or ASVs (and thresholds) Report  

Additional filtering: removal of singletons or other methods If Applicable  

Additional filtering: decontamination using sequenced controls If Applicable  

Taxonomic assignment method Report  

Taxonomic assignment parameters (and thresholds) Report  

Read normalisation: methods If Applicable  

Results - Sequencing Summary Statistics

Total number of raw sequence reads produced Report  

Total number of reads assigned to MIDs (i.e. tags, indices, barcodes) Report  

Total number of reads that made it through bioinformatic filtering Report  

Total number of reads used for final/subsequent analyses Report  

Total number of OTUs or ASVs assigned to taxa (and to what level of taxonomy) Report  

Total number of OTUs or ASVs unassigned Optional  

Average number of reads per sample Optional  

Minimum and maximum number of reads per sample Optional  

Results from Controls (Negative/Positive/Mock Communities) Report  

Results - Data Archiving and Availability

Software and code archiving If Applicable  

Raw sequence data archiving Report  

Processed data archiving If Applicable  



494Metabarcoding and Metagenomics 8: 489–518 (2024), DOI: 10.3897/mbmg.8.128689

Katy E. Klymus et al.: Reporting guidelines for environmental metabarcoding

General quality control reporting

Several elements should be considered and evaluated before beginning a me-
tabarcoding study (for in-depth review, see Bruce et al. (2021); De Brauwer et al. 
(2022a)). Clean laboratory practices and metabarcoding assay design are com-
ponents outside of the metabarcoding workflow itself but are crucial, as well as 
positive and negative controls to evaluate the risk of poor assay optimisation, 
contamination or inhibition. Here, we discuss recommendations for reporting 
metadata associated with general quality control.

Laboratory spaces and practices

A key consideration is the prevention of contamination when handling eNA 
samples. This is particularly important in the laboratory setting where PCR is 
central to library preparation steps. As PCR leads to the amplification of bil-
lions of amplicons, samples, reagents, consumables and benchtops can easily 
become sources of contamination (Persing 1991; Aslanzadeh 2004; Willerslev 
and Cooper 2005). For a thorough review of clean laboratory procedures for 
eNA work in general, see Goldberg et al. (2016) and Patin and Goodwin (2023). 
It is important to describe the laboratory environment in which samples will 
be processed, extracted and sequenced, to enable an assessment of potential 
contamination risks.

The methods sections of published eNA metabarcoding studies should de-
tail specific measures used to prevent laboratory-based contamination, such 
as: (1) if a unidirectional workflow was used for the wet-laboratory steps (i.e. 
physically separate laboratory spaces for pre- and post-PCR such that products 
of later steps are not introduced into spaces from earlier steps); (2) laboratory 
cleaning protocols and reagents (e.g. sodium hypochlorite solution); (3) work-
space designated equipment and consumables; and (4) other laboratory-based 
contamination prevention measures including positive air pressure, HEPA-
filtered air and UV-treatment of workspaces and/or consumables. We acknowl-
edge that not all of these measures will be employed, but we point to ones that 
should be reported if used. This level of detail is intended to increase transpar-
ency and overall confidence in the handling of highly sensitive eNA samples.

Metabarcoding assay used

Numerous metabarcoding assays (here we define assay as a molecular analy-
sis) have been developed targeting a range of organisms from environmental 
samples (Takahashi et al. 2023). When reporting on the assay used, include the 
target gene region, primer sequences (if newly developed) or a citation to the 
primer source (if previously published), any modifications made to an already 
published assay, expected target amplicon length and taxonomic coverage. As 
phylogeographic variation in target taxa may lead to primer bias or failed ampli-
fication in some species, additional validation of an assay (new or already pub-
lished) is often conducted (Thalinger et al. 2021). Results of any assay valida-
tion conducted in the study should be reported. Validation of the assay should 
be thoroughly documented, including any in silico, in vitro and in situ testing, 
as well as results from tests demonstrating primer specificity to the targeted 
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group (Taberlet et al. 2018; Thalinger et al. 2021; De Brauwer et al. 2023). For 
further guidance on assay development, we point readers to Thalinger et al. 
(2021) who developed a validation scale for species-specific assays, as well 
as to recent guidelines for metabarcoding assays developed by the Southern 
eDNA Society (De Brauwer et al. 2022b, 2023).

Controls

Control samples are used throughout the metabarcoding workflow and de-
tailed reporting of all control samples used is vital. Positive controls are gener-
ally included to ensure any run or reaction failures or anomalies (i.e. unrelated 
to the samples themselves) are detected (Yeh et al. 2018; Gold et al. 2022), 
whereas negative controls detect contamination (Borchardt et al. 2021). For 
eRNA studies, a negative reverse transcriptase control should be included to 
test for genomic DNA.

Table 2 and Fig. 2 list various controls used in a metabarcoding workflow. 
Not all of these will be used in every study and additional controls may be used. 
For instance, positive extraction controls can be used to assess extraction ef-
ficiency, but are often not used in general metabarcoding studies. Regardless, 
information on the number and type of controls should be provided. Controls 
can be sequenced to assist with interpreting final results; if they are, all relevant 
data and associated metadata should be reported. It is also critical to report 
any corrections made to final datasets using results of sequenced controls. 
Sepulveda et al. (2020), Bruce et al. (2021) and Takahashi et al. (2023) provide 
guidance on integration of controls into project design.

Metabarcoding workflow reporting

Sample collection, processing and preservation

Reporting on sample collection for eNA metabarcoding studies allows readers 
to evaluate the adequacy of the sampling design in the context of the study goals 
and limitations. A field sample should be defined by the authors. For instance, 
it could be a singular collection obtained during a single sampling event (i.e. a 
sample collected at a single location at a single point in time) or a composite 
sample in which material from multiple locations or times has been combined. 
Studies may also take replicate field samples given the inevitable stochasticity 
of whether the target molecule is captured by the sampling if present in the en-
vironment. Methods used for capturing samples should be reported, along with 
sample volume or mass, the number of field samples, field sample replicates 
and field control samples. In addition, if any pre-extraction processing steps are 
used after sample collection, the amount of sample processed and methods 
used (e.g. pre-filtration and/or filtration steps) should be reported. Preservation 
of samples, storage and duration prior to extraction should be reported as well.

Any contamination mitigation efforts made in the field, including collection 
of field, site and process controls should also be reported. For recommenda-
tions on sample collection and design, see Deiner et al. (2017), Dickie et al. 
(2018), Bowers et al. (2021), Bruce et al. (2021), Minamoto et al. (2021), De 
Brauwer et al. (2022a) and Pawlowski et al. (2022).
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Detailed information describing the sampling date and locations for all sam-
ples should be included. Names of the geographical location of sampling can be 
reported; however, to ensure reproducibility, geographic coordinates are preferred. 
The latitude and longitude should be included, as well as the geodetic datum used 
following Geographic Information Standards (https://www.fgdc.gov/standards). 
Exceptions for non-disclosure of geographic coordinates are acceptable for pri-
vacy of information, cultural concerns or security reasons necessitating exact 
locations be withheld. Environmental parameters (e.g. temperature, salinity, pH, 
habitat type) should be reported, if taken, either in a table, supplemental material 
or within the main text. For further guidance on reporting sampling data, see stan-
dards and guidelines developed through Darwin Core (Wieczorek et al. 2012) and 
the Global Biodiversity Information Facility (GBIF) (Abarenkov et al. 2023).

Figure 2. Chart of the different elements of the environmental metabarcoding workflow 
showing the control samples involved at each step.

https://www.fgdc.gov/standards
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Nucleic acid extraction

Extraction protocols are selected based on the sample, tissue or matrix target-
ed and what steps are required to disrupt biological membranes and release 
nucleic acids into solution for subsequent purification. Thus, the extraction 
method should be chosen, based on its efficiency for the particular sample 
type and/or target taxa and be reported (Djurhuus et al. 2017; Pawlowski et 
al. 2022). When reporting commercial kit-based extractions, the kit name and 
manufacturer should be included. Sample volume or mass used for extraction 
should be reported along with any modifications to commercial kit-based pro-
tocols or published methods. In addition, any positive and negative controls 
included in each extraction batch to ensure quality control of this step should 
be reported. Quantifying eNA post-extraction is commonly done; however, this 
measure will reflect total DNA concentration and not just the targeted DNA. For 
some substrates (e.g. water), the extraction may not yield quantifiable amounts 
of eNA, but will still be suitable for PCR and downstream steps. Information on 
how eNA extracts were stored before further use, including buffers or ethanol 
used and storage temperature and duration, should be reported.

Inhibition mitigation and testing

Environmental samples are prone to containing molecular compounds and 
trace metals that can inhibit enzymatic reactions such as PCR, thereby reduc-
ing amplification efficiency (Wilson 1997; Schrader et al. 2012; Lance and Gaun 
2020; Sidstedt et al. 2020). During nucleic acid (NA) extraction, some of these 
inhibitory compounds may be removed, but NA dilution (McKee et al. 2015) 
or additional purification steps may be required for further removal (Hunter et 
al. 2018). An additional way to mitigate the effects of inhibitory compounds 

Table 2. Table of controls that can be used throughout the metabarcoding workflow. Positive controls confirm a process 
is working and negative controls ensure any contamination is detected. NA refers to nucleic acid (i.e. DNA or RNA).

Control How it’s created Why it’s used

Site Positive Collection of an environmental sample at a site where the target 
species is known to be present

Confirms assay viability in an environmental sample

Extraction Positive A laboratory contrived sample to which NA or tissue is added 
during the NA extraction process

Introduces target NA to monitor NA extraction 
efficiency; used for laboratory quality control; not 

generally used in studies

Internal Positive Control 
(IPC)

A known concentration of synthetic or natural NA 
added to the PCR 

Amplification of IPC DNA above expected cycle 
threshold (qPCR) suggest samples are inhibited; not 

generally used in metabarcoding, but see text

PCR Positive A laboratory contrived sample to which synthetic or natural NA is 
added during PCR setup; can include mock community samples

Introduces target material to monitor for PCR 
success

Site Negative Collection of an environmental sample at a site where the target 
species is known to be absent

Monitors potential non-specific amplification of the 
assay from the environment

Field Negative Collection of a blank sample that follows field collection protocols Monitors potential contamination in field collection

Process Negative A sample added during processing that lacks target NA Monitors potential contamination during sample 
processing

Extraction Negative A laboratory contrived sample that only includes reagents used 
during the NA extraction process

Monitors potential contamination during extraction 
process

PCR Negative (No-
template control; NTC)

A laboratory contrived sample that includes only PCR reagents 
and molecular grade water replaces the NA input

Monitors potential contamination during PCR and 
sequencing 

Negative Reverse 
Transcription Control

A sample of RNA extract carried through subsequent steps, but 
without reverse transcriptase 

Tests for DNA contamination in the RNA extract
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is the use of additives to the PCR such as dimethyl sulphoxide (DMSO) and 
Bovine Serum Albumin (BSA) (Kreader 1996; Farell and Alexandre 2012). The 
use of internal positive controls (IPCs) can detect PCR inhibition in a sample 
prior to library preparation. This is common in qPCR studies of eDNA samples 
and less common in metabarcoding studies; however, there are examples of 
the latter (e.g. Shirazi et al. (2021) used qPCR to perform inhibition testing on 
all extractions in their DNA metabarcoding study). Furthermore, the U.S. Fish 
and Wildlife Service tests for inhibition in all metabarcoding samples collected 
for the Early Detection and Monitoring programme in the Great Lakes Basin 
(USFWS 2024). As PCR inhibition can severely reduce amplification, subse-
quent sequencing and data analysis can be affected; thus, any information on 
PCR inhibition detection and mitigation should be reported if used.

Library preparation

The metabarcoding workflow requires extracted NA samples go through a 
series of processing steps called library preparation before high-throughput 
sequencing. Libraries consist of pooled amplicon sequences that have been 
modified to allow for simultaneous sequencing of high numbers of samples 
(and subsequent demultiplexing). These modifications include addition of: 
sequencing primer regions; adaptors compatible to the sequencing platform; 
and MIDs or multiplex identifiers, that allow identification of sequences to indi-
vidual samples (GBIF DNA derived data – Extension (2024)). These MIDs are 
often referred to as “tags”, “indices” or “barcodes” in the literature (see Deiner 
et al. (2017)). Outlined below we discuss the steps of library preparation (PCR, 
Reverse Transcription for eRNA, Post-PCR and Normalisation) and make report-
ing recommendations. For a more detailed explanation of steps, see Taberlet et 
al. (2018), Bruce et al. (2021) and Bohmann et al. (2022).

PCR

There are multiple methodologies for library preparation and the chosen 
method should be reported. The three predominant strategies when using 
Illumina instrumentation are a one-step PCR-based, two-step PCR-based 
or a ligation-based approach; for a detailed overview of each strategy, see 
Taberlet et al. (2018) and Bohmann et al. (2022). Regardless of method, the 
main steps in library preparation include amplification of target NA and ad-
dition of required sequencing modifications to resulting amplicons. Different 
PCR chemistries combined with varying thermocycling conditions may pro-
duce significantly different results due to varying amplification biases, spe-
cies drop-outs or off-target amplification (Gohl et al. 2016; Gold et al. 2023; 
Shelton et al. 2023) and, thus, must be documented. If a kit is used during li-
brary preparation, the name and manufacturer should be reported as well as 
any deviations from the manufacturer’s protocol.

For all PCR steps in library preparation, chemistries and conditions should 
be reported. These include: total reaction volume; final concentration of prim-
ers; concentrations of master mix components and polymerase; volume of any 
additives; and amount of template DNA. For mastermix and polymerases, the 
name and manufacturer should be included. The type of thermal cycler and 
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manufacturer should be reported as well as thermal cycling conditions used. 
These conditions include the temperature and time at temperature for: the ini-
tial denaturation, denaturation, annealing, extension and final extension steps, 
as well as the number of cycles performed and if annealing temperature varied 
(e.g. touchdown PCR; Korbie and Mattick 2008).

Studies indicate multiple PCR replicates of the same sample are beneficial 
for environmental metabarcoding studies as they can influence species detec-
tion and richness estimates (Ficetola et al. 2015; Alberdi et al. 2018; Shirazi 
et al. 2021; Van den Bulcke et al. 2021). Other studies indicate that pooling 
multiple samples (biological replicates) may be more effective at increas-
ing species detection and richness (Beentjes et al. 2019; Macher et al. 2021; 
Stauffer et al. 2021). The use of such technical or biological replicates should 
be described as well as whether they are indexed separately (i.e. given different 
MIDs) or pooled.

Controls should be included and reported in library preparation to assess 
potential for cross contamination of samples during all PCR steps. Using nega-
tive PCR controls allows the user to identify any laboratory contamination and 
positive PCR controls verify the assay is working. Mock community samples 
consist of known concentrations of DNA from multiple species and can provide 
information on amplification efficacy and bias as well as any contamination 
during library preparation and sequencing (Hänfling et al. 2016; Parada et al. 
2016; Yeh et al. 2018; Marinchel et al. 2023).

Reverse transcription (additional step for eRNA)

For eRNA metabarcoding studies, reporting on steps from sample collection 
through sequencing and data reporting are the same as for eDNA; however, 
eRNA requires a couple of additional steps in the library preparation phase. 
Specifically, conversion of RNA to complementary DNA (cDNA) by reverse tran-
scription and post-extraction enrichment of specific RNAs should be reported 
(Bustin and Nolan 2004; Zhao et al. 2014; Telzrow et al. 2021). For the reverse 
transcription reaction, the same details as described above for PCR should be 
reported. A concern for eRNA studies is the presence of genomic DNA con-
tamination (see Li et al. (2022)); therefore, it is important to report detection 
of contaminating genomic DNA and mitigation steps taken (Laurell et al. 2012; 
Padhi et al. 2016; Hashemipetroudi et al. 2018; Verwilt et al. 2020).

Post-PCR

Throughout the library preparation process, sample visualisation is often done 
to assess the size, distribution and quantity of PCR products, as well as tem-
plate clean-ups to remove unwanted components. Authors should report meth-
ods for DNA product verification as well as where in the process it was done 
and the type, model and manufacturer of instrumentation used.

One of the primary functions of post-PCR library preparation is to ensure 
amplified PCR products represent mostly the target sequences; this is done 
by PCR clean-up and size selection approaches. Size selection can remove 
non-target DNA products, primer dimer and leftover primer (Zizka et al. 2019). 
Size selection is important because long metabarcoding primers can be prone 
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to forming dimers (Peng et al. 2015) and assays may amplify non-target DNA 
(Collins et al. 2019). This can cause library normalisation to be biased as the 
final concentration will be normalised to non-target sequences, preventing 
detection of the targeted taxonomic group and challenges for sequencing 
(Alberdi et al. 2018). There are several approaches for conducting size selec-
tion, with some of the most common including the use of magnetic beads, 
Pippin Prep Instrumentation (Sage Science Inc., Beverly, Massachusetts, USA) 
and agarose gel extraction. If size selection is performed, authors should report 
the approach used, associated protocols, settings and parameters and manu-
facturers of instrumentation used. If additional PCR clean-ups are conducted, 
information on the methods or kits should be reported.

Library normalisation

A typical last step before sequencing a metabarcoding library is to normalise 
the concentration of each sample so each is represented equally in the final 
pooled library sequenced and will have similar read depths (Rohland and Reich 
2012). Note, however, that negative control samples included in the library will 
have low or no quantifiable DNA and, thus, cannot be added at equal concentra-
tion (see Bruce et al. (2021) for more detail). The two main approaches used for 
normalisation include: 1) using DNA binding/magnetic beads to normalise and 
purify amplicons to a single concentration without the need to quantify; or 2) 
quantifying each sample and then diluting to the desired volume. Quantification 
can be achieved with a number of methods (see Bruce et al. (2021)). It is im-
portant to report both the normalisation method used and how sample concen-
tration was estimated, if applicable.

Sequencing

Sequencing-by-synthesis (SBS) instruments have become the dominant instru-
mentation for amplicon sequencing (Bohmann et al. 2022). Platform choice 
depends on the number of samples, desired read depth per sample and ampli-
con length. Although Illumina is the most commonly used sequencing platform 
as of the time of writing, other technologies are appearing on the market. New 
platforms from Element Biosciences (San Deigo, California, USA) and Singular 
Genomics (San Diego, California, USA) are designed to compete with Illumina 
NextSeq output levels. Long-read sequencing platforms are also available and 
have grown in popularity (e.g. Pacific Biosciences, Menlo Park, California, USA; 
Oxford Nanopore Technologies, Oxford, United Kingdom).

When using short-read platforms, including Illumina and Element G4 instru-
ments, it is recommended by the manufacturer to spike-in a PhiX sequencing 
control (Illumina, Inc., San Diego, California, USA; https://singulargenomics.
com/g4/reagents/). For ‘low diversity’ libraries (such as those associated with 
amplicon metabarcoding), PhiX can improve sequencing quality control and 
provides a measure of overall run performance. If using PhiX, the percentage 
concentration used should be reported.

If sequencing is outsourced, information from the external facility on what 
quality control is performed should be obtained before releasing data. For exam-
ple, most facilities will demultiplex sequence data into sample-specific files and 

https://singulargenomics.com/g4/reagents/
https://singulargenomics.com/g4/reagents/
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remove sequencing adapter sequences; they may also remove PhiX reads. As 
with all automated laboratory steps, the instrument platform, sequencing chem-
istry kit and sequencing quality control steps should be reported.

Reference database and bioinformatics

The process by which raw sequence data are converted to taxon observations 
and/or counts has many steps, each of which can impact results (e.g. Furlan et al. 
2020; Brandt et al. 2021; De Wolfe and Wright 2023). There are currently dozens of 
bioinformatic tools and pipelines available (see Hakimzadeh et al. 2023 for review) 
and, while no pipeline is considered ‘best’, users should report the bioinformatic 
programmes, versions and steps within which to provide transparency about bio-
informatic processing. We strongly encourage full reporting of bioinformatic ap-
proaches used to process and analyse eNA sequences including, but not limited to 
software, scripts, parameters, configuration files and variable files to allow for the 
repeatability of the bioinformatic analyses. Deiner et al. (2017) explain and review 
these various bioinformatic processes in detail, which we also outline below.

Database source and/or curation

The comprehensiveness (taxonomic breadth) and curation of reference se-
quence databases (Richardson et al. 2020; Gold et al. 2021; Dziedzic et al. 
2023; Jeunen et al. 2023) are vital to the accurate taxonomic assignment of 
metabarcoding sequences (Keck et al. 2023). Thus, it is critical to include de-
tailed information on the generation and curation of custom databases used to 
ensure reproducibility of the taxonomic classification (Curd et al. 2024). Such 
details should include: where reference sequences were acquired (GenBank, 
BOLD etc.); steps used to select only the locus of interest (e.g. in silico PCR, key 
word search etc.); curation methodology applied (e.g. geographic, lowest com-
mon ancestor, dereplication etc.); and a link to a data repository containing the 
custom reference databases used. If a custom reference database containing 
sequences not publicly available was used, researchers should clearly indicate 
this. Alternatively, many studies use large and minimally curated databases 
such as GenBank (Benson et al. 2013). In either case, the method, database 
and any database curation should be reported.

Bioinformatic processing

Multiple steps are part of the bioinformatic workflow used to convert raw se-
quence data into biologically analysable data (i.e. a table of sequence read num-
bers and associated taxonomic assignments). These steps are outlined below 
and include: Primer removal, Sequence quality control, Read merging, Chimera 
removal, OTU or ASV creation, Taxonomic assignment, Additional data filtering, 
and Normalisation of read data. Software workflows that encompass multi-
ple steps exist and include MOTHUR (Schloss et al. 2009), DADA2 (Callahan 
et al. 2016), QIIME2 (Bolyen et al. 2019), DNAFLOW (Mousavi-Derazmahalleh 
et al. 2021), iMETA (Liu et al. 2023) and REVAMP (McAllister et al. 2023). If 
such a programme is used, the version and input parameters for each step 
should be reported.
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Primer removal

Reads produced by sequencing platforms have fixed start positions defined by 
primers and include the gene region of interest. Failing to remove primers may 
interfere with taxonomic assignments. Some commonly used programmes for 
this include CUTADAPT (Martin 2011), TRIMMOMATIC (Bolger et al. 2014) and 
ATROPOS (Didion et al. 2017). The name and version of the programme, along 
with parameters and thresholds used, should be reported for all primer removal 
and trimming steps.

Sequence quality control

After primer removal, sequence read quality controls can be filtered initially 
based on minimum Q-score values, which are generated by the sequencing in-
strument for every nucleotide. Bioinformatic programmes like CUTADAPT and 
TRIMMOMATIC can be used to set quality score thresholds. The quality control 
programme used and associated parameters should be reported.

Read merging

When paired-end sequencing is performed, forward and reverse reads can be 
merged to generate a complete amplicon sequence. Off-target amplification and 
unremoved primer dimers can result in amplicons with different lengths than 
expected, which can be bioinformatically filtered out by setting a length thresh-
old. Any reads not passing the threshold will subsequently fail to merge and 
be removed from the dataset; thus, read type (e.g. forward, reverse, unmerged 
paired, merged paired), software and parameters used (e.g. minimum number 
of nucleotide overlap or number of mismatches allowed) should be reported.

Chimera removal

Chimeras form during PCR and occur when two different parent DNA strands 
anneal together to create PCR artefacts that do not exist in nature. Chimeras 
can be difficult to identify (Ashelford et al. 2005) and may result in inaccurate 
estimates of diversity. Not all chimera products can be removed by size se-
lection; however, many bioinformatic programmes and pipelines can identify 
chimeras using either de novo or referenced-based methods. The programme 
used for chimera removal and cut-off scores should be reported.

OTU or ASV creation

Operational taxonomic units (OTUs) or amplicon sequence variants (ASVs) are 
created from sequencing reads, which reduces the overall size of datasets and 
computational power needed to analyse them (Schloss and Westcott 2011; 
Callahan et al. 2016). OTUs are created by clustering sequences with similar 
identity (using a threshold chosen by the user, often at 95–99%) (Westcott 
and Schloss 2015). The creation of ASVs uses denoising methods (rather than 
dissimilarity thresholds) that detect and remove sequencing errors and distin-
guish sequence variants differing by as little as one nucleotide (Callahan et al. 
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2017). The choice of ASVs vs. OTUs should be reported as it can have a signif-
icant impact on alpha and beta diversity metrics (Chiarello et al. 2022). For an 
in-depth review of OTU clustering methods, see Westcott and Schloss (2015).

Taxonomic assignment

There are many methods to assign taxonomy to OTUs/ASVs. The most well-
known and longest supported method is the sequence similarity-based top 
BLAST hit approach (Altschul et al. 1997). This uses both global and local 
alignments to directly compare query sequences to sequences in a reference 
database. Another method, sequence composition-based, assigns taxonomy 
based on k-mer frequencies in the query and reference database sequenc-
es. The most widely used sequence composition classifier is the Ribosomal 
Database Project (RDP; Wang et al. (2007)) or Naïve Bayes-based classifier. 
The RDP classifier can be trained for any marker and reference sets already 
exist for the COI animal barcode marker as well as the prokaryote 16S, fungal 
ITS and LSU rDNA regions (Wang et al. 2007; Cole et al. 2009; Liu et al. 2012; 
Porter et al. 2014; Porter and Hajibabaei 2018). Other methods of taxonomy 
assignment include phylogeny-based methods (Pipes and Nielsen 2024) and 
probabilistic-based methods such as multinomial regression (Somervuo et al. 
2016). See Porter and Hajibabaei (2018) and Hleap et al. (2021) for a list of 
software programmes and methods commonly used.

Taxonomic assignment of some reads may not be resolvable to species lev-
el for a number of reasons. When percentage identity parameters fall below 
a user-defined threshold or if the reference database is sparsely populated, a 
single OTU/ASV might be assigned to multiple species. Furthermore, higher 
taxonomic levels such as genus or family may be targeted for assignment rath-
er than at the species level. When reporting on taxonomy assignment, include 
methods used, threshold parameters, the reference database(s) and the taxo-
nomic ranks assigned to each OTU/ASV. For more information on taxonomic 
assignment, we refer readers to Hleap et al. (2021) and Keck et al. (2023) for 
best practices and how to handle problems that can arise in this step.

Additional data filtering

Bioinformatic decontamination, not to be confused with laboratory decontamina-
tion, conducts post-processing quality control of OTU/ASV tables. No consensus 
exists on how to filter data using sequenced PCR controls. This process may em-
ploy a range of steps, including cut-offs based on sample sequencing read depth, 
OTU/ASV prevalence across samples, OTU/ASV proportional abundance and 
reads identified in the positive and negative PCR controls (De Barba et al. 2014; 
Hänfling et al. 2016; Kelly et al. 2018; Gold et al. 2022). Any methods, thresholds 
and justification for removal of reads, OTU/ASVs or samples should be reported.

Normalisation of read data

Normalisation of read data is the process by which reads are scaled or trans-
formed to allow more accurate comparisons across samples. Normalising high 
throughput sequencing read data can help account for biases that occur during 
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PCR and sequencing (Weiss et al. 2017). Given the compositional nature of 
metabarcoding, the number of reads per sample may be highly variable within 
a sequencing run and not representative of true biological variation (Gloor et 
al. 2017; Willis 2019; Schloss 2024). There are many ways of normalising read 
data (e.g. relative abundance, eDNA index, rarefaction, Hellinger transforma-
tion), such that, authors may choose to employ different normalisation steps 
across different analyses. Therefore, specific normalisation methods and pro-
gramme versions should be reported.

Sequencing summary statistics

Initial summary metrics from a sequencing run are often unreported, but are 
helpful to evaluate sequencing efficiency and evaluate metabarcoding results. 
They also indicate whether library preparation methods were highly effective or 
if changes might be necessary for future studies. Relevant summary metrics to 
report are: total number of raw reads; number or percentage of reads assigned 
to MIDs; total number or percentage of reads that passed bioinformatic filter 
thresholds (i.e. quality control, trimming and merging); number or percentage of 
reads assigned to taxonomy; the taxonomic level of assignments (i.e. species 
level, family level, phyla level); total number or percentage of reads unassigned to 
taxonomy; and total number of reads used in the final analysis or any subsequent 
analyses. Additionally, reporting per-sample metrics such as average number of 
reads per sample and minimum and maximum number of reads per sample al-
lows an evaluation of both sequencing depth and evenness across samples.

The practice of sequencing control samples (both negative and positive) is 
highly recommended in the literature as deviations from expected results may 
indicate issues that should be addressed or accounted for either computation-
ally or in data interpretation (Bell et al. 2017; Zinger et al. 2019; van der Loos and 
Nijland 2020). Reporting results from sequencing of negative controls provides 
transparency about potential contamination in sample processing. Likewise, 
read numbers from positive controls or mock communities can validate labo-
ratory and bioinformatic procedures, as well as indicate possible false positive 
detections in field samples (Hänfling et al. 2016; Hleap et al. 2021). As dis-
cussed in the General Quality Control Reporting section, we acknowledge that 
the types and numbers of control samples taken depend on a study’s goals and 
constraints; regardless, reporting on the use of controls, sequencing results 
from controls and how these reads were accounted for in the bioinformatic 
decontamination step provide valuable quality control information on a study.

Data archiving and availability

Alongside peer-review publications, data sharing is a core pillar of the scienc-
es. Raw sequence data should be deposited in the International Nucleotide 
Sequence Database Collaboration (INSDC) nucleotide sequence archives (e.g. 
NCBI, ENA, DDBJ). Data and metadata should adhere to established standards 
such as the Minimum information about a marker gene sequence (MIMARKS) 
and minimum information about any sequence specifications (MixS) devel-
oped by Genomic Standards Consortium (Yilmaz et al. 2011). The use of MIxS 
checklists significantly improves the availability of methods and metadata and 
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consistency of vocabulary in archived datasets, allowing interoperability and 
reusability for future studies (Hassenrück et al. 2021). Processed data can 
also be archived using similar data repository structures (e.g. Dryad, Zenodo, 
Figshare) to ensure all analytical steps, especially taxonomic assignment, can 
be reproduced (Deiner et al. 2017). Such efforts are becoming standard in sci-
entific publication with the proliferation of open-source code sharing platforms 
(e.g. GitLab, SourceForge, GitHub etc.).

Although significant bottlenecks to achieving completely FAIR metabarcod-
ing data practices remain, at minimum, all data (i.e. OTU/ASV table, sequencing 
data, metadata), methods and code used to generate, analyse and interpret 
metabarcoding data should be provided to open-access repositories to support 
open science principles and enhance trust and reproducibility. Metabarcoding 
studies generate valuable biodiversity data and FAIR practices will allow bio-
diversity monitoring at increased speeds and scales, which is needed given 
current global biodiversity loss. All efforts should be made to adhere to the 
growing consensus to serve biodiversity data in large international biodiversity 
repositories (e.g. Global Biodiversity Information Facility (GBIF Data Standards) 
and Ocean Biodiversity Information System (OBIS)). In particular, we point us-
ers to Djurhuus et al. (2017), Abarenkov et al. (2023) and Silliman et al. (2023), 
whose articles provide all data needed to fully reproduce the study and en-
sure resultant biodiversity datasets follow FAIR principles. For an overview and 
examples of where and how to archive different datasets and metadata, see 
the NOAA Omics Study Data Management Guide (2024). For downloadable 
eDNA survey data templates, see NOAA Omics Study Data Templates (2024) 
that incorporate MIMARKS criteria (Yilmaz et al. 2011) and Better Biomolecular 
Ocean Practices protocol templates (BeBOP-OBON 2024), based on Minimum 
Information about an Omics Protocol (MIOP, Samuel et al. 2021).

Discussion

The advent of DNA metabarcoding has transformed our ability to census and 
assess biological communities. With this new capacity for generating biological 
data at increasing sensitivity and scale comes a deluge in environmental DNA 
research datasets, hence it is important that we pause and take stock of what 
minimum metadata should accompany environmental metabarcoding publica-
tions. Here, we identified a suite of sampling, analytical and data archiving in-
formation that should be included in publications to meet FAIR data standards 
and provide context for eNA results to be repeatable and interpretable. We rec-
ommend authors report these in the manuscript, supplemental materials or on-
line resources linked to the publication (e.g. GitHub, protocols.io. etc.). This is 
crucial for the use and reuse of eNA data in global scale biomonitoring efforts 
(Berry et al. 2021; Chavez et al. 2021). Furthermore, as eNA metabarcoding 
methods become more routinely adopted by experts and non-experts alike, us-
ers must be able to adequately evaluate and communicate methods and data.

We recognise that the generation and curation of metabarcoding data is 
time and labour-intensive and that analyses require substantial computational 
resources and bioinformatic expertise. This can severely limit the ability of the 
metabarcoding community to process data quickly and efficiently into action-
able biodiversity information (Shea et al. 2023), which only adds emphasis to 
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the need addressed in this study to maximise the usefulness of all metabar-
coding datasets generated by ensuring complete and transparent reporting. 
The MIEM guidelines provided here on minimum information for reporting of 
environmental metabarcoding data parallel several similar publications by the 
Genomics Standards Consortium on minimum information requirements for 
various types of genomic data (e.g. Samuel et al. 2021; Bowers et al. 2017). 
Future work could support the development of additional resources to ensure 
truly FAIR metabarcoding data, including: 1) programmatic tools to facilitate 
ease of data management; 2) international metabarcoding standards via the 
appropriate International Standards Organisation committee (i.e. ISO/TC 147/
SC 5/WG 13); and 3) consensus on best practices for data, methods and soft-
ware archiving, linking and sharing. As the field continues to develop and rap-
idly advance, these proposed minimum reporting guidelines may be refined 
or updated with additional parameters. This enhanced reporting will allow for 
improved assessment of eNA studies during peer-review and interpretation of 
information for natural resource decisions.
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