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• ARGs, fecal indicator bacteria, and
human fecal markers increase in abun-
dance through an urbanization gradient.

• Water reclamation plants increase
ARGs, reduce fecal indicator bacteria,
and increase resistant E. coli and
P. aeruginosa.

• A low-cost culture based screening tool
identified AR hotspots, confirmed by
qPCR- and metagenomics-based
techniques.
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A B S T R A C T

Urban land use and water reclamation plants (WRPs) can impact fecal indicator bacteria (FIB) and antimicrobial 
resistance (AMR) in coastal watersheds. However, there is a lack of studies exploring these effects on the US West 
Coast. Additionally, there is limited research using a complementary approach across culture-, qPCR-, and 
metagenomics-based techniques for characterizing environmental AMR. In this study, sixteen locations were 
sampled in the Los Angeles River, encompassing both upstream and downstream of three WRPs discharging into 
the river. Culture-dependent methods quantified Enterococcus, total coliforms, E. coli, and extended spectrum 
beta-lactamase-producing E. coli as a low-cost screening tool for AMR, while qPCR measured selected antibiotic 
resistance genes (ARGs): sul1, ermF, tetW, blaSHV, along with intI1 and 16S rRNA genes. Bacteroides HF183 and 
crAssphage markers were quantified via ddPCR. All samples underwent shotgun sequencing to investigate gene 
abundance and mobility and an overall risk score for AMR. Results reveal downstream sites contain ARGs at least 
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two orders of magnitude greater than upstream locations. Developed areas had the highest ARG sequence 
abundances and the most ARG classes as indicated by metagenomic analysis. WRP effluent exhibited elevated 
ARGs and co-location of ARGs, mobile genetic elements, and pathogens. A culture-based assessment of AR in 
E. coli and Pseudomonas aeruginosa revealed increased resistance ratios for most antibiotics from upstream to 
downstream a WRP discharge point. This study highlights the impacts of land use and WRPs on ARGs and FIB, 
offering a multi-pronged analysis of AMR.

1. Introduction

Antibiotic resistance is deemed a formidable challenge to global 
public health. Each year in the United States alone, over 2.8 million 
infections and over 35,000 deaths are attributed to antibiotic-resistant 
bacteria (ARB) (CDC, 2019). Despite the known risk of antibiotics 
causing resistance in clinical isolates in as little as a year (Ventola, 
2015), antibiotics are still extensively used in humans and animals. 
Environmental factors such as the presence of antibiotics, detergents, 
and heavy metals, as well as temperature, pH, and nutrient loadings 
mediate the emergence, persistence, and dissemination of antibiotic 
resistance genes (ARGs) in bacteria (Bombaywala et al., 2021; Vikesland 
et al., 2017). ARGs can be transferred among bacteria through genera-
tions via vertical gene transfer (VGT) and through horizontal gene 
transfer (HGT) between different species of bacteria present in a location 
(Narciso-Da-Rocha et al., 2014). Mobile genetic elements (MGEs) such 
as integrons, plasmids, and transposons facilitate the transfer of ARGs 
among opportunistic microorganisms (Ma et al., 2017; Partridge et al., 
2018). Due to the health threats to the public, research studies are 
quantifying and characterizing ARGs and ARB across various environ-
mental compartments. However, despite the recognition of these com-
partments as hotspots for the proliferation and dissemination of 
antibiotic resistance, there is currently no standard routine monitoring 
method. Of these environmental compartments, studies on ARGs and 
ARB in surface waters, especially in populous coastal areas, are 
increasing (A. A. Hatha et al., 2020; Zheng et al., 2021).

Anthropogenic pollution plays a substantial role in the dissemination 
of antibiotic resistance in water bodies. Key contributors include 
discharge from wastewater treatment plants (WWTPs) (Eramo et al., 
2019; Lee et al., 2022; Miłobedzka et al., 2022; Proia et al., 2018; Sabri 
et al., 2020; Tang et al., 2021; Wang et al., 2021), livestock operations, 
agriculture, and land applications of manure (Barrios et al., 2020; Chee- 
Sanford et al., 2009; Cira et al., 2021; He et al., 2020; Hung et al., 2022; 
Jacobs et al., 2019; West et al., 2011), and hospitals (Hassoun-Kheir 
et al., 2020; Hocquet et al., 2016; Narciso-Da-Rocha et al., 2014; Paulus 
et al., 2019; Petrovich et al., 2020). Larger and denser cities amplify the 
impacts of antibiotic resistance in surface waters (Xu et al., 2016), with 
urban runoff contributing significant amounts of chemical pollutants, 
bacteria, sediments, and nutrients in water (Almakki et al., 2019). Direct 
discharge sources from WWTPs were found to contribute to ARG load-
ings in urban rivers in Beijing, China (Xu et al., 2016). Sewage was found 
to greatly influence ARG reservoirs in coastal waters in the capital of 
Uruguay (Fresia et al., 2019). Human fecal pollution from municipal 
wastewater discharges was the dominant factor shaping ARG patterns 
along the Danube River (Schachner-Groehs et al., 2024). Though many 
studies have been conducted on quantifying antibiotic resistance in 
surface waters, few have been conducted in large cities in the coast of 
the western United States (Zheng et al., 2021) or tested existing 
frameworks and standardized methods for this purpose (Borchardt et al., 
2021; Davis et al., 2020; Keenum et al., 2022). HF183 and crAssphage 
are commonly used microbial source tracking (MST) markers for human 
fecal pollution to improve detection of health-relevant microbial 
pollution. Current research demonstrated that crAssphage and HF183 
associated well with broad fecal indicator bacteria in sewage and surface 
water, such as E. coli and enterococci (Ahmed et al., 2021; Stachler et al., 
2019). Moreover, investigations have revealed the co-occurrence of 
crAssphage and antibiotic resistance genes (ARGs) in water bodies 

impacted by wastewater (Ahmed et al., 2018; Karkman et al., 2019).
A variety of techniques are employed to quantify and characterize 

antibiotic resistance. The most prevalent technologies for monitoring 
environmental antibiotic resistance in water include microbial source 
tracking, qPCR, whole genome sequencing, metagenomics, and culture- 
based methods (Ishii, 2020; Miłobedzka et al., 2022; Sanderson et al., 
2016). Each method has its advantages and disadvantages. Culture- 
based methods allow for isolation of viable target organisms (McLain 
et al., 2016), but are time and labor intensive, and many organisms are 
unculturable in laboratory settings (Ishii, 2020; Sukhum et al., 2019). A 
potential exists for widespread surveillance of antibiotic resistance of 
E. coli in surface waters using a modified version of the IDEXX Colilert 
method with the use of added antibiotics (Hornsby et al., 2022). 
Amplification methods, such as qPCR, exhibit greater sensitivity 
compared to metagenomics; however, they demand more extensive 
effort to cover a broad range of genes and taxonomic markers (Ferreira 
et al., 2023). Based on the PCR technique and fluorescent signals, qPCR 
faces challenges such as PCR bias, complicating direct performance 
comparisons across different laboratories (Mao et al., 2024). Meta-
genomics is thought to be superior in identifying ARGs in complex 
environmental and clinical metagenomes using an array of databases, 
but is a costly method (Guitor et al., 2020; Vikesland et al., 2017). Some 
experts argue for antibiotic susceptibility tests for phenotypic data and 
suggest combining these data with molecular analysis from whole 
genome sequencing (Diallo et al., 2020; Sukhum et al., 2019). However, 
there is currently no standard method to quantify antibiotic resistance or 
standard ARG unit (Nguyen et al., 2021), and dose and response models 
for ARB are still being explored (Chandrasekaran and Jiang, 2019).

Wastewater (WW) is a well known source of AR to environmental 
receiving waters. Many WW-associated bacteria are not well-suited for 
growth in the environment; however, they can be a source of genes that 
can be transmitted by horizontal gene transfer (HGT). Thus, it is 
important to characterize the potential for propagation of ARGs to 
environmental microbial populations. E. coli is highly associated with 
WW but also grows well in the environment, so inputs of this bacterium 
involve the potential for long-term survival and propagation of AR. 
P. aeruginosa is not considered prevalent in the human gut but is nearly 
ubiquitous in surface waters and sediments. Changes to the resistance 
profile of environmental bacteria (not associated with WW) above and 
below WWTPs has been hypothesized as a method for indicating impact 
of the WWTP on environmental AR by HGT (Milligan et al., 2023).

This study aimed to: 1) apply an existing framework for monitoring 
antibiotic resistance in watersheds (Davis et al., 2020) across a highly 
urbanized watershed; and 2) cross-validate between culture, qPCR, and 
metagenomic techniques along an urbanization gradient in Los Angeles, 
California—one of the most populous cities in the United States. The Los 
Angeles River (LAR) watershed was evaluated for ARGs, fecal indicator 
bacteria, and Extended-spectrum beta-lactamase (ESBL) producing 
Escherichia coli in different land use contexts. An additional sampling 
event took place at one of the WRPs during a wet weather event for a 
suite of antibiotic resistant bacteria. qPCR was used to quantify sul1, 
tetW, intI1, ermF, blaSHV, and16S rRNA genes, while ddPCR was used to 
quantify HF183 and crAssphage. Samples were shotgun sequenced to 
compare them against relevant antibiotic resistance databases, calculate 
ARG abundances, and resistome risk scores. Water samples were taken 
in the river at points above and below three different water reclamation 
plants (WRPs), swimming and kayak sites, and from beaches near the 
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coastal pour point using a snapshot study approach (Davis et al., 2020). 
This study is the first of its kind in the LAR watershed and provides 
critical insights to antibiotic resistance dynamics in an urban watershed, 
informing future research and policy.

2. Materials and methods

2.1. Study area

The Los Angeles River (LAR) watershed is approximately 824 mi2 in 
size, and is home to roughly 4.5 million people. The LAR is 51 miles long 
and is bounded by the San Gabriel, Santa Susana, and Santa Monica 
Mountains in the west and north, the San Gabriel River Watershed in the 
east, and the Pacific Ocean in the south. The river discharges at the San 
Pedro/Los Angeles and Long Beach Harbor complex, which has a semi- 
enclosed breakwater of 7.5 miles. The river's estuary is about three miles 
from where it meets Queensway Bay.

The land use within the LAR watershed is diverse with 324 mi2 being 
open space and forest and the remaining being highly developed resi-
dential, industrial, and commercial areas. The land use distribution is as 
follows: 35 % residential, 5 % commercial, 8 % industrial, and 51 % 
open land (Ackerman et al., 2003). Most of the river in the developed 
area is lined with concrete, but some areas in the Glendale Narrows and 
Sepulveda Flood Control Basin are unlined to maintain riparian habitat.

Currently, the majority of the LAR's water volume stems from three 

WRPs, supplemented by additional inputs from runoff and groundwater 
upwelling. Approximately 27.1 million gallons per day (MGD) originate 
from the DC Tillman WRP, 7.8 MGD from the LA Glendale WRP, 4.5 
MGD from the Burbank WRP, and 3.6 MGD from groundwater upwell-
ing, with an additional 0.032 to 7.8 MGD from runoff (LA City Sanita-
tion, 2018). All WRPs utilize tertiary treatment technologies to process 
municipal and industrial wastes before discharging treated effluent into 
the river. Notably, Burbank and LA Glendale WRPs discharge directly in 
the river, while the Tillman WRP partially discharges into a nearby 
garden and lake system before reaching the river.

The LAR has multiple recreational areas for kayaking, fishing, and 
swimming. Two recreation zones exist along the main stem of the riv-
er—the Elysian Valley and Sepulveda Basin LA River Recreation Zones 
(Mountains Recreation and Conservation Authority, n.d.). Reportedly, 
thousands of people swim in unpermitted and designated areas in the 
LAR [49]. Most recreational swimming sites are located in the upper 
LAR watershed in the Hansen Dam and the Angeles National Forest.

2.2. Sample collection and filtration

Sample collection was carried out at sixteen sites featuring a range of 
land uses as illustrated in Fig. 1. Five locations were above and below the 
three WRPs (Tillman Above, Tillman Below, Burbank Below, Glendale 
Above, Glendale Below), with exception of above the Burbank WRP due 
to no flow. Three kayaking sites (Sepulveda Dam, Rattlesnake Park, 

Fig. 1. Map of Land use in the Los Angeles River watershed and sampling locations.
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Steelhead Park) and four swim sites (Eaton Canyon Falls, Switzer 
Canyon Falls, Big Tujunga Creek, and Tujunga Wash) were sampled. 
Three beaches (Alamitos Beach, Long Beach City Beach, and Rosie's Dog 
Beach) and one estuary/tidal site (LA River in Long Beach) were 
included where the LAR discharges to the ocean.

Each site was classified as “developed”, “undeveloped,” and “beach” 
based on a land use map of Los Angeles County. Coordinates, land use 
designations, and sampling dates for each location are provided in 
Table S1 (Supporting Information). Site locations were informed by 
water quality sample locations used by the Council for Watershed Health 
(Council for Watershed Health, 2020) and Heal the Bay for their river 
and beach report cards (Heal the Bay, 2020a, 2020b).

Sample collection occurred during a one-week timeframe between 
October and November 2021. Follow-up samples were collected in 
Glendale for further culture-based analysis on 11/18/22, 2/26/23, and 
8/29/23. On October 25, 2021, the Burbank-Glendale weather station 
recorded 0.64 in. of rain and a total of 0.75 in. of rain in October 2021. 
These precipitation events were the first of the winter season and pro-
vided the opportunity to understand the impacts of runoff in the LAR 
watershed which is known to increase antibiotic resistance in surface 
waters (Carney et al., 2019; Lee et al., 2020). Water sample collection 
occurred during the early morning hours to ensure minimal UV solar 
radiation. At each site, four liters of water were collected in sterile 
polypropylene bottles, which were pre-rinsed three times with ambient 
water before collection. Samples were then transported on ice (4 ◦C) to 
the laboratory, and processed within six hours of collection. Water 
temperature, pH, conductivity, dissolved oxygen, and turbidity were 
measured for each location using a multiparameter sonde (Hydrolab 
HL4, OTT Hydromet, Loveland, CO).

Upon arrival at the laboratory, water samples were filtered in at least 
triplicates on 0.2 μm polycarbonate filters (MilliporeSigma, Burlington, 
MA). The volume of water necessary to clog the filter ranged from 100 to 
600 mL per sample and was recorded for each replicate. Filters were 
stored in 2 mL screw cap tubes with flame sterilized tweezers and fixed 
with 50 % ethanol. Samples were stored at − 20 ◦C prior to DNA 
extraction. A phosphate buffer solution blank was filtered and stored 
during each sampling event.

2.3. DNA extraction, qPCR, and ddPCR

Ethanol-fixed filters were cut into approximately 1 cm2 pieces with 
flame-sterilized scissors and transferred into lysing matrix tubes from 
the FastDNA SPIN Kit for Soil (MP Biomedicals, Irvine, CA). The residual 
ethanol solution was subjected to centrifugation at 5000 xg for 10 min 
before being resuspended with the sodium phosphate buffer provided in 
the DNA kit, and then added to the lysing matrix tube. Extraction pro-
cedures were carried out according to manufacturer's instructions opting 
for the longest recommended times for incubation, mixing, and settling. 
An extraction blank was processed with each extraction batch. Total 
DNA concentrations and 260/280 absorbance ratios were determined 
through spectrophotometry via a NanoDrop 2000c (Thermo Scientific, 
Waltham, MA).

All samples were analyzed for ARG abundance of sul1 (resistance to 
sulfonamides), tetW (resistance to tetracyclines), blaSHV (resistance to 
beta-lactams), and ermF (resistance to macrolides). The intI1 gene was 
quantified as a proxy for anthropogenic pollution and the 16S rRNA 
gene served as a surrogate for total bacteria. Gene target sequences and 
cycling conditions are available in Table S2, Supporting Information. 
qPCR amplification was performed using the StepOnePlus system 
(Applied Biosystems, Foster City, CA) in 25 μL reaction volumes con-
taining 12.5 μL PowerUp SYBR Green Master Mix (Applied Biosystems, 
Foster City, CA), 1.25 μL of each forward and reverse primer, 2 μL of 
template DNA, and molecular grade water for the remaining volume for 
all genes except 16S rRNA. The 16S rRNA gene was performed in a 20 μL 
reaction volume with 10 μL of PowerUp SYBR Green Master Mix, 1 μL of 
each forward and reverse primer, 3 μL of template DNA, and molecular 

grade water for the remaining volume. All assays were performed in 96- 
well plates. At least a five-point standard curve was run with each plate 
utilizing double-stranded gBlock gene fragments resuspended according 
to manufacturer instructions (IDT, Coralville, IA) and quantified on the 
NanoDrop 2000c (Thermo Scientific, Waltham, MA). Ten-fold dilutions 
were carried out for the 16S rRNA gene to uncover the presence of PCR 
inhibitors. The accepted minimum qPCR efficiency was 83 % and the 
lowest R2 value was 0.997. The limit of detection was based on the 
lowest standard per assay (Borchardt et al., 2021; Bustin et al., 2009). 
The data for regular qPCR were analyzed in StepOne Software v2.3. The 
MIQE guidelines for the qPCR assays are located in Table S3, Supporting 
Information.

Molecular quantification of human associated fecal maker targets 
was conducted using a Bio-Rad QX200 Droplet Digital PCR System (Bio- 
Rad Laboratories, Hercules, CA). The assay primers targeting crAss-
phage and HF183/BacR287 molecular indicator regions were adapted 
and performed (Table S4, Supporting Information). 20-μL reactions 
were made using 4× Supermix of Probes (Bio-Rad Laboratories, Her-
cules, CA). Targets were analyzed in duplex. Droplets were generated 
with a Bio-Rad QX200 Auto Droplet Generator, and amplification was 
performed using a C1000 Touch Thermal Cycler (Bio-Rad Laboratories, 
Hercules, CA) according to manufacturer's recommendations: 94 ◦C for 
10 min, followed by 40 cycles of 94 ◦C for 30 s, then 60 ◦C for 1 min. At 
least two no template control (NTC) assays were performed for each 
assay by replacing the DNA with molecular grade water. Droplets were 
read on a QX200 Droplet Reader (Bio-Rad Laboratories, Hercules, CA). 
QA/QC was performed for all samples. Samples that yielded <10,000 
accepted droplets were excluded from data analysis. Copy number 
concentrations were calculated by normalizing the data to 100 mL of 
sampled water to compare all markers on the same scale. The MIQE 
guidelines for the ddPCR assays are located in Table S5, Supporting 
Information.

2.4. FIB, heavy metal analysis, and ESBL E. coli enumeration

Enumeration of fecal indicator bacteria (FIB) involves the quantifi-
cation of total coliforms, Escherichia coli (Colilert-18, IDEXX), and 
Enterococci (Enterolert, IDEXX) bacteria using standard methods and kits 
(IDEXX Laboratories, Westbrook, ME). Final concentrations were re-
ported in Most Probable Number (MPN) per 100 mL. Marine samples 
and samples along the main stem of the river were diluted 10-fold and up 
to 1000-fold, respectively, according to manufacturer 
recommendations.

For quantifying extended-spectrum beta-lactamase (ESBL) E. coli, 
100 μL of 1 mg/mL cefotaxime was added to each prepared 100 mL 
IDEXX bottle with Colilert-18 media (Hornsby et al., 2022). Samples 
were diluted at most 100-fold.

Heavy metals were quantified in the water samples using Inductively 
Coupled Plasma Optical Emission Spectrometry (ICP-OES) for Copper 
(Cu), Nickel (Ni), Chromium (Cr), Manganese (Mn), Iron (Fe), Vanadium 
(V), and Aluminum (Al), with the concentrations expressed in mg/L.

2.5. Percent antibiotic resistant for Pseudomonas aeruginosa, E. coli, and 
enterococci

Follow-up samples were taken in Glendale during dry weather (2/ 
26/23, and 8/29/23) and wet weather (11/18/22) periods. Dry weather 
reflected the usual state of the Los Angeles River with impact from the 
WWTP effluent, while the wet weather sampling took place during a 
severe storm event, where the WWTP effluent impact was likely insig-
nificant due to the high level of flood waters in the river. Colilert, 
Enterolert, and Pseudolert (IDEXX) were used both as directed and 
modified with tetracycline (30 mg/mL & 3 mg/mL), penicillin (100 mg/ 
mL), and erythromycin (50 mg/mL). The MPN/100 mL in the presence 
of each antibiotic was divided by the total MPN/100 mL (absence of 
antibiotic) to determine the percent that is resistant for each antibiotic.
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2.6. Sequencing and bioinformatics

Approximately 100 ng of DNA from each of the 16 samples were 
sequenced via 2 × 150 bp paired-end shotgun metagenomic sequencing 
using an Illumina NovaSeq 6000 facilitated by Mr. DNA (Shallowater, 
TX). Each library yielded between 10 and 30 million paired-end reads. 
All sequence data were deposited into the public NCBI Short Read 
Archive (SRA) database under BioProject ID PRJNA1061832. The raw 
sequences were uploaded into the Galaxy platform (https: //usegalaxy. 
org) for processing and assembly. Trimmomatic (Galaxy Version 0.38.0) 
was employed to remove low-quality reads from our pair-end data 
(Bolger et al., 2014). The Trimmomatic operation SLIDINGWINDOW 
was set to 4 bases and a quality score of 20, the MINLEN operation was 
set to a length of 50 bases, and AVGQUAL operation was set to a score of 
20.

The paired data was assembled using de novo metagenomic assem-
bly by MEGHIT (Galaxy Version 1.2.9) using the default settings of 2 for 
minimum multiplicity and 200 bp for the minimum length of output 
contigs (Li et al., 2015). FastQC (Galaxy Version 0.73) and Fasta Sta-
tistics (Galaxy Version 2.0) were used for quality control. Open reading 
frames (ORFs) on the contigs were predicted using Prodigal v2.6.3 
(Hyatt et al., 2010).

ARGs were characterized using the ARGs-OAP pipeline (v2.3) which 
employs the Structured Antibiotic Resistance Genes database to quantify 
ARG subtypes by cell number and 16S rRNA (Yin et al., 2018). 

Environmental resistome risk scores were calculated using the Meta-
Compare pipeline, which assigns a risk score based on the co-occurrence 
of ARGs, MGEs, and pathogens on assembled contigs (Oh et al., 2018). 
Percent mobility is calculated as the percentage of co-occurring ARGs 
and MGEs on assembled contigs. Read-based taxonomic classification 
was performed via the Kraken2 (v2.0.8) software on the National 
Microbiome Data Collaborative (NMDC) EDGE bioinformatics platform 
(https://nmdc-edge.org/).

2.7. Statistical analysis

Data analysis and visualization were conducted in RStudio (v4.0.2). 
ARG data were categorized by land use and assessed for statistical sig-
nificance through the Wilcoxon test at an alpha level of 0.05. Resistome 
risk score statistical significance was assessed using the non-parametric 
Kruskal-Wallis H test to compare multiple groups, followed by Dunn's 
test for post-hoc pairwise comparisons, with an alpha level of 0.05. 
Correlation plots were created with the “corrplot” (v0.90) and “Hmisc” 
(v4.6) packages. The principal component analysis plot was generated 
using the “prcomp” function and “ggbiplot” (v0.55) package. The 
“ggplot2” (v3.3.6) package was used to create all bar plots. The three- 
dimensional plot of resistome risk factors was generated using the 
“plot3D” (v1.4) package. Heatplots and chord plots were created using 
the “pheatmap” (v1.0.1) and “circlize” (v0.4.1) package, respectively.

Fig. 2. Absolute gene abundances per land use type (undeveloped, developed, and beaches) for blaSHV, ermF, intI1, sul1, and tetW as gene copies per mL of water 
sampled. Undeveloped samples were taken in forested land preservation, parks, and recreational areas. Developed areas were collected in mixed urban, residential, 
commercial, and industrial areas. The sampling points above and below water reclamation plant effluent points are also encompassed in the developed category. The 
beach classification includes samples collected at public beaches near the Los Angeles River pourpoint. Asterisks denote the statistical significance between the 
categories with the following convention: *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001.
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3. Results and discussion

3.1. Absolute gene abundances of ARGs and intI1

In this study, four ARGs (sul1, ermF, blaSHV, and tetW), 16S rRNA 
gene, and intI1 gene were quantified using qPCR in all water samples. 
The absolute abundances of all genes per land classification are dis-
played in Fig. 2. The undeveloped areas consistently had the lowest gene 
values, while sites in developed areas had the highest. Beaches had 
moderate levels for all genes, except tetW where beaches had similar 
values to developed sites. On average, developed sites exhibited median 
gene values 1–3 orders of magnitude greater than undeveloped sites, and 
1–2 orders of magnitude greater than beach sites, except for tetW. LA 

River in Long Beach (LA), the most downstream developed area, 
consistently had the highest average absolute gene value. Big Tujunga 
Creek (TC) had the lowest average relative abundance for sul1, intI1, and 
tetW, and Switzer Canyon Falls (SF) had the lowest for blaSHV and ermF. 
Absolute gene abundances were statistically significant between devel-
oped and undeveloped land uses for all genes (p < 0.05). Developed gene 
abundances for sul1, intI1, and ermF were significantly different 
compared to beaches (p < 0.05). Beach and undeveloped gene abun-
dances were not statistically significant.

Our findings align with a study that reported an increase in down-
stream concentrations of ARGs, except tetW, in a wastewater effluent 
receiving river in the Netherlands (Sabri et al., 2020). Comparing the 
same gene targets (sul1, intI1, and tetW), the values in the Netherlands 

Fig. 3. Heat plots of relative gene abundances through the watershed via (A) qPCR, (B) metagenomic data., and (C) ESBL E. coli levels. Sites are oriented from 
undeveloped (top), to developed (middle), to beaches (bottom). (D) Correlogram between culture-, qPCR- (absolute abundances), and sequencing-based AR de-
terminants. One star (‘*’), Two stars (‘**’), Three stars (‘***’) denote p-values <0.05, 0.01, and 0.001, respectively. Developed sites encompass the kayaking locations 
and sites above and below the water reclamation plants.
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were akin to those from our developed locations, though our tetW values 
were lower. Notably, our sul1 gene values in developed areas were the 
most comparable to that in the Funan (Yang et al., 2018) and Zenne 
Rivers, both of which are impacted by wastewater. We had significantly 
less tetW levels which may be due to tetracycline being prevalently 
detected in the Zenne River (Proia et al., 2018). Our absolute sul1 and 
intI1 values were also similar to the Murg River in Switzerland which 
receives WWTP effluent with increased values during bypass events (Lee 
et al., 2021).

3.2. ARG trends in the watershed captured by amplification-, 
metagenomic-, and culture-based methodologies

Comparing normalized ARG abundances between qPCR data 
(Fig. 3A) and metagenomic data (Fig. 3B), alongside culture-based ESBL 
E. coli levels (Fig. 3C), reveals similar trends through the LAR watershed. 
Each method captures different nuances of antibiotic resistance trends 
across various land uses and water types. In the qPCR and metagenomic 
data (Fig. 3A and B), the four undeveloped sites display low ARG 
abundances with Eaton Canyon Falls (EF), a popular hiking location, 
displaying higher values with metagenomic data but not by qPCR. ESBL 
E. coli is not detected in the undeveloped sites until the Tujunga Wash 
(TW) (Fig. 3C), a site previously known to have high levels of FIB. Both 
sequencing and culture-based methods (Fig. 3B and C) capture increases 
in antibiotic resistance in developed regions beginning at Tillman Above 
(TA), while qPCR registered amplified levels of sul1 and intI1 at Tillman 
Below (TB). High ARG values (Fig. 3A) persist and increase through the 
developed main stem until diluted by the Pacific Ocean as evidenced by 
the lower values at the three beaches.

On the other hand, ESBL E. coli (Fig. 3C) fluctuates within the 
developed main stem of the LAR and its presence is detected at one of the 
beaches (Rosie's Dog Beach). In the qPCR data (Fig. 3A), higher ARG 
values are retained at beaches compared to the undeveloped sites, 
whereas in the metagenomic data (Fig. 3B) the beach ARG values are 
lower than the undeveloped sites.

These differences in sensitivity between qPCR and metagenomic data 
were similarly studied in wastewater, animal feces, and wastewater 
impacted rivers in Portugal (Ferreira et al., 2023). In Ferreira et al., 
qPCR and sequencing methodologies successfully detected gradient di-
lutions between different samples, with qPCR having greater sensitivity 
in detecting stepwise gradual changes in water samples versus animal 
feces. In our study, both methodologies successfully detected gradient 
dilutions across different land uses with differences where the watershed 
transitions from undeveloped to developed. Here, due to the large 
number of genes analyzed, metagenomic data demonstrated superior 
ability to detect and quantify stepwise changes in ARGs and offered a 
more comprehensive coverage of ARG classes and complex patterns. 
However, qPCR, which has been shown to have a higher sensitivity per 
gene than metagenomic techniques (Ferreira et al., 2023) consistently 
detected all genes tested, while the metagenomic data showed many 
non-detects in marine water. However, qPCR had a better sensitivity 
with marine samples compared to metagenomic data, comparing Fig. 3A 
and B. Culture-based and sequencing methods were able to detect areas 
with elevated antibiotic resistance, such as Tillman Above, while qPCR 
did not. These differences highlight the complexities in antibiotic 
resistance trends in the environment and the need to combine multiple 
techniques to avoid underestimation and overestimation of AR de-
terminants. Similar variations across these methods were also seen in 
antibiotic resistance trends in agricultural soils (Wind et al., 2021).

Across study sites, intI1 was highly correlated with all resistance 
genes tested (p < 0.001 for sul1, p < 0.01 for ermF, p < 0.001 for tetW, 
and p < 0.01 for blaSHV, Fig. 3, Panel D), suggesting human influence for 
sulfonamides, macrolides, tetracyclines, and beta-lactamases, and in the 
LA River. The relative abundance of intI1 is considered to be an indi-
cation of microbial ability to acquire foreign DNA (Suhartono et al., 
2018), leading to enhanced transmission rates in water (Yang et al., 

2017). Numerous studies have used correlation with intI1 to indicate 
likely anthropogenic sourcing of ARGs (Gillings et al., 2015). For 
example, in an impacted lake water in China, only tetA and tetW were 
correlated with intI1, suggesting anthropogenic sources were particu-
larly important for those genes (Yang et al., 2017).

3.3. Diversity of ARGs through metagenomic data

The use of sequencing data enables the search of a greater diversity 
of ARGs from different classes. 20 out of the 24 antibiotic classes within 
the ARGsOAP pipeline were found in the water samples. Based on the 
relative abundance ARG data from the pipeline, there is a greater di-
versity of antibiotic classes represented in the developed sites (Fig. 4A). 
Burbank Below (BB) had the highest relative abundance mainly stem-
ming from multidrug resistance ARG types. Fig. 4B, depicts the top 10 
ARG classes among all samples. Multidrug resistant ARG types were the 
most abundant followed by bacitracin, unclassified, MLS, sulfonamide, 
aminoglycoside, beta-lactam, fosfomycin, tetracycline, and vancomycin. 
Multidrug resistant ARGs were also the largest proportion of ARGs in an 
urban stream in Nebraska, USA (Baral et al., 2018). Lee et al., 2022, also 
found high abundance of MLS, aminoglycosides, beta-lactam, sulfon-
amide, and tetracycline resistance classes in metagenomic data in 
WWTP effluent and bypass in a Swiss river (Lee et al., 2022). Multidrug, 
MLS, and beta-lactam ARG types were also most abundantly found in a 
WWTP in Virginia, USA (Majeed et al., 2021). Developed land uses have 
the highest portion of ARGs, followed by undeveloped and beaches.

Previous work has assessed environmental antibiotic resistance by 
both high-throughput qPCR (HT-qPCR) and shotgun metagenomic 
sequencing (SMS). Habibi et al. (2023) mapped ARG elements (ARGEs) 
in pollution-impacted coastal sediments off Kuwait (Habibi et al., 2023). 
HT-qPCR identified 100 ARGEs while SMS showed 402, leading the 
authors to conclude that SMS was preferable for monitoring due to being 
both more comprehensive and less expensive than HT-qPCR (which was 
roughly double the SMS cost). In the Kuwaiti sediments, HT-qPCR and 
SMS gave similar results for the relative abundance of various gene 
classes: beta-lactams were the dominant ARG class (37 %), followed by 
macrolides (19 %), tetracyclines (7 %), and fluoroquinolones (4 %).

3.4. Bacterial diversity

After comparing the top three taxonomies for each site, there were 
nineteen unique species and Limnohabitans sp. 63ED37–2 appeared in 
half of the sites. This organism is commonly found in freshwater habitats 
(Lee et al., 2021), and was found in LA, SP, RP, GB, TB, GA, SD, and TA. 
Limnohabitans sp. 63ED37–2 was the most predominant species in six of 
their taxonomies. The eight sites that lacked Limnohabitans sp. 
63ED27–2 in their top ten taxonomies were the three beach sites (AB, 
LB, DB), the four undeveloped sites (TW, TC, SF, EF), and one developed 
site, Burbank Below (BB). BB was the closest site downstream from the 
undeveloped sites, which could explain why its taxonomy differs from 
the other eight developed sites, in that it lacks an organism that typically 
features in the taxonomies of anthropogenically-influenced freshwater 
sites. 12 out of the 16 samples had Homo sapiens as a top contributor 
which was commonly found in large US rivers (Linz et al., 2023).

Taxonomic classifications at the phylum level are presented with a 
dynamic pattern across all samples in Fig. S1 (Supporting Information). 
Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Cyano-
bacteria were present in all of the samples in different proportions. 
Proteobacteria emerged as the dominant phylum in all samples, with a 
relative abundance ranging from 45 % to 81 %. Notably, its prevalence 
was comparatively lower in undeveloped and beach sites in contrast to 
developed sites. Similar results were found in fish ponds affected by 
aquaculture in China and rivers influenced by wastewater treatment 
plants in Spain (Marti et al., 2013; Xiong et al., 2015). The distribution 
of Firmicutes and Cyanobacteria exhibited divergence, presenting 
higher percentages at undeveloped and beach sites compared to 
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developed sites. This shift parallels observations in coastal marine 
samples (Li et al., 2020), where Cyanobacteria, Proteobacteria, and 
Bacteroidetes were identified as prevalent phyla. In the current study, 
however, Proteobacteria, Actinobacteria, and Bacteroidetes are the 
dominant bacteria in coastal samples.

3.5. Resistome risk

Resistome risk scores were calculated for all samples from assembled 
contigs containing ARGs with the potential for mobility and presence in 
pathogens (Fig. 5A). The MetaCompare results were then plotted in a 3- 

dimensional hazard space based on the hits from the Comprehensive 
Antibiotic Resistance Database (CARD), ACLAME, and PATRIC data-
bases (Fig. 5B). A Kruskal-Wallis H test revealed a statistically significant 
difference in resistome risk scores across the three site types (H = 10.49, 
p = 0.005). Resistome risk scores are greater in developed areas with the 
highest being at the Burbank Below (BB) location (RR = 27.94). Beach 
and undeveloped land use sites had similar resistome risk scores (18.80 
< RR < 22.80), where Switzer Canyon Falls (SF) had the lowest score. 
Post-hoc analysis using Dunn's test with Bonferroni correction showed 
that developed sites had significantly higher resistome risk scores 
compared to undeveloped sites (p = 0.013). No significant differences 

Fig. 4. (A) Total ARG relative abundance in water samples (upstream to downstream) annotated through the ARGsOAP v.2.3 pipeline. Each stacked bar represents 
one shotgun metagenomic sequence. (B) Chord plot of the top 10 ARG classes across sites partitioned by land use also annotated by the ARGsOAP v.2.3 pipeline.

Fig. 5. (A) Resistome risk scores and (B) co-occurrence of ARGs, MGEs, and pathogens in a 3D hazard space.
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were found between beach sites and the other two groups (p > 0.05). Co- 
occurrence of ARGs, MGEs, and pathogens increase from undeveloped to 
the developed sites and decrease at the beaches though not to the extent 
on the undeveloped sites (Fig. 5B). Among all undeveloped sites, only 
one location (TW) had one instance of co-location of an ARG and MGE 
among its 127,517 assembled contigs, resulting in a mobility percentage 
of 0.0007 %. BB had the highest mobility percentage (0.006 %) which 
had a total of 36 ARG and MGE co-locations among its 547,279 
assembled contigs. Undeveloped, developed, and beaches had mobility 
percentages of 0.00019 %, 0.0029 %, and 0.0011 %, respectively. 
Notably, the sites below water reclamation plants (TB) have higher in-
stances of co-occurrence than the sites above the respective plants (TA). 
Here the highest score was a river sample impacted by treatment plant 
water which was also seen in a study in Puerto Rico (Davis et al., 2020). 
The resistome risk scores in the developed areas were similar to those of 
secondary effluent of a US-based treatment plant (Majeed et al., 2021). 
Compared to European samples, our beach and undeveloped resistome 
risk scores were similar to WWTP effluent (18.42 < RR < 22.77) and the 
developed sites were similar to that of dairy lagoons (22.71 < RR <
29.02) but lower than hospital sewage (RR > 34.47) (Oh et al., 2018). 
The EU dairy lagoon values may be lower due to samples being taken 
after 2 months of operation. Longitudinal studies on the effects of 
manure on ARGs show that ARGs are detected in lower quantities in 
manured fields and receiving water after a few weeks (Barrios et al., 
2020; Garder et al., 2014; Muurinen et al., 2017), with ARGs returning 
to background levels after manure application after 2 months (Van den 
Meersche et al., 2020).

3.6. Correlation of ARGs and water quality parameters

Fig. 6A depicts the correlation coefficients between normalized 
ARGs, 16S rRNA, intI1, FIB, heavy metals, and other physicochemical 
properties. There were statistically significant positive correlations 
among turbidity and ESBL E. coli (p < 0.01), Fe (p < 0.05), total co-
liforms (p < 0.05). There were also positive correlations between 16S 
rRNA, total coliforms, ESBL E. coli, and E. coli. All ARGs and intI1 
correlated positively with each other and with pH. There are statistically 

significant negative correlations between dissolved oxygen and ESBL 
E. coli (p < 0.05), E. coli (p < 0.001), total coliforms (p < 0.001), and 16S 
rRNA (p < 0.01). There were strong negative correlations between 16S 
rRNA and Ni (p < 0.05) and Mn (p < 0.05) concentrations. Ni concen-
trations also correlated negatively with ESBL E. coli (p < 0.05) and the 
ESBL E. coli resistance ratio (p < 0.01).

The principal component analysis (PCA) displayed sample separa-
tion based on land use classification where the principal components 
together accounted for 63 % of the total variation (Fig. 6B). The first 
PCA axis correlates best with Enterococcus and the sul1 and intI1 genes. 
The second PCA axis generally separated the developed sites from beach 
and undeveloped samples. Within the developed sites, the most up-
stream (TA) and downstream developed sites (LA) were outliers. All 
genes and FIB were driving factors in developed sites and dissolved 
oxygen and conductivity were big drivers for beach sites.

3.7. FIB and ESBL E. coli

Fig. S2 (Supporting Information) depicts the results from FIB, ESBL 
E. coli for the sampling campaign. In the undeveloped areas in the 
Angeles National Forest, there were low levels of FIB and ESBL E. coli. In 
the developed areas of the river where the kayaking sites and WRPs are 
located, levels of FIB and ESBL E. coli increase and remain high until the 
tidal/estuarine area. Most areas exceed their respective recreational 
limits. Levels of FIB and ESBL E. coli decrease at the beaches near the 
LAR pour point. WRPs mostly have a dilution effect on FIB and ESBL 
E. coli due to high treatment standards for the effluent before it is dis-
charged to the river.

Our E. coli levels were comparable to those in Funan River in 
Chengdu, China, where higher levels were found downstream from 
residential areas, a hospital, and a WWTP (Yang et al., 2018). A study on 
antibiotic resistant E. coli in a wastewater-impacted Belgian river also 
reported higher levels of bacteria downstream compared to upstream 
sampling sites (Proia et al., 2018). However, the bacterial levels and 
resistance were amplified by inputs from the wastewater treatment 
plants. These contrasting results may be due to their treatment plants 
encompassing processes equivalent to secondary treatment in the US, 

Fig. 6. (A) Correlation plot of relative ARGs, heavy metals, FIB, and physicochemical properties. One star (‘*’), Two stars (‘**’), Three stars (‘***’) denote p-values 
<0.05, 0.01, and 0.001, respectively. (B) PCA plot of ARGs, FIB, and physicochemical properties by land use. Data are shown by the abbreviations for the locations.
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whereas the WRPs discharging in the LAR have tertiary treatment 
technologies.

3.8. HF183 and crAssphage

A total of sixteen field samples were analyzed for HF183 and 
crAssphage targets using the ddPCR method (Fig. 7). The average con-
centrations of crAssphage were 0.32, 3.62, and 1.62 log10 copies/100 
mL for undeveloped, developed, and beach sites, respectively, while 
HF183 concentrations were 0, 3.062, and 0.92 log10 copies/100 mL for 
undeveloped, developed, and beach sites, respectively. Overall, the 
levels of HF183 and crAssphage were highest in developed areas, fol-
lowed by beach sites. The Burbank Below (BB) site exhibited the highest 
concentration of HF183, which corresponds to the resistome risk scores 
obtained. The concentrations measured in our study were comparable to 
or greater than concentrations measured in other studies. For instance, 
in an impacted urban watershed in Pittsburgh, PA, USA, crAssphage 
concentrations ranged from 3.0 to 5.2 log10 copies/100 mL, which is 
similar to the average concentrations of crAssphage observed in our 
developed area sites (Stachler et al., 2019). Ahmed et al. reported HF183 
ranging from 2.18 to 4.83 log10 copies/100 mL and crAssphage ranging 
from 2.17 to 3.80 log10 copies/100 mL for crAssphage, respectively, in 
the stormwater collected from urban sites and peri-urban sites in 
Australia. The co-occurrence of the two human fecal markers is more 
obvious at the developed sites. Moreover, the crAssphage and HF183 
concentrations in our study sites were strongly correlated (r = 0.9, p <
0.05), suggesting that both markers may originate from similar sources 
and undergo similar environmental fates within the time scale required 
for water to pass through the Los Angeles River watershed. These find-
ings contribute to our understanding of human fecal markers and mi-
crobial source marker dynamics in the study areas.

3.9. Percent antibiotic resistant for Pseudomonas aeruginosa, E. coli, and 
enterococci

Milligan et al. (2023) proposed that changes in levels of resistance 
seen in environmental bacteria (rather than wastewater borne bacteria) 
may indicate horizontal gene transfer at a certain location in the envi-
ronment, such as downstream of an outfall. P. aeruginosa is known to be 
particularly susceptible to multi-drug resistance via HGT and has a 
tendency to grow and thrive in impacted aquatic environments (Milligan 
et al., 2023). In dry weather, levels of P. aeruginosa in the absence of 
antibiotics decreased, potentially due to dilution with disinfected 
wastewater (Table 1). Notably the percent of P. aeruginosa resistant to 
antibiotics increased downstream of the outfall (3 to 82 % for erythro-
mycin, 63–97 % for penicillin, and 54–159 % for tetracycline at the 
lower dose).

We also assessed resistance of fecal indicator bacteria. The levels of 
antibiotic resistant bacteria were calculated above and below the outlet 
for the Glendale Water Reclamation Plant. For E. coli during dry 
weather, the level of this bacterium in the absence of antibiotics 
decreased after the outlet, as expected due to dilution with disinfected 
wastewater. However, the concentration of ESBL E. coli increased after 
the outfall, and the % of EC that were ESBL increased from 2 to 10 %. For 
wet weather, less of a change was observed from upstream to down-
stream of the outfall, likely due to the very high flow rate of the river. 
Similar to E. coli during dry weather, the levels of total coliform decrease 
and the percent resistant increased from 0.4 to 0.8 %.

On comparison across different sample dates and bacteria types, 
there was a consistent increase in resistance above and below the WWTP 
outlet in the Glendale river. This increase is in agreement with the 
concept that resistance genes can transfer from dead bacteria in 
municipal wastewater to susceptible fecal bacteria, pathogens, and 
autochthonous bacteria in the river (Milligan et al., 2023).

Fig. 7. ddPCR results for HF183 and crAssphage expressed in log copies per 100 mL of water filtered.
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4. Recommendations

In this study, all three categories of methods for assessing environ-
mental ARB were employed, which requires a great deal of work and 
expense. The goal of this work was not so much to advocate for the 

necessity of performing all types of analyses, but rather to explore the 
strengths and weaknesses of each approach. In this work, the very 
simple and accessible method, ESBL-EC, did an excellent job of identi-
fying locations with elevated environmental antimicrobial resistance; 
this, it holds promise as a screening tool for further analysis. 

Table 1 
MPN/100 mL concentrations and antibiotic resistance ratios (RR) for P. aeruginosa, E. coli, and total 
coliforms calculated for dry vs. wet weather days above and below the Glendale wastewater 
treatment outlet. ESBL-quantifying antibiotic cefotaxime (1 mg/mL), tetracycline (30 mg/mL & 3 
mg/mL), penicillin (100 mg/mL), and erythromycin (50 mg/mL) are labeled as ESBL, tet30, tet3, 
pen100, and ery50, respectively.

Dry vs Wet Antibiotic GA

MPN/100

mL

GA SD (±)

MPN/100

mL

GB

MPN/100

mL

GB SD (±)

MPN/100

mL

RR % GA RR % GB

P. aeruginosa

Dry No antibiotic 886 133.5 323 65.3 -- --

ery50 21.1 5 266 55.8 3.4 82.4

pen100 565 98.5 313 63.8 63.8 96.9

tet3 474 81.5 512 88 53.5 158.5

tet30 182.9 24.5 60.2 10.0 20.6 18.6

Wet No antibiotic 683 110.8 717 116 -- --

ery50 579.4 117.0 648.8 129.3 90.5 90.5

tet30 51.2 7.8 56 8.5 8.6 7.8

E. coli

Dry No antibiotic 510 222.5 200 170 -- --

ESBL 10 13.5 20 17 2.0 10.0

Wet NA 2495 407.3 2603 474.5 -- --

ery50 41 19.8 97 31.75 1.6 3.7

ctx1 63 25.5 63 25.5 2.5 2.4

tet30 109 34.8 259 56.75 4.4 10.0

Total Coliforms

Dry No antibiotic 21870 4070 11870 1950 -- --

ESBL 86 31 97 31.8 0.4 0.8

Wet No antibiotic 68670 13127.5 92080 16537.5 -- --

ery50 12997 2615.5 24196 7714.3 18.9 18.9

ESBL 97 31.8 134 37.25 0.1 0.2

tet30 789 131.3 712 119.25 1.1 0.8
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Metagenomic techniques showed greater ARG abundances at all of the 
locations standing out as elevated identified by qPCR, albeit at much 
greater expense (and lesser workload) than qPCR. If funding is not an 
issue, metagenomics are an excellent approach for observing environ-
mental AR. However, in lieu of metagenomics, qPCR was able to identify 
almost all of the elevated locations observed by metagenomics and was 
able to show likely human influence through correlation between the 
genes.

5. Conclusion

This study compared ARG and FIB trends in the Los Angeles River 
watershed and coastal water based on urbanization classification and 
influence of water reclamation plants. Metagenomic and amplification- 
based analysis of ARGs revealed increased loadings of ARGs in the river 
in the developed areas compared to undeveloped sites and beaches. 
Viability-based methods for FIB display similar trends where there are 
larger FIB concentrations in developed sites compared to beaches and 
undeveloped places exceeding recreational limits. Though WRPs in 
general diluted FIB due to high water quality standards in effluent water, 
ARG loadings were higher and downstream of WRPs and there were 
greater instances of ARGs being co-located on MGEs and pathogens. In 
accord with this finding, the percent resistance to the tested antibiotics 
generally increased in P. aeruginosa, E. coli, and total coliform from 
upstream to downstream of the WRP outfall. Our work shows that both 
qPCR and metagenomics are comparable in elucidating ARG trends 
based on land use and anthropogenic pollution which can be supple-
mented by viability-based methods. This work serves to compare various 
methods in monitoring ARGs and FIB in one of the most populated cities 
in the United States in the hopes of standardizing methods for moni-
toring these contaminants in aquatic environments.
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