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Abstract

The future of coastal wetlands will depend on the combined effects of climate

change and human impacts from urbanization and coastal management.

Disentangling the effects of these factors is difficult, but satellite imagery

archives provide a way to track biological and physical changes in wetlands

over recent decades to reveal how coastal wetlands have been changing in

response to climate and human drivers. In this study, we used Landsat to mon-

itor the conditions of 32 coastal wetlands in southern California from 1984 to

2019 and identify environmental and human drivers of these trends. Wetland

conditions were characterized by vegetation greenness, using the normalized

difference vegetation index (NDVI), and by habitat composition, derived from

areal estimates of wetland and subtidal habitats. Overall, wetlands displayed

three types of long-term response: greening and gaining wetland (10), greening

and losing wetland (16), and browning and losing wetland (6). Regional envi-

ronmental drivers with overall positive effects on wetland NDVI were sea

level, wave height, and precipitation, whereas stream discharge, vapor pres-

sure deficit, and air temperature had negative or nonlinear effects. Wetland

area change was primarily correlated with sea level, but response was highly

contextual among sites. Negative trends in wetland NDVI and area were more

common in larger sites with low elevations and in sites with open inlets.

Restoration had mixed effects, with only half of the restored sites showing pos-

itive changes in NDVI and wetland area post-restoration. The important work

of managing and restoring urban coastal wetlands is complicated by variability

and context and requires us to account for the influence of humans and cli-

mate as we build a regional understanding of historic, present, and future wet-

land health.
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INTRODUCTION

Coastal wetlands are some of the world’s most valuable
ecosystems because of their ability to store carbon, pro-
tect coastlines, and provide many other benefits to
humans (Barbier, 2019; Barbier et al., 2011). Across the
world, these ecosystems are threatened by climate change
and human impacts, and it is unclear how coastal wet-
lands may respond to changing environmental conditions
and to ongoing human influence (Kirwan & Megonigal,
2013). Understanding the relative importance of environ-
mental drivers and human impacts on coastal wetlands,
and how driver influence may vary over space and time,
will be essential to adaptation efforts aimed at preserving
these valuable ecosystems in the future (Erwin, 2009;
Levin, 1992).

Coastal wetlands are sensitive to changes in climatic
and environmental drivers (Osland et al., 2016). Rising seas,
CO2 concentrations, and temperatures, extreme storms and
tidal events, and altered precipitation regimes are
already impacting wetland ecosystems across the world
(IPCC, 2022; Mckee et al., 2012), eliciting responses
that can range from widespread habitat loss or degra-
dation to shifts in wetland plant communities, as well
as changes in plant productivity and phenology (Morris
et al., 2002; Short et al., 2016). Response to environ-
mental change can vary greatly among wetland species,
sites, or systems due to biogeomorphic processes that
balance sediment, fresh and salt water, and plant pro-
ductivity (Janousek et al., 2016; Scavia et al., 2002).

Direct human impacts in coastal regions also signifi-
cantly affect wetland ecosystems (Gedan et al., 2009;
Newton et al., 2020). The urbanization of coastlines world-
wide has led to wetland habitat loss and degradation,
increased impervious surface cover, and shoreline harden-
ing (Gittman et al., 2015). Hardened infrastructure can
increase the risk of coastal squeeze (Borchert et al., 2018),
habitat loss (Gittman et al., 2015), and cause changes
to wetland plant communities (Watson et al., 2017).
Additional stressors that often accompany urbaniza-
tion include resource extraction, species introductions,
and invasive species, hydrologic alteration, pollution,
and eutrophication, and the impacts of urbanization
are often highly contextual and vary geographically
(Gedan et al., 2009). Coastal management and restora-
tion programs have arisen in recent decades to counter-
act the negative impacts humans have historically had
on wetlands (e.g., Callaway et al., 2011; Kennish, 1999;
Stein et al., 2020; Zedler & Callaway, 1999); however, these
efforts can also have direct, and sometimes unintended,
consequences to plant communities, habitat distributions,
and conditions within wetland and estuarine systems
(Kennish, 2001). Sediment augmentation, for example, can

bolster elevations in sinking marshes but has shown mixed
effects to plant recovery and communities in wetlands of
Louisiana, North Carolina, New York, and California, USA
(McAtee et al., 2020). We can begin to uncover the
comingling effects of human impacts on wetlands, in addi-
tion to environmental drivers, by tracking wetland health
and restoration trajectories.

Climate- and human-driven changes in coastal
wetlands over time can be monitored through publicly
available, long-term datasets (Franklin et al., 2017). The
Landsat satellite imagery archive offers global coverage
and continuous 16-day image collections dating back to
1984, which allows for multidecadal change analyses over
large geographic areas (Kennedy et al., 2014; Pasquarella
et al., 2016; Wulder et al., 2012; Young et al., 2017). Landsat
has been used to monitor wetland habitat distributions and
zonation (Bunting et al., 2018; Kearney et al., 2002; Rogers
et al., 2017), identify disturbance events (Steyer et al., 2013),
estimate biomass and carbon storage (Byrd et al., 2014,
2018; Doughty et al., 2021; Klemas, 2013; Mo et al., 2018),
and to identify patterns and drivers of wetland biomass,
health, phenology, and greenness in coastal ecosystems
(Brooke et al., 2017; Buffington et al., 2018; Cavanaugh
et al., 2013, 2018; Hamilton & Casey, 2016; Kearney
et al., 2002; Mo et al., 2015, 2019; O’Donnell &
Schalles, 2016; Wu et al., 2017). Trends in wetland
greening or browning revealed by satellite-based vegeta-
tion indices can help uncover long-term changes to bio-
logical (plant productivity and growth) and physical
(cover composition) properties in vegetated ecosystems
(Myers-Smith et al., 2020; Sulla-Menashe et al., 2018).
However, large-scale remote sensing of long-term condi-
tions has typically been conducted in large wetland sys-
tems, which in the United States primarily fall in the
East and Gulf Coast regions.

The coastline of southern California, in contrast, has
unique physical features, climate, and a history of
urbanization that has created a diverse network of over
80 fragmented coastal wetlands that range in size, set-
ting, ecology, and typology (SCWRP, 2018). Wetlands
remaining today are relatively small or discrete rem-
nants comprising just 25% of areas that existed ca. 1850 due
to land use conversion (Grossinger et al., 2011; Stein
et al., 2014, 2020) and shoreline hardening (Griggs &
Patsch, 2019). Wetlands here experience a semiarid,
Mediterranean climate marked by dry, hot summers and
cool, wet winters, making them sensitive to changes in
hydrology. The future of southern California’s diverse wet-
lands is threatened by sea level rise (SCWRP, 2018; Thorne
et al., 2016, 2018), and although up to 48% wetland habitat
loss is predicted regionally, there is high uncertainty among
wetland sites (Doughty et al., 2018). How individual wet-
lands have responded to both human and environmental
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stressors over the recent past can provide vital information
to coordinated regional efforts managing, restoring,
and adapting coastal wetlands into the future (e.g.,
SCWRP, 2018; Zedler, 1996).

In this study, we track the past conditions of 32 dis-
tinct wetland sites across the southern California region
from 1984 to 2019 using the Landsat archive. Wetland
conditions were measured as greenness (normalized dif-
ference vegetation index [NDVI]), an indicator of the bio-
logical and physical properties within wetlands, and as
habitat composition, which we derived from the areal
estimates of wetland (vegetated marsh and unvegetated
mudflat) and subtidal habitats. Our aim is to (1) quantify
long-term trends and variability in wetland cover and
greenness over 35 years, and (2) identify the relative
importance of environmental drivers to conditions in
individual wetlands and for the region. We predict that
the dominant environmental controls to past changes in
wetland NDVI are related to precipitation, a major con-
straint in Mediterranean climates, and that changes to
wetland habitat composition over this time period are
driven by sea level rise. To understand human impacts
on wetland conditions, we also aim to (3) compare the
functional response (i.e., combined NDVI and habitat
trends) to metrics of human impacts like urbanization
and restoration activities for each site. This novel applica-
tion of the Landsat archive in a region facing a combina-
tion of climate and human stressors can help uncover the
drivers of future wetland response to environmental
change and inform future management decisions.

MATERIALS AND METHODS

Description of study region, wetland sites,
and archetypes

Coastal wetlands in southern California are structurally
and functionally diverse due to coastal setting and expo-
sure (Jacobs et al., 2011), ranging in size and function
from vernal pools occupying a few hundred meters to
large estuaries over 250 ha (Stein et al., 2020). A wetland
archetype typology was previously developed to classify
wetlands of similar setting, structure, function, and plant
community composition and to provide a framework to
predict future response to SLR and aid ongoing regional
restoration planning efforts (Doughty et al., 2018;
SCWRP, 2018; Stein et al., 2020). Wetland “archetypes”
used in this study include small creeks and lagoons (6),
intermediate estuaries (6), large lagoons (7), large river
valley estuaries (7), and fragmented river valley estuaries
(6). We selected these 32 wetland study sites for a repre-
sentative sample of archetypes that met the thresholds of

size, shape, and habitat composition for Landsat analysis,
and that have data available on management, restora-
tion history, and environmental sources (Appendix S1:
Table S1).

Our wetlands sites were manually delineated by the
Southern California Coastal Water Research Project
(SCCWRP) using 2016 National Wetland Inventory (NWI)
data and aerial imagery. We used the 2016 SCCWRP wet-
land boundaries as the basis for this study, as these align
with SLR-response modeling (Doughty et al., 2018) and
adaptation planning and management guidelines
(SCWRP, 2018). Boundaries used for each wetland con-
tain contiguous, interconnected habitats of vegetated
marsh, unvegetated mudflats and salt flats, and subtidal
habitats (SCWRP, 2018).

Data

Landsat time series of wetland greenness and
habitat composition

We developed Landsat-based time series of wetland
greenness and area for each of the 32 wetlands using
Google Earth Engine (GEE), a cloud-based platform for
storing and analyzing geospatial and remotely sensed
data (Gorelick et al., 2017). Using GEE, we accessed
Landsat Collection 1 Tier 1 Surface Reflectance scenes
from 1984 to 2019 collected with Landsat 5 TM, Landsat
7 ETM+, and Landsat 8 OLI sensors. Landsat scenes con-
tain pixels with 30-m ground spatial resolutions and
≤12-m root mean square error in geometric accuracy
(Wulder et al., 2019). To improve continuity in the
35-year time series, we corrected for radiometric differ-
ences across sensors by harmonizing Landsat data using
correction factors for surface reflectance (Flood, 2014;
Roy et al., 2016; Vogelmann et al., 2016). We used the
Landsat pixel quality assessment product (“Pixel_QA,”
formerly “CFmask”; Zhu & Woodcock, 2012) to remove
pixels containing clouds and cloud shadows in each
scene. We removed scenes from the time series if the total
clear pixels remaining (including both water and land)
was less than 75% of the given wetland area to avoid
scenes with clouds and Landsat 7 ETM+ Scan Line
Corrector (SLC) Failure (Andrefouet et al., 2003).

The resulting filtered collection of cloud-masked
Landsat scenes was used to estimate three metrics of wet-
land conditions over time: the area of subtidal habitat,
the area of wetland habitats (vegetated marsh and unveg-
etated mudflats), and the NDVI (Rouse et al., 1974) of
wetland habitats. For area estimates, we developed addi-
tional masks from the Pixel_QA bitmask band that corre-
spond to wetland habitats (bit 1: clear land) and subtidal
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habitats (bit 2: water). The area of each habitat was
estimated as the sum of pixels in each mask multiplied by
pixel area. We used this approach to consistently monitor
site conditions and track changes over time in the relative
distributions of wetland habitats. The CFmask has shown
89% accuracy in estimating marsh areas (Mo et al., 2019).

Only pixels identified as clear wetland habitats were
used to calculate site NDVI as a metric of wetland green-
ness that is distinct from wetland area. Our previous
work in the coastal wetlands of southern California
region showed that NDVI was positively correlated with
aboveground biomass (AGB) in simple vegetation cano-
pies and AGB did not saturate with NDVI (Doughty
et al., 2021; Doughty & Cavanaugh, 2019). Thus, we use
NDVI as a proxy to quantify trends indicating biological
and physical changes: greening reflecting increases in
plant productivity, AGB, or vegetated cover in a wetland,
and browning indicating habitat loss, conversion to mud-
flat or subtidal, or reductions in plant productivity or
biomass.

Annual time series of wetland conditions, including
wetland area, subtidal area, and NDVI in wetland habi-
tats, were created for each of the 32 sites from 1984 to
2019 (Appendix S1: Figure S1). We performed additional
quality control measures to inspect Landsat scenes with
low pixel counts and low or outlying NDVI values to
remove scenes with errors in cloud masking and filtering
from the annual time series (Appendix S2). Landsat scene
availability per site and year ranged from 0 to 65 images
with a median of 15 images year−1 (Appendix S1:
Figure S1). Time series filtering has been shown to
reduce bias toward low NDVI and reduce variance in the
data (Younes et al., 2021) and has no negative impacts on
marsh phenology analyses (Buffington et al., 2018). We
aggregated our time series by the mean on monthly and
annual timescales to help average out the effects of tidal
variations among images. We developed an interactive GEE
application to allow users to view time series for the coastal
wetlands across southern California (cheryldoughty.users.
earthengine.app/view/so-cal-wetland-health).

Environmental and climatic datasets

To investigate the drivers of wetland conditions over
time, we collected time series of environmental and cli-
matic data from 1984 to 2019 that fall into seven cate-
gories: sea levels, wave conditions, stream discharge,
precipitation, temperature, drought, and climate oscilla-
tions (Figure 1, Table 1; Appendix S2). Daily sea level
data were taken for each site from the nearest available
of five NOAA Stations in the region (Appendix S1:
Figure S2). Data on daily stream discharge were available

from USGS Stream Gauges for 11 of the 32 study sites
(Appendix S1: Figure S2).

We used modeled wave data from the Coastal Data
Information Program (CDIP) as time series of nearshore
wave conditions at each site (O’Reilly et al., 2016), and
sites were grouped into five wave climate subregions, the
Gaviota Coast, Ventura Coast, Santa Monica (SM) Bay, San
Pedro (SP) Bay, and San Diego (SD) Coast (Appendix S1:
Figure S2), as these subregions reflect changes in regional
topography (steep vs. shallow grades) and coastal orienta-
tion (southerly vs. westerly facing) that determine coastal
wave exposure (Jacobs et al., 2011; SCWRP, 2018). Because
the effects of waves play an important role in estuary mouth
dynamics of intermittently opening and closing estuaries in
this region (Clark & O’Connor, 2019), each wetland was
categorized as either predominantly open (<40%), inter-
mittently open/closed (40%–60%), or predominantly
closed (>60%) based on the estimates of percent closure
over time derived from the California Coastal Records
Project (Doughty et al., 2018).

Monthly time series of temperature, precipitation,
vapor pressure deficit (VPD), the self-calibrating
Palmer drought severity index (PDSI), the standardized
precipitation-evapotranspiration index (SPEI), and the
standardized precipitation index (SPI) for each site
were derived from gridded (4-km) PRISM data (Daly
et al., 2008). We also considered climatic fluctuations
using monthly data on the Oceanic Niño Index (ONI),
the Pacific Decadal Oscillation (PDO) index, and the
multivariate El Niño-Southern Oscillation (ENSO)
index.

Environmental data specific to each wetland site were
aggregated into annual time series and combined with
the corresponding annual time series of wetland condi-
tions for each site. All environmental and climatic vari-
ables were aggregated using the mean, except for
precipitation and stream discharge, which were summed
according to calendar year (January–December) and to
water year (preceding October–September).

Human impact datasets

To understand how wetland conditions are influenced by
human-related impacts in the region, we collected publicly
available data on urban development, wetland protection
status, and wetland restoration activities for each site
(Appendix S2). Watershed development was quantified for
each wetland as the percent developed areas in 2016 using
the Landsat-derived National Land Cover Database (NLCD;
Yang et al., 2018). Developed areas included residential and
commercial development with impervious surfaces ranging
from 20% to 100%.
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F I GURE 1 Legend on next page.
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We recorded the presence/absence of mouth armoring
(jetties, seawalls) and channelization of associated streams
and rivers at each site using the coastal armoring dataset
(Dare, 2005) and visual inspection of aerial imagery. We
used the California Protected Areas Database to deter-
mine the level of protection enforced at each wetland
site. Public access levels to the protected open spaces are
categorized as open access, restricted access, or closed
access. We included sites within military land use areas
as closed access.

We compiled a dataset of restoration projects through
the Southern California Wetlands Recovery Project, the
California State Coastal Conservancy, EcoAtlas, and
published reports and websites (Appendix S1: Table S2;
Appendix S2). For each restoration project, we collected
the dates that each project was implemented on the
ground, the estimated area to be restored, and the type of
restoration activity. We limited the dataset to larger resto-
ration projects that impacted >10% of the wetland site,

which pertain mostly to active earth-moving, dredging,
and wetland enhancement projects.

Analyses

Trends in wetland greenness and area

We estimated trends in NDVI and wetland area for each
wetland over the study period (1984–2019) using Sen’s
slope (Sen, 1968). We compared trends with physical site
characteristics including latitude, elevation, size, archetype
classification, habitat composition, wave climate subregion,
and estuary mouth closure. We also compared trends with
site characteristics related to human impacts, which
included watershed development, coastal armoring, protec-
tion status, ownership, and restoration activities, as these
are nonclimatic factors that may explain long-term changes
in wetland conditions but were not available as continuous

F I GURE 1 Monthly time series (1984–2019) of (A) mean sea level for five regional NOAA Stations, (B) mean monthly significant wave

height per wetland site, (C) mean stream discharge for 11 regional USGS gauges, (D) regional means of temperature (black) and

precipitation (blue), (E) regional means of drought indices, and (F) regional means of climate indices. Note dual axes for temperature and

precipitation data (D) and sea level and wave height reported in the North American Vertical Datum of 1988 (NAVD88). MEI, Multivariate

ENSO Index; ONI, Oceanic Niño Index; PDO, Pacific Decadal Oscillation; PDSI, Palmer drought severity; SPEI, Standardized

precipitation-evapotranspiration index; SPI, Standardized precipitation index.

TAB L E 1 Regional summary of environmental conditions over the 1984–2019 study period.

Environmental
category

Environmental
variable (unit)

1986 5-year
mean ± SD

2016 5-year
mean ± SD

Trend
(unit year−1)

Sea level Sea level (m NAVD88) 0.76 ± 0.06 0.87 ± 0.07 0.002***

Waves Significant wave height (m) 0.74 ± 0.01a 0.73 ± 0.12 −0.001

Stream discharge Stream discharge (m3 s−1) 23.86 ± 28.16 18.30 ± 38.74 −3.35

Precipitation Precipitation (mm) 19.1 ± 27.77 23.9 ± 37.33 −0.157

Temperature Minimum temperature (�C) 11.88 ± 3.69 13.31 ± 3.55 0.025*

Mean temperature (�C) 16.47 ± 2.94 17.38 ± 2.95 0.009

Maximum temperature (�C) 21.05 ± 2.41 21.44 ± 2.62 −0.003

Dew point temperature (�C) 9.12 ± 4.11 10.05 ± 4.18 0.012

Drought Minimum vapor pressure deficit (kPa) 2.16 ± 0.48 2.28 ± 0.71 0.001

Maximum vapor pressure deficit (kPa) 12.18 ± 2.75 12.41 ± 3.41 −0.001

Palmer drought severity (PDSI) −0.87 ± 1.1 −1.57 ± 1.76 −0.040

Standardized precipitation index (SPI) 0.15 ± 0.8 0.24 ± 0.83 0.000

Standardized precipitation-
evapotranspiration index (SPEI)

−0.04 ± 0.98 −0.3 ± 0.93 −0.009

Climate Oceanic Niño Index (ONI) −0.17 ± 0.90 0.39 ± 0.86 0.002

Pacific Decadal Oscillation (PDO) 0.37 ± 0.79 0.26 ± 0.74 −0.028

Multivariate ENSO Index (MEI) −0.12 ± 0.96 0.21 ± 0.84 −0.013

Note: Asterisks indicate significance level of trend: *p < 0.05; **p < 0.005; ***p < 0.0001.
Abbreviation: NAVD88, North American Vertical Datum of 1988.
aThe 5-year mean for wave data was calculated for available data (2000–2005).
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time series. For sites that have undergone large restoration
projects (Appendix S1: Table S2), we estimated pre- and
post-restoration trends. Statistical significance was tested
using simple linear regression for quantitative variables,
one-way ANOVAs for categorical variables, and paired
t test for pre- and post-restoration trends using the base
R package “stats” (v1.1-18).

Drivers of wetland greenness and area

We used generalized additive models (GAMs) to describe
the complex relationships among annual wetland response
(NDVI, wetland area) and environmental drivers. GAMs
allow us to model variability between groups (sites,
archetypes) in regression relationships, do not require
strict assumptions of linearity, and can facilitate several
different smooth functions to describe potentially
nonlinear relationships, unlike generalized linear models
(Wikle et al., 2019; Wood, 2017). We used thin-plate
regression splines as the smoothers in our models (Wood,
2003) and penalized models to restrict overfitting of the
smooth functions, which can be used to identify linear
effects and to select appropriate model covariates
(Marra & Wood, 2011). We also applied hierarchical GAMs
(HGAMs), an extension of GAMs that help model
between-group variability in regression relationships by
including a random effect term in the model that accounts
for groups within hierarchically structured data (Pedersen
et al., 2019).

We fit GAMs to identify common (i.e., regional) drivers
to wetland NDVI and area for all sites in the region using
the R package “mgcv” (z1.8–36; Wood, 2011, 2017).
Models were fit to our data using a log-link function under
a Gaussian error distribution for the family and basis func-
tions, and restricted maximum likelihood (REML) for the
smoothing parameter (Wood, 2011). We compared models
based on Akaike information criterion, degrees of freedom,
and deviance explained to balance model fit and complex-
ity (Wood et al., 2016). We initially tested all environmen-
tal covariates using penalization to aid model variable
selection and reduce multicollinearity within driver catego-
ries of sea level, waves, temperature, precipitation, stream
discharge, drought, and climate (Appendix S1: Figure S3).
Ultimately, we selected covariates based on the penaliza-
tion analysis and our hypotheses on what drives wetland
conditions in this region. Once the best model was identi-
fied for the region, we then included random effects of sites
and archetypes as model terms to test for variability in
model intercepts among groups using the HGAM structure
(Pedersen et al., 2019). For grouping terms (sites and arche-
types), basis functions were set to random effects and basis
size (k) was set to match the number of groups.

RESULTS

Long-term changes in wetland greenness
and area

Long-term NDVI trends from 1984 to 2019 ranged
from −0.0016 to 0.0048 NDVI year−1 for individual
wetlands in the region (Figure 2). Over half of the wet-
lands (18 out of 32) exhibited significant positive
trends in NDVI. One wetland, the Santa Ana River
Wetlands, exhibited a significant negative trend of
−0.0012 NDVI year−1. The 13 remaining wetlands had
nonsignificant changes in NDVI over the 35-year study
period.

Wetland area trends indicated significant loss, that is,
type conversion of vegetated or mudflat habitats to
subtidal, occurring in 15 wetlands. Losses ranged from
0.05 ha year−1 in the Ormond Beach Wetlands (0.3% loss
of site area year−1) to 3.96 ha year−1 in the Bolsa Chica
Lagoon (1.7% loss of site area year−1), with an average of
0.80 ha of wetland area being converted to subtidal per
year. Significant gains of wetland area occurred in five wet-
lands, with land area trends ranging from 0.01 ha year−1

(0.1% gain of site area year−1) in Las Flores Creek to
0.77 ha year−1 (0.6% gain of site area year−1) in San Elijo
Lagoon, while 12 wetlands showed no significant changes
in wetland area. Overall, wetlands displayed three types
of long-term response (Figure 2): greening and gaining
wetland (10), greening and losing wetland (16), and
browning and losing wetland (6). No wetlands exhibited
browning and area gains.

Trends in NDVI were overall not significantly correlated
with the site characteristics tested, including latitude, eleva-
tion, size, archetype, habitat composition, wave climate sub-
region, mouth closure, watershed development, protection
status, mouth/channel engineering, or restoration activities
(Figure 3). Trends in wetland area were significantly corre-
lated with site elevation and size (Figure 4). Mean site eleva-
tion was positively correlated with wetland area trends
(r2 = 0.27, p = 0.002), indicating reduced wetland loss in
sites with higher mean elevation. The correlation between
site size and area trends was negative (r2 = 0.27, p = 0.002),
with larger sites losing more wetland area over 35 years.

Noteworthy differences in the variability of NDVI and
wetland area trends among archetypes (Figures 3 and 4)
suggest that intermediate estuaries and fragmented river
valley estuaries have exhibited a wider range of responses
to similar drivers over 35 years. Small creeks and lagoons,
however, responded similarly in terms of both NDVI and
area trends, with all sites exhibiting greening and gains
in area.

Estuarine mouth dynamics and mouth modifications
were site characteristics that showed patterns with
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wetland NDVI and area (Figures 3 and 4). Wave climate
subregions reflect varying coastal exposure and setting
across the southern California region, and we found that
estuaries along steep, terraced gradients and low-exposure
coastlines (e.g., Gaviota Coast, SM Bay) had narrower
ranges of NDVI and wetland area response. Larger ranges
of responses occurred in westerly facing, higher exposure
subregions (e.g., Ventura Coast, SP Bay, SD Coast). Sites
with predominantly open-mouth closure states showed
greater variability in NDVI and area trends and exhibited
the majority of browning and wetland loss responses
(Figures 3 and 4). Furthermore, sites that were predomi-
nantly open due to jettied estuary mouths tended to have
more negative trends in NDVI and area (Figures 3 and 4).

Pre- and post-restoration trends for sites with com-
pleted projects highlight the contextuality of wetland

restoration, as no single pattern emerged in restoration’s
impact on NDVI or area trends for all restored sites
(Figures 3 and 4). The average trend in NDVI across
restored sites decreased from pre-restoration (0.000485 ±
0.005 NDVI year−1) to post-restoration (−0.000534 ± 0.004
NDVI year−1), but differences were not significant
(Figure 3; t(9) = 0.31, p = 0.76). Post-restoration NDVI
trends increased in six sites, with Sweetwater Marsh
exhibiting the most pronounced increase (0.016 NDVI
year−1) 20 years after restoration, while NDVI trends
decreased post-restoration in four sites: Bolsa Chica
Lagoon, Santa Ana Wetlands, Carpinteria Salt Marsh, and
Upper Newport Bay. Pre- and post-restoration trends in
wetland area also did not significantly differ (Figure 4;
t(9) = −1.04, p = 0.32), but seven sites exhibited increases
in area trends, while three sites exhibited decreases in

F I GURE 2 Regional and site-based trends in wetland conditions in southern California from 1984 to 2019. Regional normalized

difference vegetation index (NDVI) trends are categorized as greening, browning, and no or nonsignificant change; Wetland area trends are

categorized as loss, gain, and no or nonsignificant change; Wetland response is categorized as greening + gain (green), greening + loss (light

green), and browning + loss (brown). Site-based trends show wetland area and NDVI, with nonsignificant NDVI trends indicated by black

outlines. Labels correspond to site names indicated in Appendix S1: Table S1, Figure S1.
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F I GURE 3 Normalized difference vegetation index (NDVI) trends related to physical site characteristics and human impact variables.

Wetland response is categorized as greening + gain (green), greening + loss (light green), and browning + loss (brown). Archetypes include

small creeks and lagoons (SCL), intermediate estuaries (IE), large lagoons (LL), large river valley estuaries (LRVE), and fragmented river

valley estuaries (FRVE). Wave climate subregions include the Santa Monica (SM) Bay, San Pedro (SP) Bay, and the San Diego (SD) Coast.

Boxplots represent data means (midlines), 25th and 75th percentiles (box limits), data values within 1.5 times the interquartile range

(whiskers), and outliers.
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F I GURE 4 Wetland area trends related to physical site characteristics and human impact variables. Wetland response is

categorized as greening + gain (green), greening + loss (light green), and browning + loss (brown). Archetypes include small creeks

and lagoons (SCL), intermediate estuaries (IE), large lagoons (LL), large river valley estuaries (LRVE), and fragmented river valley

estuaries (FRVE). Wave climate subregions include the Santa Monica (SM) Bay, San Pedro (SP) Bay, and the San Diego (SD) Coast.

Boxplots represent data means (midlines), 25th and 75th percentiles (box limits), data values within 1.5 times the interquartile range

(whiskers), and outliers.
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post-restoration: Huntington Beach Wetlands, Carpinteria
Salt Marsh, and Upper Newport Bay. The Devereux
Lagoon and San Elijo Lagoon restorations were too
recent to test for post-restoration trends. Overall,
NDVI and area trends were not found to correlate
with time since restoration.

Regional environmental conditions and
drivers of wetland response

Southern California experienced significant positive
trends in mean sea levels and minimum annual air tem-
peratures from 1984 to 2019 (Table 1). Sea levels in the
region increased at an average rate of 2.0 mm year−1

(p < 0.0001) and minimum temperatures increased at a
rate of 0.025�C year−1 (p < 0.05). No other significant
trends in other environmental drivers were found.

The best predictors of regional wetland NDVI and area
for all sites were mean sea level, mean wave height, total
annual precipitation, annual stream discharge, VPD, and
mean annual air temperature, which together explained
47% of the deviance in NDVI but only 27% of deviance in
wetland area (Table 2, Model 2). The effective df (edf) for
significant covariates indicate near-linear effects of wave

height (edf = 0.96) and sea level (edf = 1.24), and more
complex effects of stream discharge (edf = 3.54) and VPD
(edf = 2.50; Table 2, Model 2, Figure 5). Sea level, precipita-
tion, and mean wave heights showed an increasingly posi-
tive effect on NDVI (Figure 5). The mean effect of
temperature was nonlinear and nonsignificant but indicated
a peak positive effect at 14.5�C, while temperatures above
17�C have a negative effect on NDVI. The effect of stream
discharge on NDVI was mostly negative, except for small
amounts of inflow (~300 m3 s−1). VPD had a nonlinear rela-
tionship with NDVI, with positive effects up to 10.5 hPa
and negative effects from 10.5 to 16.5 hPa.

The random effects of archetypes increased the devi-
ance explained in NDVI to 52.7%, but did not substan-
tially change the predicted effects of model covariates
with the exception of precipitation (edf = 1.95; Table 2,
Model 3). Grouping at the archetype level therefore indi-
cates similar effects of sea level, wave height, precipita-
tion, stream discharge, and VPD on wetland NDVI
within wetland types. However, the random effects of
sites had the most significant effect on NDVI, followed by
temperature (edf = 0.7), and this model explained 86% of
the deviance in NDVI (Table 2, Model 4).

Testing the same covariates in GAMs for wetland area
changes showed temperature, wave height, and VPD as

TAB L E 2 Comparison of regional models that describe wetland normalized difference vegetation index (NDVI) and area based on top

environmental predictors.

Response

Model 1
response—f(S)
+ f(T) + f(P)

Model 2 response—f(S)
+ f(T) + f(P) + f(W)

+ f(D) + f(V)

Model 3 response—f(S)
+ f(T) + f(P) + f(W) + f(D)

+ f(V) + re(archetype)

Model 4
response—f(S) + f(T)
+ f(P) + f(W) + f(D)

+ f(V) + re(site)

NDVI Area NDVI Area NDVI Area NDVI Area

AIC −2953.6 −748.6 −556.2 −323.0 −570.3 −416.2 −806.9 −807.4

Adjusted r 2 0.04 0.01 0.44 0.24 0.49 0.56 0.85 0.95

Deviance explained (%) 4.2 1.7 47.0 26.5 52.7 58.3 85.9 94.9

Covariates

Sea level (S) 2.63 0 1.24 0 1.5 0 0 2.0

Wave height (W) … … 0.96 0.97 0.97 4.75 0.06 0

Precipitation (P) 0.71 0.92 1.88 0.42 1.95 0 0 0

Stream discharge (D) … … 3.54 0.98 3.19 0.02 0 0.88

Vapor pressure
deficit (V)

… … 2.50 0.93 2.50 0.97 1.4 0

Mean temp (T) 2.33 0.61 1.39 2.22 1.13 1.52 0.7 0

Archetype … … … … 3.35 3.9 … …

Site … … … … … … 9.8 9.97

Note: Model descriptions match covariate abbreviations within table. Wetland area for generalized additive models were converted to percent area (0–1) based
on wetland size. Covariate values are effective df (edf). Covariate edf values in boldface indicate significance (p < 0.05). Ellipses indicate covariates not tested
in a model.
Abbreviation: AIC, Akaike information criterion.
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having the strongest effects (Table 2; Appendix S1:
Figure S4). However, the maximum deviance in percent
area explained in regional models was only 26.5%. When
the random effects of archetypes and sites were included,
deviance explained increased to 58% and 95%, respec-
tively, indicating that changes in wetland areas over the
period of this study are only partially explained by
regional environmental drivers without considering
site-specific or contextual impacts at local scales like res-
toration efforts, nearby infrastructure, or watershed or
inlet management.

DISCUSSION

Coastal wetlands in southern California displayed mixed
trends in wetland greenness and habitat composition
from 1984 to 2019. The majority of wetlands in the region
(26 out of 32) showed increased greenness over this
period. Greenness increased in wetlands that both lost vege-
tated marsh and mudflat area (16 wetlands), as well as in
wetlands that increased in area (10 wetlands). Although
most wetlands showed increased greenness, six wetlands
had trends of browning coincident with wetland area loss.

The major drivers of wetland greenness over this
study were sea levels, wave height, precipitation, stream
discharge, VPD, and air temperature. We expected that
the greenness of southern California’s wetlands would be
impacted by precipitation, similar to other drought-prone
Mediterranean ecosystems worldwide (Allen, 2003). In a
climate with wet winters, dry summers, and highly vari-
able precipitation, recent low rainfall and high potential
evaporation have led to drought conditions in the region
(MacDonald, 2007). We found that precipitation and
stream discharge showed the largest magnitude of effects
on wetland NDVI. As precipitation increases, it has a pos-
itive effect on NDVI. However, increasing mean annual
stream discharge leads to negative effects on NDVI,
which could be due to prolonged inundation, causing
marsh die-back or increased sedimentation. Mean annual
precipitation increased across the region from the start
and end of the study period, yet the overall annual trend
showed a decline of −0.16 mm year−1 (Table 1). Stream
discharge also showed an overall declining trend of
−3.35 m3 s−1, and decreases in mean annual discharge
over the study period (Table 1). Thus, more precipitation
and less stream discharge contribute to positive effects on
wetland greenness, highlighting the sensitivity of

F I GURE 5 Regional effects of environmental drivers on annual wetland normalized difference vegetation index for the best

explanatory generalized additive model (Table 2, Model 2). VPD, vapor pressure deficit.
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semiarid wetlands to factors influencing the timing and
magnitude of pulse events affecting wetland hydrology.

Altered precipitation patterns and streamflows can
also result in plant stress (Zedler et al., 1986), which may
explain the negative effect of increasing stream discharge
on NDVI. Changes to precipitation can impact hydrologi-
cal regimes, soil salinity, and wetland geomorphology
over time (Day et al., 2008). In southern California, peak
streamflow and precipitation rates are strongly correlated
with sediment discharge (Warrick et al., 2015) and urban-
ization increases peak discharges and runoff volume
(Beighley et al., 2003), leading to increased eutrophica-
tion on local scales (Howard et al., 2014). In the future,
extreme precipitation events in California are expected to
intensify, bringing more rain over shorter periods
(Dettinger et al., 2011; Huang et al., 2020). The timing
and duration of impacts are important to plant response,
as shown through pulse disturbance events like fires
(Brown et al., 2019) and rapidly elevated sea levels coin-
ciding with El Niño events (Goodman et al., 2018;
Harvey et al., 2020) that cause local plant mortality and
marsh degradation.

Increasing sea levels and wave heights had increasingly
positive effects on NDVI, where NDVI was measured in
only vegetated marsh and unvegetated mudflat areas
(Figure 5). Sea levels showed significant, positive relation-
ships with NDVI for several sites ranging in size and
archetype in the south (Appendix S1: Figure S5), where
sea level rise rates are on average 0.93 mm year−1 higher
than in the north. The Tijuana River Estuary is one south-
ern site where sea level rise may help combat high sedi-
mentation from river inflow by improving tidal influence
(Callaway & Zedler, 2004; Wallace et al., 2005). Increased
tidal inundation may also be beneficial by increasing estu-
arine flushing (Clark & O’Connor, 2019; Largier
et al., 2019). Increased flooding and rainfall decrease soil
salinity, which can cause increases in productivity and bio-
mass, and lead to changes in marsh species composition
over time (Callaway & Sabraw, 1994; Zedler, 1983).

Air temperature and relative humidity play an impor-
tant role in plant productivity, as shown through the
complex nonlinear effects of VPD and temperature on wet-
land NDVI. Temperature showed a small positive effect on
NDVI below ~17�C, but then the effect decreased with
higher temperatures. The effect of VPD on NDVI is positive
but decreases as VPD nears a threshold of 10.5 hPa, above
which the effect on NDVI is negative. VPD increases
exponentially with temperature, and plants have limits of
tolerance for VPD before negative effects to stomatal con-
ductance and transpiration, which leads to declined plant
photosynthesis and growth (Grossiord et al., 2020). VPD
has been identified as a major contributor to recent
drought-induced mortality in terrestrial plants (Grossiord

et al., 2020). In semiarid coastal wetlands, temperature
increases can lead to drought conditions and hypersaline
soils, which can negatively affect plant community diver-
sity and health (Kelso et al., 2020; Wigginton et al., 2020).

Work from other coastal regions highlights the
interacting drivers of temperature and precipitation in
wetland conditions. In tidal marshes of the Pacific
Northwest, USA, peak biomass was positively correlated
with total annual precipitation, while the timing of peak
biomass was negatively correlated with average growing
season temperature based on 31 years of data (Buffington
et al., 2018). From Georgia, USA, wetlands also showed a
positive, significant relationship between AGB and total
precipitation, minimum temperature, river discharge,
and mean sea level over a 28-year period (O’Donnell &
Schalles, 2016). In coastal Louisiana, USA, the timing of
peak phenology in saline marshes was correlated with air
temperature; however, areas of brackish and saline marshes
declined from 1984 to 2014 in relation to increasing sea
levels, temperatures, and CO2 (Mo et al., 2019). Findings
from these regions emphasize that macroclimate drivers
can elicit similar general responses, but that location is
important in modeling wetland characteristics (Buffington
et al., 2018), that long-term response varies among wetland
types (Mo et al., 2019), and that wetland response varies
across seasons (O’Donnell & Schalles, 2016).

Wetland area loss was a common trend among 22 of
the 32 sites monitored from 1984 to 2019 in this study. Sea
levels were identified as the most important driver of wet-
land area among sites, and overall sea levels in the region
have increased by ~2 mm annually. Thus, sea level rise has
already been affecting the extent of wetland habitats in spe-
cific sites across the region from 1985 to 2019. The Mugu
Lagoon and Huntington Beach Wetlands are two examples
of non-restored sites that exhibited significant negative
trends in wetland area. Annual wetland area at these sites
was significantly, negatively correlated with annual sea
levels (Appendix S1: Figure S6). Without considering the
impacts at individual sites, the combined effect of sea levels,
waves, stream discharge, precipitation, and temperature
explained 27% of the variability in percent area of wetlands
across the entire region. Much of the variability in both wet-
land area and NDVI was explained by differences among
sites. Therefore, regional climate factors play a critical
role in the trajectory of wetland change, but
site-specific or contextual factors at local scales are
needed to further explain the full range of responses
we measured in southern California’s wetlands.

Local environmental factors, human influences, and
physical site characteristics did show patterns with
long-term response in wetland area. Site size was posi-
tively related to wetland loss, while site elevation had a
negative relationship with loss. Our predictions of future
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sea level rise response across southern California showed
a similar pattern of greater expected habitat loss in larger
wetlands containing large proportions of vegetated
marshes and unvegetated mudflats (Doughty et al., 2018).
Large, low-lying wetland archetypes like large lagoons,
large river valley estuaries, and intermediate estuaries had
some of the worst trends in wetland loss detected in the
region as these are more susceptible to sea level increases.
Without adequate sediment supply, accretion rates in
low-elevation wetlands are unable to keep pace with sea
level rise (Thorne et al., 2018). Systems open to the ocean
have also shown decreased accretion rates and marsh
drowning compared with higher elevation intermediate
estuaries (Thorne et al., 2021).

Estuaries with opened inlets, whether natural or
engineered, showed greater propensity for negative trends
in NDVI and area. Intermediate estuaries, fragmented river
valley estuaries, and large lagoons exhibited more variability
in greenness and area trends and are some of the most
vulnerable archetypes. Intermediate estuaries, or inter-
mittently opening and closing estuaries, are key ecologi-
cal habitats along California’s high-energy coastline
(Clark & O’Connor, 2019). Being wave-dominated sys-
tems sensitive to fluvial inputs, estuary mouth dynamics,
and modification, they are especially geomorphically
diverse (McSweeney et al., 2017), which is reflected in

the wide range of responses. For example, San Onofre
Creek had the highest trend (0.004 NDVI year−1) coinciding
with detected gains of area, which could indicate reduced
tidal and fluvial inputs in a closed system, eventually lead-
ing to a transition to nontidal habitats. Conversely, the San
Luis Rey Estuary had the lowest trend (−0.002 NDVI
year−1) and relatively consistent habitat composition,
suggesting negative effects of ongoing tidal influence to wet-
land vegetation due to a jettied, predominantly open inlet.
Similarly, the Santa Ana Wetlands, a jettied, fragmented
river valley estuary, showed a significant negative trend
(−0.0012 NDVI year−1), likely due to this highly modified
estuary being disconnected from river discharge and contin-
uously open to tidal changes. Decreased habitat condition
and native plant abundance have occurred when natural
breaching patterns were altered by bar management
(Clark & O’Connor, 2019). Potential resiliency can be
broadly characterized by estuary mouth dynamics con-
trolled by coastal exposure and mouth engineering and
management. Restoring and adapting intermediate and
fragmented estuaries calls for improving hydrological con-
nectivity (SCWRP, 2018), managing environmental flows
(Stein et al., 2021), and restoring natural inlet dynamics
(Thorne et al., 2021).

Ongoing wetland restoration efforts in the coastal
wetlands across southern California play a complex,

F I GURE 6 Observed past trends in wetland loss (this study) compared with predicted future wetland loss (Doughty & Cavanaugh, 2019).

Colors signify past wetland response: greening + gain (green), greening + loss (light green), and browning + loss (brown). Labels correspond to site

names indicated in Appendix S1: Table S1.
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context-dependent role in area trends from 1984 to 2019.
Bolsa Chica Lagoon, for example, exhibited the largest
trend in wetland loss (0.05 ha year−1) detected, but this
long-term trend is caused by a rapid conversion of wet-
land habitats to subtidal over a 3-year period coinciding
with a large, earth-moving restoration effort. The Bolsa
Chica Wetlands Restoration Project occurred from
2004 to 2007, with the goal of increasing subtidal habitat
and restoring full tidal influence to hundreds of hectares
(Appendix S1: Table S2). San Elijo Lagoon showed
the largest trend in area gains (0.77 ha year−1) from
1984 to 2019. In this instance, detected areal increases
may indicate long-term degradation to wetland habitats
caused by disrupted hydrology and increased sediment
loads from surrounding development that led to conver-
sion to nontidal habitats (Sutula et al., 2006). The
San Elijo Lagoon Restoration Project began construction
in 2017, with the goal of restoring tidal circulation by
widening and deepening estuary channels to combat
eutrophication and rebalance wetland habitats. Extensive
dredging, however, can also have detrimental impacts on
vegetated wetland habitats (Kennish, 2001).

Understanding the influence of humans and environ-
mental drivers on coastal wetland health in an urban-
ized region is complicated by variability and context.
By quantifying past trends, we are reminded to prepare
for the worst scenario and be aspirational in our goals
to mitigate future losses (Figure 6). The important
work of protecting and restoring these systems
regionwide requires us to account for variability and
build a holistic perspective informed by our knowledge
of historic, present, and future conditions (Stein
et al., 2020). It also requires consistent definitions,
goals, and assessment of restoration. Wetland arche-
types provide a framework for grouping similar sys-
tems to make sense of their diversity and their
responses to climate- and human-driven changes (Stein
et al., 2020). Regional restoration efforts could benefit
from standardized methods to establish baselines of
wetland conditions and track future wetland health
using remotely sensed data (OPC, 2020; Shuman &
Ambrose, 2003).
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