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Abstract

DNA metabarcoding of benthic diatoms has been successfully applied for biomonitoring 
at the national scale and can now be considered technically ready for routine application. 
However, protocols and methods still vary between and within countries, limiting their trans-
ferability and the comparability of results. In order to overcome this, routine use of DNA 
metabarcoding for diatom biomonitoring requires knowledge of the sources of variability 
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introduced by the different steps of the procedure. Here, we examine how elements of 
routine procedures contribute to variability between European laboratories. A set of four 
experiments were performed focusing on DNA extraction and PCR amplification steps to 
evaluate their reproducibility between different laboratories and the variability introduced 
by different protocols currently applied by the scientific community. Under the guidance of a 
reference laboratory, 17 participants from 14 countries performed DNA extraction and PCR 
amplification in parallel, using the same fixed protocol and their own choice of protocol. 
Experiments were performed by each participant on a set of standardised DNA and biofilm 
samples (river, lake and mock community) to investigate potential systematic and random 
errors. Our results revealed the successful transferability of a protocol amongst labs and a 
highly similar and consistent ecological assessment outcome obtained regardless of the 
protocols used by each participant. We propose an “all for one but prove them all” strategy, 
suggesting that distinct protocols can be used within the scientific community, as long as 
their consistency is be proven by following minimum standard requirements.

Key words: Cross-laboratory experiment, DNA-based approach, ecological status as-
sessment, intercalibration, standardisation

Introduction

Genetic approaches have recently emerged for monitoring biodiversity in aquat-
ic ecosystems (Baird and Hajibabaei 2012; Thomsen et al. 2012; Carew et al. 
2013; Mächler et al. 2014; Valentini et al. 2016 Taberlet et al. 2018; Meng et al. 
2019; Miya 2022; Kelly et al. 2024). These methods provide genetic and taxo-
nomic information about biological communities by extracting DNA from envi-
ronmental samples such as water, biofilms and soil (Taberlet et al. 2018). In the 
context of the European Water Framework Directive (WFD, 2000/60/EC), genetic 
methods are now employed to assess the ecological health of aquatic ecosys-
tems by monitoring Biological Quality Elements (BQE) including phytoplankton, 
macrophytes and phytobenthos, benthic invertebrate fauna and fish (Hering et 
al. 2018; Vasselon et al. 2019; Kelly et al. 2020a; Pont et al. 2021; Duarte et al. 
2023). These elements are integral to national monitoring programmes within 
the extensive European network, encompassing 110,000 surface water mon-
itoring sites, including 79.5% rivers and 11% lake sites (Charles et al. 2021). 
High-throughput methods have the potential to enhance spatio-temporal mon-
itoring and expedite information transfer to water managers, contributing to in-
creased protection of aquatic ecosystems (Carraro et al. 2020, 2023; Seymour 
et al. 2021). Amongst the BQEs, benthic diatoms as part of phytobenthos BQE 
are widely employed for freshwater quality assessment due to their sensitivity 
to a variety of ecological conditions (Pawlowski et al. 2018; Rivera et al. 2020).

Significant progress has been made in developing DNA metabarcoding tech-
niques for assessing benthic diatom assemblages. Technological advance-
ments and optimised protocols have allowed the acquisition of robust taxonom-
ic (species) and genetic (Operational Taxonomic Unit - OTU, Amplicon Sequence 
Variant - ASV) information, from which diatom quality indices can be calculated 
in order to infer ecological status of rivers and lakes (Apothéloz‐Perret‐Gentil et 
al. 2017; Keck et al. 2018; Tapolczai et al. 2019; Feio et al. 2020). Despite the 
difficulties to complete diatom barcode reference library, due to the important 
species diversity in the environment estimated to more than 100,000 species 
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(Mann and Vanormelingen 2013), while only close around 18,000 species are 
described (Guiry 2024), strategies were proposed to accelerate the barcode 
completion of abundant taxa that are the main contributors to diatom indices 
(Rimet et al. 2018; Weigand et al. 2019). Diatom DNA metabarcoding has been 
successfully tested within national river monitoring networks in Europe, indicat-
ing its principle readiness for routine application, providing the most abundant 
taxa are represented in the DNA sequence database (e.g. Apothéloz‐Perret‐Gentil 
et al. (2017); Bailet et al. (2019); Mortágua et al. (2019); Vasselon et al. (2019); 
Kelly et al. (2020a); Pérez-Burillo et al. (2020); Rivera et al. (2020); Pissaridou 
et al. (2021)). However, variations in protocols and methods between different 
laboratories, both within and between countries, may hinder method transferabil-
ity and result comparability. Therefore, standardisation of all processing steps, 
from sample collection to the final ecological status assessment, is crucial for 
routine DNA metabarcoding in diatom monitoring. Standardisation should focus 
on the minimum requirements that are essential to obtain reliable data. Several 
studies have already investigated the variability introduced by certain key steps 
in community structure analysis using DNA metabarcoding. These steps include 
sample preservation (Baricevic et al. 2022), DNA extraction method (Vasselon 
et al. 2017), genetic barcode comparison (Kermarrec et al. 2013; Pérez-Burillo et 
al. 2022) and bioinformatics (Tapolczai et al. 2019; Bailet et al. 2020; Rivera et 
al. 2020). However, certain crucial steps, such as PCR amplification, have not yet 
been investigated. Therefore, it is important to gather data on and understand 
the differences caused by the variability introduced by these steps in order to pro-
pose guidelines for future standardisation, particularly for regulatory monitoring 
purposes (Blackman et al. 2019, 2024; Thalinger et al. 2021; Bunholi et al. 2023).

Intercalibration exercises and proficiency tests have been long used to harmon-
ise knowledge and results within the scope of the WFD. While these exercises are 
standard practice for morphological intercomparison (e.g. European Commission 
(2008, 2013); Kelly et al. (2009); Kahlert et al. (2012); Almeida et al. (2014)), there 
is a lack of such exercises conducted using DNA-based approaches for specific 
applications in the WFD context. Proficiency tests, organised as cross-laboratory 
comparisons, are essential for assessing participants’ experiment performance, 
adhering to established normative guidelines (e.g. ISO 13528 2015, 2022).

Building on previous initiatives that led to the development of a CEN tech-
nical report for the routine sampling of benthic diatoms from rivers and lakes 
adapted for metabarcoding analyses (CEN/TR 17245 2018), a series of experi-
ments was launched during the EU-funded COST Action DNAqua-Net (Leese et 
al. 2016) WG2 diatom workshop in Cyprus (organized in 2019). Briefly, the aim 
of DNAqua-Net was to build a community of researchers and strengthen their 
interactions to develop the application of DNA-based monitoring approaches 
and future guidelines for its standardisation. Our experiments focused on DNA 
extraction and amplification procedures as they are the first of the laborato-
ry stages of DNA metabarcoding where there is known to be a wide diversity 
of methods that might introduce variability into results (Vasselon et al. 2017; 
Nagai et al. 2022). The two main objectives were to: (i) assess the reproduc-
ibility of a standardised protocol across various laboratories (“intercalibration 
as proficiency test”) and (ii) evaluate the variability introduced by the numer-
ous protocols currently utilised for diatom DNA metabarcoding for ecological 
assessment (“method intercomparison”).
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To this end, 17 laboratories from 14 countries performed DNA extraction and 
PCR amplification simultaneously, under the guidance of a reference laborato-
ry agreed by the participants (INRAE CARRTEL, France). Participants followed 
stringent quality control measures and adhered to established standards and 
protocols. Each utilised both an agreed standard lab protocol and their own 
choice of protocol. Each participant conducted experiments on a standardised 
set of DNA and biofilm samples, encompassing samples from a river, a lake 
and a mock community.

In order to assess the variability in DNA extraction and PCR amplification steps, 
all other metabarcoding process steps were standardised and MiSeq sequenc-
ing preparation was performed by the reference laboratory. Variability within and 
between participants was assessed in terms of DNA extract quantity, taxonom-
ic (genus, species) and genetic richness, as well as community structure com-
parison and diatom quality index scores (IPS and IBD). Additionally, the impact 
of the different DNA extraction and PCR amplification protocols on the diatom 
quality index scores and the final ecological status assessment was examined.

The objective of this collaborative effort extended beyond assessing indi-
vidual participant performance. We aimed to determine whether a molecular 
method could be readily transferred between different laboratories for potential 
operational use in routine freshwater monitoring. While the results do not aim 
to prescribe a universally applicable protocol, they provide valuable insights for 
establishing guidelines and minimum requirements for conducting diatom me-
tabarcoding for biomonitoring. The primary focus of the cross-laboratory exper-
iments is to evaluate method variability and transferability in a controlled envi-
ronment, rather than favouring any specific laboratory or molecular technique.

Material and methods

Organisation of the cross-laboratory experiments

Organisation of a collaborative international cross-laboratory experiment focusing 
on diatom DNA metabarcoding for biomonitoring was agreed during the COST 
DNAqua-Net WG2 workshop held in CUT, Limassol (Cyprus) in 2019. A core or-
ganising team, composed of CUT, OFB and Scimabio Interface, along with the ref-
erence laboratory (RL, affiliation: INRAE CARRTEL), was designated to lead and 
coordinate the experiments. Seventeen laboratories from 14 countries (referred to 
as A to Q) within the international DNAqua-Net community expressed interest in 
participating in the experiments. These laboratories represented both public and 
private institutes, with varying levels of expertise in the application of molecular 
methods. Additionally, the laboratories had diverse experience in applications in 
research and operational freshwater monitoring. Major service providers were also 
invited to contribute to the experiments (e.g. Macherey-Nagel, Takara).

Two categories of international cross-laboratory experiments were conduct-
ed: proficiency tests and method comparison. The “proficiency tests” exper-
iments were designed to assess the performance of each participant using 
the same molecular protocols (DNA extraction and PCR amplification), thus 
providing information regarding the transferability and the reproducibility of the 
tested protocol. The “method comparison” experiments were designed to eval-
uate the variability introduced when using different molecular protocols (DNA 
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extraction, PCR amplification), thus providing insights into the flexibility of mo-
lecular approaches. The organisation of cross-laboratory experiments involved 
several key phases (Fig. 1):

Phase 1: The core organising team designed the experiments and circulated 
laboratory protocols (DNA extraction, PCR amplification) and reagents (DNA ex-
traction and Polymerase kits, metabarcoding primers, batch control) to all par-
ticipating laboratories, along with calibrated samples preparation (biofilm, DNA 
extracts, see details in section Collection and preparation of samples). Each partic-
ipant communicated their interest in contributing to the various experiments (E1 to 
E4, described below) to both the core team and the reference laboratory, which sub-
sequently provided them with the corresponding experimental materials (Fig. 1).

Phase 2: After receiving the experimental materials, independent testing was 
carried out simultaneously by all participants and the reference laboratory. The 
experiments were conducted in parallel within a one-month period to minimise 
the potential effect of DNA and biofilm sample degradation.

Phase 3: All experimental outputs (data) and products (DNA extracts, PCR 
amplicons) were submitted by each participant to the reference laboratory, 
which finalised library preparation prior to high-throughput sequencing (HTS) 
and shipped them to the sequencing platforms.

Phase 4: After production of HTS data (fastq), bioinformatics treatments 
and downstream data analyses were performed by the reference laboratory.

Collection and preparation of calibrated samples

To follow proficiency test statistical design (ISO 13528 2015, 2022) and en-
sure a maximum number of participants, experiments and replicates in the 
cross-laboratory test, a limited set of calibrated samples was prepared by the 
reference laboratory (Fig. 1). The samples included:

 - Environmental biofilm samples (for experiments E1 and E3): Two bio-
film samples were collected in March 2020 from Lake Geneva (“L” sam-
ple, 46.368054°N, 6.453779°E) and Edian River (“R” sample, 46.257849°N, 
6.725084°E) following standard procedures (CEN/TR 17245 2018). To en-
sure an adequate volume of samples for all the experiments and participants, 
the number of stones collected per site was increased to 20, with a mini-
mum surface area of 100 cm2 per stone scraped. The biofilm collected from 
stones was pooled into a 1 litre flask filled with 99% ethanol to achieve a final 
ethanol concentration of > 70% (CEN/TR 17245 2018; Baricevic et al. 2022). 
Subsequently, the R and L biofilm samples were homogenised on a magnetic 
stirrer for 5 minutes and then subsampled into 2 ml Eppendorf tubes. A total 
of 200 2 ml aliquots were prepared for each sample, which were stored in dark 
conditions at 4 °C during several weeks until they were used simultaneously 
by all the participants for the cross-laboratory DNA extraction experiments.

 - Environmental DNA samples (for experiments E2 and E4): five units of R 
and seven units of L biofilm aliquots were individually extracted using the 
Nucleospin Soil kit (Macherey-Nagel) following the DNA extraction proto-
col available at https://dx.doi.org/10.17504/protocols.io.bd52i88e. Final 
elution was performed in 30 µl of SE solution and the sample replicates 
were pooled together to increase the volume of DNA extracts. Finally, L 

https://dx.doi.org/10.17504/protocols.io.bd52i88e
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and R DNA extracts were subsampled into 10 µl aliquots and stored at 
-20 °C during several weeks prior to their use simultaneously by all the 
participants in the cross-laboratory experiments.

 - Mock sample as biofilm (for experiments E1 and E3) and DNA positive 
controls (for experiments E2 and E4): A mock community with a known 
composition (“M” sample) was created by combining 12 pure diatom 
strains available in the Thonon Culture Collection (TCC https://carrtel-col-
lection.hub.inrae.fr/ Suppl. material 1: table S1). Each diatom strain was 
cultivated in triplicate using 40 ml sterile DV medium in 50 ml Nunc™ 
EasYFlasks™ (Thermo Fisher Scientific), following the conditions de-
scribed in Vasselon et al. (2018). Once the strains reached the plateau 
growth phase, the supernatant was removed from each vial to increase 
cell concentration. The replicates of each strain were pooled and filled with 
95% pure ethanol to achieve a final ethanol concentration of 70% (CEN/
TR 17245 2018; Baricevic et al. 2022). Then, the 12 ethanol-fixed strains 
were pooled together to create the M sample. Finally, the M sample was 
subsampled into 2 ml Eppendorf tubes and stored under dark conditions 
at 4 °C like the environmental biofilm samples. For DNA positive controls, 
a total of seven aliquots from the M sample were extracted and 10 µl DNA 
extracts were prepared from each aliquot following the same procedure 
as described previously for the L and R samples.

 - Biofilm (for experiments E1 and E3) and DNA negative controls (for exper-
iments E2 and E4) (DNA free water): free DNA molecular grade water was 
subsampled into 2 ml Eppendorf tubes and included as negative controls 
in the DNA extraction and PCR amplification experiments.

Proficiency tests

We performed two experiments focused on the DNA extraction (E1) and PCR am-
plification (E2) steps to assess the consistency of the results obtained from differ-
ent labs using the same samples and reagents. For brevity, we refer to these as pro-
ficiency tests. To simplify the experiments, the protocols used for DNA extraction 
from biofilm samples and PCR amplification of diatom communities correspond-
ed to those routinely used by the reference laboratory for diatom metabarcoding 
and already applied by the scientific community (e.g. Bailet et al. (2019); Mortágua 
et al. (2019); Pérez-Burillo et al. (2020, 2022); Pissaridou et al. (2021)).

DNA extraction proficiency test experiment (E1): All participants applied the 
Nucleospin Soil kit (Macherey-Nagel, https://dx.doi.org/10.17504/protocols.
io.bd52i88e) to extract DNA from four calibrated samples: river biofilm (R), lake 
biofilm (L), mock community (M) and DNA-free water (W) as the negative con-
trol (Table 1). A quantity of 1.8 ml of R and 1.9 ml of L, M and W samples were 
supplied to each participant in a 2 ml Eppendorf tube for extraction and each 
sample was extracted once. Importantly, the reference laboratory provided re-
agents (Nucleospin Soil kits) for DNA extraction from the same lot to each par-
ticipant. After DNA extraction, each participant performed the final DNA elution 
into 30 µl of SE buffer. Then, participants assessed DNA quality and quantity us-
ing internal devices (data not shown) and 15 µl of each DNA extract was sent to 
the reference laboratory for downstream laboratory preparation. These instruc-
tions were given to the participants as described in Suppl. material 1: fig. S1.

https://carrtel-collection.hub.inrae.fr/
https://carrtel-collection.hub.inrae.fr/
https://dx.doi.org/10.17504/protocols.io.bd52i88e
https://dx.doi.org/10.17504/protocols.io.bd52i88e
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PCR amplification proficiency test experiment (E2): All participants applied 
the PCR protocol (https://dx.doi.org/10.17504/protocols.io.bd94i98w) to am-
plify the 312 bp rbcL barcode (Vasselon et al. 2017) from four DNA calibrated 
samples: river biofilm (R), lake biofilm (L), mock community (M) and DNA free 
water (W) as negative control (Table 1). PCR amplifications were performed in 
triplicate for each sample using Takara LA Taq polymerase (Takara) in a final 

Figure 1. Workflow of the experimental design of the study (experiments E1-E4). This details the steps of the proficiency 
test (blue), the method comparison (orange) and those related to the organisation of the whole experiment by the refer-
ence lab (RL, green). L, R, M and W labels correspond to the lake sample, river sample, mock community and negative 
controls, respectively.

https://dx.doi.org/10.17504/protocols.io.bd94i98w
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mix volume of 25 µl. Importantly, the reference laboratory supplied reagents 
(rbcL primers, Takara LA kits) for PCR amplification from the same lot to each 
participant. Amplification success was visually confirmed by participants using 
agarose gel electrophoresis and amplicon triplicates were pooled together to 
send 57 µl of each sample´s amplicon to the reference laboratory for down-
stream HTS library preparation and sequencing. These instructions were given 
to the participants as described in Suppl. material 1: fig. S2.

Methods comparison experiments

We made comparisons of methods related to DNA extraction (E3) and PCR 
amplification (E4) steps by asking participants to use their own choice of proto-
cols on a set of calibrated samples. Nine of the 17 participants had an internal 
protocol different from the reference laboratory for E3 and E4 and, therefore, 
participated in these experiments. Detailed protocols were not collected and 
only key steps and characteristics were collected to maintain anonymity of par-
ticipants (Suppl. material 1: tables S2, S3).

DNA extraction experiments (E3): These nine participants used their own 
choice of DNA extraction methods and protocols on the same calibrated sam-
ples used for E1 (R, L, M, W). As a result, a significant number of parameters 
were expected to vary amongst participants (e.g. the lysis method, the use of 
proteinase K and RNase A and the purification method, Suppl. material 1: table 
S2). DNA extractions were conducted in triplicate for each sample and par-
ticipants were asked to send a minimum of 20 µl of DNA extract per sample 
replicate to the reference laboratory. These instructions were given to the par-
ticipants as described in Suppl. material 1: fig. S3.

PCR amplification experiments (E4): Nine participants applied their own 
choice of PCR amplification protocol to amplify the 312 bp rbcL (263 bp bar-
code and the primers) on the same DNA calibrated samples used for E2 (R, L, 
M, W). As for E3, several parameters are expected to vary, especially accord-
ing to the distinct polymerase used (e.g. exonuclease activity, hot start activity, 
sensitivity, fidelity, efficiency, Suppl. material 1: table S3). For each participant, 
three PCR replicates of 25 µl per sample were performed, each comprising 
33 cycles, with an annealing temperature of 54 °C, to maximise comparabili-
ty. Participants were asked to send to the reference laboratory a minimum of 
60 µl of amplicons per sample replicates. These instructions were given to the 
participants as described in Suppl. material 1: fig. S4.

Table 1. Experimental design of the different experiments. RL: Reference Laboratory. C - control, W – water.

Objective Experiment No. of 
protocols

No. of 
participants

No. of 
replicates

Calibrated samples

Type Lake (L) River (R) Mock (M) C- (W)

Proficiency test E1 - DNA 
extraction

1 17 1 Biofilm 1 1 1 1

E2 - PCR 
amplification

1 17 1 DNA 1 1 1 1

Method comparison E3 - DNA 
extraction

9 + RL 9 3 Biofilm 3 3 3 3

E4 - PCR 
amplification

9 + RL 9 3 DNA 3 3 3 3

Reference E1, E2, E3, E4 1 1 (RL) 3 Biofilm 3 3 3 3
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Library preparation and HTS sequencing

The return shipments from all participants totalled 68 DNA extracts (4 samples, 
1 replicate, 17 participants) from the E1 experiments and 108 DNA extracts 
(4 samples, 3 replicates, 9 participants) from the E3 experiment. The reference 
laboratory (RL) performed rbcL 312 bp PCR amplification on each DNA extract 
in triplicate, following the same protocol as described previously for the E2 ex-
periments. PCR triplicates were then pooled together to obtain one pool of am-
plicon per sample. Additionally, a total of 68 pools of amplicons (4 samples, 1 
pool replicate, 17 participants) from E2 experiment and 108 (4 samples, 3 pool 
replicates, 9 participants) from E4 experiment were also received. RL produced 
a total of 12 DNA extracts (4 samples, 3 replicates) corresponding to 12 pools 
of amplicons after PCR amplification. A total of 364 individual pools of ampl-
icons were obtained from all experiments. Their quality was controlled using 
gel electrophoresis; negative controls (W) were not sequenced, except for 3 W 
samples (E1_E, E1_Q, E3_O) when unexpected amplification was observed (po-
tential contamination). The amplicon quality of one sample from the E2 exper-
iment (participant G, L sample) was considered to be too low (faint amplicon 
band in gel electrophoresis) and not sequenced.

Altogether, a total of 275 successful PCR reactions from E1, E2, E3 and E4 
experiments were sent to the INRAE Transfert sequencing facility (Toulouse, 
France), which carried out the final library preparation for MiSeq pair-end (PE) 
2*250 bp (from the PCR2 to the equimolar pooling of the amplicons). Three 
samples from the E4 experiment (2 replicates of M sample from participant P 
and 1 replicate of R sample from participant E), produced less than 1000 reads 
after bioinformatics treatments. In order to conserve the statistical design, they 
were sequenced in a second MiSeq PE 2*250 bp sequencing run. All the sam-
ples and replicates produced by the RL were included in both runs to evaluate 
potential variability introduced by the two runs prior validating the use of those 
three samples during downstream analysis.

Sequencing data processing

A total of 9,369,334 raw reads were obtained from the first MiSeq PE sequenc-
ing runs along with a further 257,686 reads from the three samples from the 
second MiSeq PE run. The raw data consisted of demultiplexed fastq files 
pairs (R1.fastq and R2.fastq) per sample accessible on the NCBI Sequences 
Read Archive (SRA) under the BioProject accession numbers PRJNA1187555 
for experiments E1 and E3 and PRJNA1187576 for E2 and E4. Bioinformatics 
treatments of raw MiSeq demultiplexed data were performed using DADA2 
(Callahan et al. 2016) in R (R Core Team 2020) which enables Amplicon 
Sequence Variants (ASVs) to be inferred from DNA reads. We used an adjusted 
version of the pipeline for diatom DNA metabarcoding based on the rbcL 312 bp 
barcode, available on Github (https://github.com/fkeck/DADA2_diatoms_pipe-
line), using parameters described in Tapolczai et al. (2019). As two MiSeq 
runs were conducted, the error rates model determined by the DADA2 denois-
ing algorithm will be different. To account for this, bioinformatics treatments 
were initially performed separately for each run until the denoising step. Then, 
the data from all samples were combined prior to the chimera removal step. 

https://github.com/fkeck/DADA2_diatoms_pipeline
https://github.com/fkeck/DADA2_diatoms_pipeline
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Following the production of the ASVs table, taxonomic assignment of ASVs 
was achieved using the RDP classifier as implemented in Mothur (Schloss et 
al. 2009) (classify.seqs, wang algorithm, cutoff = 75, iter = 1000) combined 
with the Diat.barcode reference library V9 (Rimet et al. 2019, library available 
at https://doi.org/10.15454/TOMBYZ). ASVs identified as non-Bacillariophyta 
phylum or as Bacillaryophyta_unclassified were discarded. Finally, ASVs with 
less than 10 reads and representing less than 0.01% per sample were removed.

Morphological data

Although the original objective was to perform morphological intercalibration 
experiments involving all participants using the same calibrated samples, ma-
jor coordination challenges were encountered (see Discussion). Consequently, 
only the reference laboratory performed the morphological determination, to 
provide a first comparison of the IBD and IPS scores and the intra-operator 
variability obtained through this additional method following European and 
French standards (AFNOR 2016). Briefly, samples underwent successive baths 
of hydrochloric acid (HCl) and 40% hydrogen peroxide (H2O2) to remove organic 
matter and calcium carbonate, leaving only the silica valves of the diatoms. The 
resulting preparations were used to make three permanent slides per sample 
using resin (Naphrax©). A minimum of 400 valves were counted per slide and 
identification was performed with a microscope in accordance with European 
standards (EN 14407 2014) and using European floras (as described in Rivera 
et al. (2020)). The final taxonomic lists were expressed as the relative propor-
tion of valves per diatom taxa.

Data analysis of proficiency tests (E1 and E2)

Several key metrics were computed for all samples: DNA concentration [DNA] 
for E1, number of DNA reads and diversity metrics (of ASVs and Species) ex-
pressed with Hills numbers (q = 0, q = 1, q = 2) for both E1 and E2. Briefly, Hills 
numbers mathematically unify diversity concepts and are well adapted to com-
parison of DNA metabarcoding outputs (Mächler et al. 2021). A Hill number 
with an order: (q = 0) is analogous to species richness measure, (q = 1) is anal-
ogous to the exponential of Shannon diversity as an alpha diversity measure 
and (q = 2) is analogous to the inverse of the Simpson index. The Coefficient of 
Variation (CV) was subsequently determined to assess the degree of variability 
associated with these metrics across all participants. The resulting CV values 
were represented with radar charts.

The molecular and morphological inventories obtained from the river and 
lake samples were used to compare diatom community composition obtained 
by each participant in experiments E1 and E2. Additionally, the resulting mo-
lecular and morphological inventories were also used to compute the Specific 
Pollution Sensitivity index (IPS) (Cemagref 1982) and the Biological Diatom 
Index (IBD) (Coste et al. 2009). The IBD index is the benthic diatom index used 
for routine WFD river monitoring in France and the IPS index is widely used 
for European intercalibration studies (Kahlert et al. 2009, 2012). Both indices 
were originally developed for measuring the impact of water of rivers, not lakes, 
based on morphological diatom inventories. However, in this study, we utilised 

https://doi.org/10.15454/TOMBYZ
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these indices not for ecological assessment, but to interpret variability amongst 
index scores and their associated ecological classes. IPS and IBD scores were 
calculated using OMNIDIA software version 6.0 (Lecointe et al. 1993).

In order to evaluate the performance and consistency of all participants (in-
cluding RL) in the proficiency tests, z-scores were computed, based on the IPS 
scores for R and L samples. z-scores, also called “standard score”, show how 
far the IPS value of one participant is from the mean IPS of all participants and 
is calculated as follows: z = (x – μ) / σ where x is the IPS value of the partici-
pant, μ is the mean value of all participants and σ the corresponding standard 
deviation. Z-scores usually ranged from -3 SD to +3 SD. In the context of a 
proficiency test, any Z-score value < -3SD or > +3SD indicates that the protocol 
tested is not reproducible between the participants and has failed the proficien-
cy test (ISO 13528 2015, see section “Calculation of performance statistic” and 
subsection “z scores” for more details).

As IPS z-scores were computed for each participant on two environmental 
samples (R, L), then they can be projected one to another as a Youden plot 
(Youden 1956). This graphical method allows within-laboratory variability as 
well as between-laboratory variability and estimates the systematic, random 
and total errors to be visualised.

Data analysis of method comparison experiments (E3 and E4)

To evaluate the consistency of all participants in applying their own choices 
of DNA extraction and PCR protocols, the diatom assemblages obtained by 
each participant for each replicate were analysed using histograms, with ASVs 
gathered at the species level. Non-metric multidimensional scaling (nMDS) 
was used to assess variation in diatom composition both between and with-
in participants visually. The nMDS was performed on Bray-Curtis distances of 
diatoms, based on relative abundance using the vegan package (Oksanen et 
al. 2019). In addition, significant differences both within participants, or within 
methods, were assessed through a permutational multivariate analysis of vari-
ance (PERMANOVA) followed by a multivariate pairwise comparison. These 
analyses were performed through the adonis() and mrpp() functions, respec-
tively, with the Vegan package (Oksanen et al. 2019). As for experiments E1 and 
E2, IPS and IBD scores were also computed.

Results

Feedbacks from experiments

An online workshop was organised on 21 March 2021 to present preliminary 
results to the participants and collect feedback on the experiment. All par-
ticipants successfully completed the experiments within the expected time-
frame using the materials and protocols provided. Despite the application of 
new DNA extraction (E1) and PCR amplification (E2) protocols on blind cali-
brated samples, the feedback was highly positive in terms of their accessibil-
ity and operability, even for the molecular biology laboratories which defined 
themselves as “less experienced”. A wide range of methods were employed 
by individual laboratories for DNA extraction (E3) and PCR amplification (E4) 
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(Suppl. material 1: table S3). Nonetheless, participants readily adjusted their 
protocols to the provided samples and the experimental conditions.

The quality and quantity of DNA extracted during experiments E1 and E3 were 
assessed by the participants using different methods and devices, hindering 
direct comparisons. Consequently, the reference laboratory quantified DNA ex-
tracts using a standardised method (Picogreen), except for one participant (E), 
who did not have any DNA available for quantification. Variability was observed 
in DNA concentration obtained by the 17 participants and the reference labo-
ratory (n = 18) for the river, lake and mock samples with an average of 43.7 ng 
µl-1 (SD: ± 27.8), 25.2 ng µl-1 (SD: ± 12) and 1.2 ng µl-1 (SD: ± 1.6) respectively.

All PCR amplifications conducted during the E2 and E4 experiments were suc-
cessfully completed by the participants, meeting the minimum quality require-
ments for rbcL amplicons set by sequencing facilities for MiSeq sequencing. 
However, during library preparation, unexpected amplification was observed in 
six of the negative controls (W samples). These samples were considered as 
“W false positive samples” and were consequently included in the MiSeq runs.

Key molecular and morphological working tables

After bioinformatics filtering steps, a total of 275 samples representing a total 
of 3,029,482 DNA reads were retained, corresponding to: (i) the L, R and M bio-
film samples sent to the participants for E1 (51) and E3 (81), (ii) the L, R and 
M DNA samples sent to the participants for E2 (50) and E4 (81), (iii) the sam-
ples prepared by the reference laboratory for comparison in all experiments 
(9) and (iv) the three “W false positive samples”. The composition of two “W 
false positive samples” were associated with E1 and corresponded exactly to 
a composition of an “L” sample, while the third one was associated with E3 and 
corresponded to an “R” sample. Consequently, these errors might be related to 
a pipetting error resulting to a mis-transferred sample in the W tubes, occurring 
before or after the DNA extractions. These errors were considered as external 
to the variability introduced during the protocol and, consequently, these “W 
false positive samples” were removed from the analysis. The resulting ASVs 
and corresponding molecular diatom species inventories, expressed as propor-
tions of total DNA reads, were generated and used for downstream analyses 
(available on Zenodo repository system). Morphological diatom species inven-
tories were produced by the reference laboratory (Suppl. material 1: table S1).

Proficiency tests (E1 and E2)

The diatom assemblage composition obtained from the river (R) and lake (L) 
biofilm samples showed high similarity amongst the 17 participants and the 
reference laboratory when using the same DNA extraction (E1) and PCR ampli-
fication (E2) protocols (Fig. 2).

However, one exception was observed for participant I (E2), where an un-
expected diatom composition was obtained for the L sample, corresponding 
to a 1:1 mix of the L and M communities. As this non-systematic error was 
only detected from one participant in only one condition, it might occur during 
a transfer of sample, either during: (i) the sample aliquot preparation by the 
reference laboratory, (ii) the sample manipulation by the participant after the 
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extraction or (iii) the HTS library preparation. Consequently, this error could not 
be related to the variability introduced during the application of the protocol 
within the participant environment (e.g. equipment, lab decontamination, ma-
nipulator practices, general contamination) as it is addressed during the profi-
ciency test. As this “outlier” will affect the computation of z-score and the result 
of the proficiency test, this sample was excluded from subsequent analyses. 
When analysing the complete dataset, taxa with relative abundance per sample 

Figure 2. Histograms of the diatom community composition (at the species level), for each of the four experiments 
(E1 to E4). Sample labels correspond to participant codes. RL corresponds to the reference laboratory.
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higher than 0.71% for E1 and 0.96% for E2 were successfully detected by all 
participants for both environmental samples (R, L). However, detection varied 
amongst participants for taxa below these abundance thresholds, indicating 
differences in their detection probability within the samples.

The concentration of DNA exhibited the highest CV amongst participants, 
with values of 66.2% for river samples and 48.5% for lake samples. However, 
for all other metrics, CV values were below 15% (Fig. 3).

IBD and IPS scores were computed from the molecular taxonomic lists for 
E1 and E2 environmental samples. Consistent IBD scores of 20 (SD: 0) were 
obtained amongst all participants for both lake (L) and river (R) samples. The 
absence of variation in IBD scores between participants indicated a success-
ful proficiency test for E1 and E2 experiments concerning this index. However, 
some variation was observed amongst IPS scores, with IPS deltas between 
participants of 0.8 for E1-lake (median: 17.1, SD: ± 0.21), 0.7 for E1-river (me-
dian: 15.9, SD: ± 0.17), 0.5 for E2-lake (median: 17.2, SD: ± 0.12) and 0.7 for 
E2-river (median: 15.8, SD: ± 0.16) (Fig. 4). Despite these variations, Z-scores 
computed for IPS scores fell within the accepted range of [-3;3] for the profi-
ciency test (Fig. 4).

Youden plots were generated for the E1 and E2 experiments using IPS 
z-scores obtained for river (R) and lake (L) samples (Fig. 5). In the E1 experi-
ment, a slightly elliptical distribution of participants was observed, suggesting 
that systematic error was slightly more pronounced than random error for two 
participants (I, J) falling outside the 95% probability range. Participant J was 
positioned closer to the y-axis indicating a significant bias associated with a to-
tal error occurring on lake sample, while participant I was situated along the 45 
° diagonal, suggesting a strong systematic error. In the E2 experiments, a clear 
elliptical distribution of participants was evident, indicating that a systematic 
error was more pronounced than a random error for one participant (A) outside 
the 95% probability range.

Figure 3. Radar charts presenting the coefficient of variations for the different metrics for the river “R” (Black line/dot) 
and lake “L” (Red line/dot) samples related to the Hill’s numbers (for E1 and E2), the DNA concentration (for E1) and the 
DNA reads numbers (for E2).
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Methods comparison experiments (E3 and E4)

The results obtained from the E3 (DNA extraction) and E4 (PCR method) exper-
iments revealed a high degree of similarity in diatom assemblage composition 
amongst the technical replicates produced by the nine participants and the ref-
erence laboratory (Fig. 2). However, an exception was observed in the L sample 
of the E4 experiment, where participant P yielded an unexpected composition 

Figure 4. IPS scores obtained for E1 and E2 experiments calculated on the river and lake samples. Z-score were comput-
ed for each participant and condition, green box indicate a z-score between [- 2SD; + 2SD], while a yellow box indicated a 
z-score between [- 3SD; - 2SD] and [+ 2SD; + 3SD]. The proficiency test was considered successful as no participant had 
a z-score] - 3SD; + 3SD]. The RL was considered here as a participant and not as a validation reference for “true values”.

Figure 5. Youden plots performed with the IPS z-scores obtained for the river and lake samples. Red square highlights 
the 3 standard deviation (SD) limit and the yellow box the 2 SD limit. The 45-degree reference line helps to visualise if 
participants have a systematic error (point close to the reference line and outside the red box), total error (point far from 
the reference line and outside the 3 SD box) or a random error (point far from the reference line, but within the 3 SD box).
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for one of the three replicates. This exception was likely due to a sample pro-
cessing error, such as manipulation or contamination, prompting the removal 
of this replicate from further analysis. All participants were able to detect taxa 
with relative abundance per sample higher than 1.73% for E3 and 0.85% for E4 
experiments in both environmental samples (R, L). However, taxa below these 
abundance thresholds exhibited unequal detection rates within and between 
participants, likely influenced by variations in their detection probability, the ef-
ficacy of their protocol or the stochastic effect within the samples.

Comparison of diatom assemblage structures in E3 and E4 experiments 
was performed using Bray-Curtis dissimilarity indices. Between-participant 
variability remained low as depicted in the nMDS plot (Fig. 6), which is con-
sistent with previous observations from community composition in Fig. 5. 
Within-participant variability remained consistent, with sample replicates 
clustering together as depicted in the nMDS plot (Fig. 6). For E3 experi-
ments, the PERMANOVA test revealed that participant effects accounted 
for 90% (p < 0.0001) and 93% (p < 0.0001) of the total variance observed in 
river and lake samples, respectively (Suppl. material 1: table S4). Similarly, 
in the E4 experiments, PERMANOVA results attributed 89% (p < 0.0001) 
and 89% (p < 0.0001) of the total variance observed for river and lake sam-
ples, respectively, to participant effects (Suppl. material 1: table S5). As the 
participant replicates are highly repeatable, within-participant variability is 
lower than between-participant variability and the PERMANOVA test was 
able to detect highly significant differences from slight fluctuations in the 
community structure. Differences amongst participants were mainly due to 
differences in the detection of low abundant taxa (relative abundance < 1%) 
and in the quantification of abundant taxa (> 1%). For instance, in the E3 
experiment, participants D and F had the highest dissimilarity between their 
community structure in the R sample (Fig. 6) due mainly to the high aver-
age relative abundances of Achnanthidium pyrenaicum of 48.3% and 33.9%, 
respectively, thereby accounting for a significant portion of the observed 
divergence in their assemblage structure.

As participants employed their own choice of DNA extraction (E3) and PCR 
amplification (E4) methods, we also explored the potential impact of these 
procedures on diatom assemblage structure through the nMDS and using a 
PERMANOVA test. In the E3 experiments, the diverse cell lysis methods incor-
porated in DNA extraction protocols, including enzymatic (river: 66.1%, lake: 
72.2%) and mechanical (river: 11.4%, lake: 20%) approaches, yielded significant 
PERMANOVA results with respect to the total variance observed between sam-
ples (Suppl. material 1: fig. S5, table S6). In the E4 experiments, DNA polymerase 
characteristics (Suppl. material 1: table S3) as provided by the participants and 
the providers’ documentation were not considered comparable as the mean-
ing of the terminology might vary between suppliers. For example, different 
terms such as “high efficiency”, “high fidelity” or “high sensitivity” are not clearly 
defined by the suppliers, in the absence of clear measurements and thresh-
olds. Decipher variability introduced in our DNA metabarcoding data by DNA 
polymerase variability would require specific investigation, in a similar way as 
performed by Nagai et al. (2022); thus, no statistical analysis will be presented.

Ecological assessment was performed by computing IBD and IPS scores us-
ing molecular taxonomic lists for E3 and E4 environmental samples. As for the 
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E1 and E2 experiments, consistent IBD scores of 20 (SD: 0) were obtained for 
lake and river samples across all participants and replicates. However, in the E3 
experiments, IPS scores exhibited significant variation amongst participants 
for both river (Kruskal-Wallis, p = 0.002) and lake (Kruskal-Wallis, p = 0.001) 
samples, with an IPS delta between participants of 1.1 for lake (median: 17, SD: 
± 0.37) and 1.3 for river (median: 15.7, SD: ± 0.38) samples. Similarly, in the E4 
experiments, IPS scores also displayed significant differences between partic-
ipants for river (Kruskal-Wallis, p = 0.001) and lake (Kruskal-Wallis, p = 0.001) 
samples, with an IPS delta between participants of 0.7 for lake (median: 17.3, 
SD: ± 0.21) and 1.2 for river (median: 16, SD: ± 0.24) (Fig. 7). The within-partic-
ipant variability (n = 3 replicates) of IPS scores was low, with an average of 0.1 
for lake and river samples in E3 and E4 experiments.

IBD and IPS morphological scores

Diatom taxa from both lake and river samples were also identified in triplicate 
by the reference laboratory using their morphological characteristics (Suppl. 
material 1: table S1). Ecological assessment was performed by computing IBD 
and IPS scores. For the R sample, the IBD score was consistently 20 (SD: 0) for 
all replicates, while IPS score averaged 18.7 (SD: ± 0.3 amongst replicates). 
The IBD score for the L sample averaged 19 (SD: ± 0.2), while the IPS averaged 
15.9 (SD: ± 0.1).

Figure 6. NMDS plots performed with the Bray-Curtis dissimilarity index calculated with the datasets obtained from both 
E3 and E4 experiments. Sample labels correspond to the participant codes. RL corresponds to the reference laboratory.
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Discussion

Validation of the proficiency tests shows that the applied DNA 
and PCR protocols can perform reproducible molecular diatom 
freshwater biomonitoring

Through this study, we first compared the results obtained from 17 participat-
ing laboratories using the same reference protocols for DNA extraction and 
PCR1. Regardless of their random and systematic errors, we observed a high 
consistency in the ecological assessments (IBD and IPS scores) for both exper-
iments. While most participants developed their own protocols, they agreed to 
perform “blind” experiments with an agreed standard laboratory protocol. Thus, 
our proficiency test results demonstrate the potential transferability of a com-
mon DNA extraction and PCR amplification protocol, as reproducible results 
were obtained across different participants. Diatom molecular taxonomic as-
semblages also exhibited high consistency amongst participants for the three 
calibrated samples, despite an unequal detection of taxa of low abundance (< 
1%). For ecological assessment purposes, this is acceptable as IPS and IBD 
scores (and, indeed, most other metrics in common use) are primarily driven 
by taxa with proportions exceeding 5% (Bigler et al. 2010). This highlights the 
need to clearly define the application parameters of the genetic method, both 
for intercalibration and standardisation purposes, as performing DNA metabar-
coding for ecological assessment and for characterisation of “rare” taxa may 
require different strategies (replicates, sufficient sequencing depth).

The coefficient of variation (CV) values underscores the stability of most met-
rics, except for the DNA concentration during the E1 experiment, which exhibited 
high variability. Variation in DNA concentration from the same sample and pro-
tocol within a participating laboratory may arise due to technical factors, such 
as pipetting inconsistencies and equipment variations, sample heterogeneity, 

Figure 7. IPS scores obtained for E3 and E4 experiments on the river and lake samples for nine test laboratories (letters) and 
the reference laboratory (RL). The RL was considered here as a participant and not as a validation reference for “true values”.
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potential contamination and inherent biological variability in cell abundance or 
extracellular DNA content (Greathouse et al. 2019). These factors emphasise 
the need for robust quality control measures and replication to mitigate variabil-
ity and ensure consistency in molecular biology experiments. Despite the high 
variability in DNA concentration, PCR amplifications were successful and did not 
limit the interpretation of the diatom DNA metabarcoding results based on as-
semblage composition and final assessment outcome. Nevertheless, an excep-
tion was noted with participant I (E2), where an unexpected diatom composition 
was observed. This anomaly underscores the importance of stringent quality 
control measures, as deviations may arise from sample processing errors or 
contamination, emphasising the need for replicates and thorough validation 
procedures to ensure result integrity (Robasky et al. 2014). In combination with 
negative controls and reference sample (e.g. defined mock community, synthet-
ic DNA templates, calibrated environmental sample), quality control should be 
considered at each major step of the metabarcoding process based on internal 
process controls (IPCs): DNA extraction (DNA quality and quantity, biofilm bio-
mass, level of inhibition), PCR amplification (barcode and primer choice, techni-
cal replication, number of PCR cycles, amplification success, level of non-spe-
cific amplification), HTS sequencing (platform and sequencing kit chemistry 
choice, sequencing depth) and bioinformatics (software and pipelines accept-
ed, post analysis sequencing depth, DNA reads loss per bioinformatics step, 
negative control handling). However, a balance between quality stringency and 
implementation will have to be found in the context of freshwater biomonitoring 
as environmental samples and methods used may introduce variability without 
impact on final assessment. As an example, our study showed high variability 
in DNA concentrations obtained by participants depending on DNA extraction 
protocol choice, yet this variation had limited influence on the final IPS score. 
Thus, DNA extract quality and quantity should be kept as an IPC to validate the 
success of the DNA extraction, but even for low quantity and quality samples, 
biomonitoring using short read metabarcoding can work reliably. As numerous 
data are available on diatoms, dedicated work should be performed to highlight 
key quality control to consider and their operational threshold for biomonitoring.

The high degree of similarity observed amongst participants and the refer-
ence laboratory in diatom assemblage composition when using identical DNA 
extraction and PCR amplification protocols (E1 and E2) attests to the reliability 
and consistency of these protocols, reinforcing their reproducibility. This sug-
gests that standardised protocols can form a foundation for inter-laboratory 
consistency in diatom analysis. Despite the controlled conditions of the profi-
ciency tests, with calibrated samples, identical protocols and reagents, not all 
sources of variability could be evaluated (operator, machines, participant lab en-
vironment etc.). Source of variability within eDNA studies can be highly diverse 
and, thus, difficult to predict as environmental characteristics might change 
from one waterbody to another, affecting eDNA approaches (Stoeckle et al. 
2017; Mathieu et al. 2020). In the context of the WFD where around 115,000 
rivers and 25,000 lakes sites are monitored around the EU (WISE, https://water.
europa.eu/freshwater), the diversity of environments and conditions will be dif-
ficult to predict. In order to meet the ISO requirements, it was logistically feasi-
ble to include only one lake and one river sample in E1 and E2 experiments (ISO 
13528 2015, 2022). While this enables the validation of method stability and 

https://water.europa.eu/freshwater
https://water.europa.eu/freshwater


54Metabarcoding and Metagenomics 9: 35–70 (2025), DOI: 10.3897/mbmg.9.133264

Valentin Vasselon et al.: International diatom eDNA intercalibration and intercomparison exercise

transferability of the DNA extraction and PCR amplification protocols used, our 
experiments alone are not sufficient to validate the protocols for use on large-
scale monitoring networks with a wide variety of rivers. This is why we would 
recommend additional intercalibration studies on other river and lake types.

Factors affecting test reproducibility amongst laboratories can be related to lab-
oratory environment, biases introduced by human technical practices, model of in-
strument and calibration (Waugh 2021). Those biases might be negligible, but they 
are unfortunately difficult to detect and to correct. Our intercalibration study, through 
the identification of systematic and random errors using z-score and Youden plot 
projection, allowed participants to compare their results with others, but also high-
lighted potential deviation in internal laboratory processes. Several PCR amplifica-
tion biases are known to affect DNA metabarcoding data (e.g. primer biases, poly-
merase capabilities) and several studies have documented strategies to minimise 
their effect (Krehenwinkel et al. 2017; Nichols et al. 2018; Moinard et al. 2023). 
However, little information is available regarding laboratory technical biases (e.g. 
lab practices, thermal cycling machine deviation, reagents storage, plastic-ware 
used). This might explain why some participants produced IPS scores for both 
samples that systematically deviated from results produced by the group during 
PCR amplification experiments (e.g. E2, participant A). As taxonomic composition 
and IPS scores obtained were consistent with other participants, the systematic 
error produced had barely detectable downstream effects. The use of proficiency 
tests enables the detection of such systematic errors, aiding laboratories in inves-
tigating and improving their practices. We also observed total error in E2 with par-
ticipant I who produced highly divergent diatom assemblage composition and was 
excluded from downstream analyses. The use of technical replicates can easily 
help to detect such errors allowing the elimination of any erroneous replicates, as 
observed in E4 with participant P on the lake with the removal of the 2nd replicate.

Finally, the proficiency test we conducted was focused on evaluating DNA ex-
traction and PCR amplification protocols. While these steps are crucial and our 
results validate the potential to transfer laboratory protocols, it is important to ac-
knowledge that there are other key stages in the metabarcoding workflow that are 
known to introduce variability. These include library preparation methods (Zizka et 
al. 2019; Bohmann et al. 2022), sequencing technologies (Cuber et al. 2023), ge-
netic markers (Kezlya et al. 2023), reference libraries (Keck et al. 2023) and bioin-
formatics pipelines (Bailet et al. 2020; Rivera et al. 2020). Therefore, similar experi-
ments assessing these aspects are necessary to comprehensively understand and 
address sources of variability in diatom metabarcoding, facilitating the establish-
ment of standardised protocols. As we showed in this study that intercalibration 
exercises for eDNA approaches can be easily organised, we would recommend to 
increase the efforts to organise both national (to integrate national particularities, 
for example, diatom index, methods, accreditation, legislation) and international ex-
ercises (to validate international inter-comparability of the data produced, support 
international standardisation process, follow technological and methodological 
evolutions). Such events should be opened to all sectors and institutions (research, 
industry and other public and private sectors). As DNA approaches are aimed to be 
compatible with WFD, we need standards and, thus, automatically an accreditation 
system will be necessarily developed to validate their correct application in routine 
monitoring (e.g. COFRAC in France related to AFNOR). However, such consider-
ations should first be addressed at national level, as they can be country-specific.
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“All for one, but prove them all”: establishing proficiency testing 
schemes for performance-based quality management of DNA-
based biomonitoring

The results of our proficiency experiments E1 and E2 showed that the imple-
mentation of a unique standardised molecular biology protocol can be easi-
ly achieved. Although this “One for all” strategy would favour the harmonisa-
tion of diatom assessments within freshwater monitoring programmes at the 
European scale as only one protocol would be used, it is not recommended 
for several sociological, economic and political aspects (Blancher et al. 2022; 
Kelly et al. 2024; Stein et al. 2024; Lee et al. 2024). One of the major risks high-
lighted in Lee et al. (2024) is the danger of technological “lock-in”, resulting in 
dependence regarding equipment, consumables and reagents. eDNA methods 
are evolving faster than our ability to standardise (Kelly 2019), thus a more inte-
grative approach should be used. If several protocols are available and, despite 
their inherent variability and biases, produce similar results regarding diatom 
ecological assessment, they should be all acceptable for routine monitoring. 
This is in line with the “All for one” strategy that was validated within our E3 and 
E4 inter-comparison experiments.

Variations in the relative proportions of certain diatom taxa depending on 
the extraction protocol were previously highlighted by Vasselon et al. (2017). 
They demonstrated that the efficiency of the lysis method (e.g. mechanical, 
enzymatic or thermal) in breaking diatom cells can lead to variability in the rela-
tive abundance of specific diatom taxa in metabarcoding outputs. In our study, 
despite the low variability between participants regarding diatom community 
structure, the “participant effect” accounted for around 90% of the total vari-
ance within both samples and for each experiment, confirming these previous 
results (Vasselon et al. 2017). However, it is important to note that these vari-
ations did not significantly affect ecological assessments for the two samples 
we tested, as the overall composition of diatom assemblages remained con-
sistent. The results obtained in experiments E3, where each participant used 
their own DNA extraction protocol, are consistent with these findings. Given 
these findings, it is likely that a combination of mechanical and enzymatic ly-
sis mechanisms to break down the silica cell wall of diatoms and extract their 
DNA could lead to a more efficient extraction process, potentially reducing the 
variability associated with the diatom frustule issue. Further experimentation 
and downstream analysis are required to explore this possibility. Other studies 
testing different extraction methods conducted on other communities within 
biofilms from aquatic environments also demonstrated the importance of test-
ing distinct lysis methods (Ferrera et al. 2010; Corcoll et al. 2017), considering 
that excessive mechanical treatments can result in the shearing of the DNA, 
decreasing its quality (Hermans et al. 2018; Portas et al. 2022).

The variability in taxonomic lists introduced by different PCR amplification 
protocols was surprisingly low in E4, considering the known biases associat-
ed with this technique. Our objective was to evaluate the potential effect of 
different PCR amplification protocols on diatom IBD and IPS indices and not 
to decipher all the variability within ASV or taxonomic data. Further analysis is 
needed to determine whether the observed biases are attributable to the specif-
ic Taq polymerase or thermal cycler used, as these factors may also contribute 
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to variability (Dabney and Meyer 2012; Pan et al. 2014; Brandariz-Fontes et al. 
2015; Nichols et al. 2018). The analysis of our metabarcoding data with dedicat-
ed metrics, such as proportions of chimera and introduced mutation (deletion, 
insertion, base substitution), would be of interest to evaluate the impact of the 
different DNA Taq polymerase applied by the participants (Nagai et al. 2022).

Results of our inter-comparison E3 and E4 experiments showed that there 
is a clear influence of participants and methods on the overall diatom assem-
blage structure, although the general composition remains consistent. Despite 
significant variations in IPS scores amongst participants, the observed range 
of variability falls within acceptable limits compared to typical variability ob-
served in morphological intercalibration studies (Kahlert et al. 2012; Werner et 
al. 2016). Thus, the use of different DNA extraction and PCR amplification pro-
tocols yields consistent IBD and IPS results, indicating the operational viability 
of various approaches for diatom freshwater monitoring and the pertinence of 
the “all for one” strategy to support standardisation. In such a case, while each 
country may continue to use its own protocol or switch to new one following 
methodological innovation over time, it is important to implement harmonised 
quality control measures and minimum standard considerations to ensure re-
producibility and to minimise variability. In line with this change of paradigm, 
we recommend the “all for one, but prove them all” strategy suggesting that 
new protocols can be used as long as the results are proved to be consistent 
with already validated protocols during intercalibration and inter-comparison 
experiments. These validation steps would: (i) guarantee the comparability of 
results, (ii) avoid lock-in risk by maintaining the use of different and indepen-
dent protocols, (iii) give the freedom to see protocols appear or disappear at 
the same speed as technological innovations, (iv) stabilise standards and reg-
ulatory measures (training, accreditation) over time and (v) stimulate scientific 
innovation within the scientific community.

Intercalibration and inter-comparison exercises as tools for 
integration of DNA approach along morphology for freshwater 
routine monitoring

The morphological approach remains the standard method for diatom iden-
tification in monitoring applications such as the WFD. However, this method 
requires significant time and expertise from highly-trained analysts and can 
result in significant variation in metric scores between operators (Kahlert et al. 
2012; Werner et al. 2016). This inter-operator variability is mainly attributed to 
analyst-induced variance related to the difficulty of identifying some morpho-
logically similar diatoms, the consistency of taxonomical expertise between 
operators and the natural heterogeneity of samples. As for many other micro-
organisms, diatom taxonomy is still not resolved since most taxa remain unde-
scribed, some not separable based on LM criteria like for “cryptic” species and 
several decades of intense research efforts would be necessary to fill the gap 
(Mann and Vanormelingen 2013; Guiry 2024). Taxonomy is in constant evolu-
tion as more and more is known about their ecology, physiology, sexual repro-
duction and genetics favouring delineation of species (e.g. Ruck et al. (2016); 
Adl et al. (2019); Heudre et al. (2021); Mann and Trobajo (2024)). Results of 
river quality assessment, based on microscopy, can be quite different between 
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operators, varying, for example, between 12 and 20 for the IBD index in one 
previous intercalibration exercise (Prygiel et al. 2002). However, despite these 
challenges, diatom indices are reliable for routine monitoring of river quality 
within the WFD (Kelly et al. 2009; Almeida et al. 2014; Kelly et al. 2014) and wa-
ter managers have been using these tools for decades in Europe and America.

Morphological intercalibration exercises are already being performed in 
Europe (Kahlert et al. 2012 Werner et al. 2016). Such exercises are often organ-
ised between countries or at the national scale reflecting organisational as well 
as ecological differences around Europe (Kahlert et al. 2016) and involve par-
ticipants from different backgrounds (authorities, consultants, researchers), 
frequencies (every year or occasionally), with more or less participants and the 
results of such events are generally published as “grey literature”. As organisa-
tion of such exercises is complicated even within a single country, their organi-
sation at an international level is rare. Within our intercalibration exercises, R, L 
and M samples were prepared with the intention to perform morphological in-
tercalibration experiments along with the DNA ones (data not shown). However, 
a major coordination challenge for European researchers was raised for such 
experiments which required: (i) adjusting the diatom flora used for the determi-
nation, (ii) increasing the number of valves identified (400 to 1000) to increase 
the depth of analyses and (iii) performing several replicates per sample which 
was considered highly time-consuming. Therefore, only the RL performed the 
morphological determination and showed that the variability within operators 
was at the same scale as inter-operator variability during DNA metabarcoding 
experiments. This result seems logical as it is easier to harmonise molecular 
methods and conditions between molecular ecology laboratories than harmo-
nise taxonomical knowledge between taxonomists. Intercalibration exercises 
are necessary for morphological identification exercises in order to harmonise 
knowledge between operators and are necessary to improve national surveys 
(Kahlert et al. 2009; Kelly 2013). In several respects, coordination of DNA me-
tabarcoding intercalibration and inter-comparison at the European scale may 
be easier than for morphological identification. However, integration of diatom 
DNA approaches along with morphological ones for freshwater assessment 
has been proposed by the scientific community (e.g. Charles et al. (2021)). This 
means that it may be necessary to build clear bridges facilitating intercalibra-
tion and inter-comparison experiments involving DNA and morphological ap-
proaches at the same time and not as separate events. As the organisation of 
morphological intercalibration exercises can be complicated, new propositions 
should be found to facilitate their organisation. For example, such efforts could 
be dedicated to easily connect diatomist experts (e.g. Spaulding et al. (2021)) 
or using digitalised diatom image (Kloster et al. 2020) to propose online exercis-
es to diatomists as planned in the DNAquaIMG project (https://dnaquaimg.eu).

If intercalibration and inter-comparison exercises are essential parts of 
routine monitoring to maintain data continuity and consistency between fu-
ture routine operators, clear guidelines need to be defined to coordinate the 
integration of molecular and morphological approaches at a national scale. 
Several documents propose practical guides on the use of eDNA approaches 
for freshwater monitoring (e.g. Pawlowski et al. (2020); Bruce et al. (2021); 
Blancher et al. (2022); De Brauwer et al. (2023)). If general documents are 
necessary to move forward with the integration of eDNA approaches, routine 

https://dnaquaimg.eu
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monitoring requires adapted standards for particular taxonomic groups, to-
gether with specific ecological and regulatory situations. One route for this is 
via international standardisation - via CEN and ISO as highlighted for eDNA 
diatom ecological assessment with technical reports for a routine sampling 
of benthic diatoms from rivers and lakes adapted for metabarcoding analy-
ses (CEN/TR 17245 2018) and the management of diatom barcodes (CEN/
TR 17244 2018). However, key performance standards and guidelines need 
to be produced on other steps of DNA metabarcoding to address operational 
questions on parameters, such as the number of sampling replicates, the use 
of calibrated samples (negative and positive controls including mock com-
munities), the lysis method for DNA extraction, the strategy of number of PCR 
replicates per sample and subsequent pooling and the minimum copy num-
ber for retained sequences should be considered (e.g. Alberdi et al. (2018); 
Bunholi et al. (2023)). Consequently, further studies are required to provide 
more insight into the details of these guidelines, especially to provide estima-
tion of the different thresholds required.

If results from our intercalibration and inter-comparison experiments is to 
contribute to the development of standards, a first priority would be to decide 
how to manage the integration of diatom quantification into diatom indices. 
As an example, several strategies were proposed to handle diatom quantifi-
cation through metabarcoding using species correction, based on diatom cell 
biovolume (Vasselon et al. 2018) or a direct quantitative adjustment of the 
diatom index, as developed for the TDI (Kelly et al. 2020b). Such strategies 
have advantages, but also biases, which might directly affect routine moni-
toring like for IBD calculation where a percentage of contributing taxa should 
be reached within an inventory before validating the interpretation of the IBD 
(AFNOR 2016). However, despite discussing the upgrade of morphologically 
based standards to consider the variability of DNA corrected and non-cor-
rected IBD scores, DNA metabarcoding data should also be considered inde-
pendently of microscopy as discussed in Kelly et al. (2020a). This will help to 
create new metrics (Apothéloz‐Perret‐Gentil et al. 2017, 2021; Tapolczai et al. 
2019; Kelly et al. 2020b) that can be used for freshwater biomonitoring and 
for which dedicated standards could be constructed without trying to fit with 
standards designed for microscopy-based indices. Once done, strategies that 
involve the co-application of DNA and morphology-based approaches taking 
advantage of both approaches could be efficiently designed and applied for 
large-scale monitoring.

Conclusion

These intercalibration (proficiency test) and inter-comparison experiments 
demonstrate that diatom DNA metabarcoding offers a highly reproducible eco-
logical assessment if the main taxa are included in the reference sequence 
database. In the experiments, participants used both a standard and an own-
choice protocol and performed DNA extractions and PCR on calibrated sam-
ples. Congruent results (similar composition and indices) were obtained be-
tween laboratories, revealing: (i) the robustness of DNA extraction and PCR 
protocols between laboratories and (ii) the possibility of using different pro-
tocols (i.e. with different reagents), adding more variability to the assemblage 
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composition, but without affecting the outcome of ecological assessment of 
the samples. As a result, we propose the “all for one, but prove them all” con-
cept, suggesting that many different molecular approaches can be used as 
long as their functionality can be validated with the approach provided here 
(calibrated samples, negative and positive controls) and if key minimum steps 
(to be defined for future standards) are followed. Thus, our study shows how 
diatom metabarcoding can be included into routine monitoring of freshwaters 
in a regulatory context.
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