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Reach-scale models show heterogeneity of stream benthic invertebrate 
responses to eutrophication stress 
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A B S T R A C T

Statistical stressor-response models are a common approach to derive biologically relevant water quality criteria 
for the management of waterbody health. These types of models are typically derived at state-wide or ecore
gional scales and consequently incorporate a large amount of natural and disturbance-related variability that 
may obscure the relationship that one is interested in quantifying. We demonstrate an alternative approach 
termed “reach-specific modeling” to identify potential biological response thresholds to eutrophication in the 
Santa Margarita River watershed (California, U.S.A.). Individual models of benthic invertebrate response to 
eutrophication stress were created for both bioassessment sampling sites and NHD + stream-segments in the 
watershed (46 sites, 832 segments). Each model was built using only data from environmentally similar sites 
from a state-wide dataset to minimize variation from natural environmental gradients, while allowing eutro
phication stress to vary. Thresholds of potential biological impact were extracted from each stressor-response 
model. Across the whole watershed thresholds varied from location-to-location: total nitrogen (1.14–1.26 mg 
L-1 TN), total phosphorus (0.12–0.15 mg L-1 TP), benthic algal biomass (29–39 mg m− 2 benthic chl-a), and
benthic ash-free dry mass (2.5––3.0 mg cm− 2 AFDM). Notably, nearly all of the thresholds derived from these
reach-specific models were ~10–90 % higher than those from a similar state-wide model. Furthermore, there
were a number of spatial groupings of thresholds for each eutrophication indicator across the watershed, sug
gesting reach-scale natural gradients in hydrogeomorphology and natural land cover type may mediate the
stressor-biology interaction. Reach-scale models tended to have better fits than their state-wide counterparts, but
had equivalent or slightly worse accuracy. The reach-specific approach to threshold development illustrates that
the biological response to stress is likely not uniform within a single system, much less between systems. As a
consequence, this approach can allow managers to identify systems that are more sensitive or resistant to a given
stressor across diverse landscapes and make better informed decisions on their management accordingly.

1. Introduction

Environmental management frameworks centered around the pro
tection of aquatic life from the effects of human disturbance rely on 
assessing the health and integrity of the biota, as well as their response 
to different environmental stressors. From these relationships, thresh
olds of stressor exposure that correspond to critical changes in biological 
response can be extracted and used as the basis for establishing water 
quality criteria (WQC) protective of aquatic life (Yuan et al., 2010). 
Statistical modeling of relationships between biological condition and 
environmental stressors is a common approach to derive WQC (Heiskary 

and Bouchard, 2015, Jessup et al., 2015). Most typical are statistical 
models that relate spatially/temporally synoptic field measures of bio
logical communities (benthic invertebrates, fish, algae, etc) to indicators 
of environmental stress measured at landscape or in-stream-scales 
(Lamon and Qian, 2008; Mazor et al., 2022; Schneider et al., 2020). 

The studies that inform WQC development are often conducted at the 
ecoregional or state-wide scale. For the management and regulatory 
community, this single model approach is often seen as straightforward 
and equitable, as it allows for a uniform application of a model or 
threshold across a state or a region. However, the data sets used for this 
type of modelling will often contain a large amount of additional 
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variability from both natural gradients and non-target disturbances 
beyond the stressor one is interested in developing criteria for (e.g., 
pesticides, nutrient concentrations, hydromodification). Consequently, 
models developed at the scale of broad typologies like ecoregions may 
be insufficiently sensitive to account for small-scale variability in 
stressor-response relationships in environmentally diverse regions. In 
turn, the WQC derived from such studies may be either over stringent or 
insufficiently protective at a given location in a region. Site-specific 
numerical models (e.g., Wool et al., 2020; Zehra et al., 2023) have 
been touted as an alternative approach to derive watershed specific 
WQC, but data requirements and resources required for mechanistic 
numerical modeling can be cost-prohibitive to generate and compute for 
many systems. 

To allow for a greater amount of flexibility than traditional state- 
wide or ecoregional approaches may provide, we have developed an 
alternative we have termed “reach-specific modeling.” With this reach- 
specific approach, a unique relationship between stress and response is 
modeled for discrete sections of a watershed. Small-scale natural vari
ability between different sections is accounted for by developing 
different models using only data selected from other streams that have a 
similar environmental setting to the reach of interest. This can be con
trasted to the less curated data sets – typically all of the available data in 
a state, region, or other geographic domain – used in a broader ecore
gional approach (e.g., Kim et al., 2021). 

We define environmentally similar stream-reaches as locations that 
would be expected to support similar biotic assemblages to the reach of 
interest in the absence of disturbance, thereby creating a curated data 
set with which one can track changes in biological composition under 
exposure to stress (Gillett et al., 2019). This selection approach creates a 
constrained set of stream data for the subsequent analyses, where 
naturally occurring factors (e.g., elevation, rainfall, reproductive pop
ulations) are kept relatively constant, while potential causal factors 
associated with human activity are allowed to vary. This analytical 
approach is an outgrowth of site-specific stressor identification (i.e., 
causal assessment) (Gillett et al., 2023, 2019; Norton et al., 2015) and is 
analogous to control cases in epidemiology (e.g., Rothman et al., 2008). 
Applying this approach across a watershed has the potential to identify 
different stressor-response relationships – and therefore response 
thresholds – for individual sites or segments, which could be of use for 

reach-scale management actions in the waterbody. 
To illustrate the practical implications of reach-specific modelling 

and threshold development, we have applied the approach to the 
eutrophication problems impacting a large, ecologically diverse water
shed in southern California (USA). The goals of the study were to: 1) 
develop models of eutrophication stress on benthic invertebrate as
semblages for multiple discrete bioassessment sites, as well as National 
Hydrography Data set stream segments within the watershed, 2) 
determine the similarity or differences in biotic response to eutrophi
cation across the watershed; 3) compare thresholds protective of biotic 
integrity derived from the reach-specific models to those derived from 
state-wide models that used a similar statistical modeling approach. 

2. Methods 

2.1. Analytical approach 

Reach-specific responses to eutrophication stress were modeled with 
two different schemes within the Santa Margarita River watershed, U.S. 
A (Fig. 1): 1) At previously sampled bioassessment monitoring sites; and 
2) At every National Hydrography Data Plus (NHD + ) stream segment. 
As depicted in Fig. 2, the process began when environmentally similar 
stream sites were identified from California’s bioassessment database 
for each distinct reach (i.e., site or segment) in the watershed. The intent 
of this process is to create a curated data set for each reach within the 
watershed that minimizes the “noise” (e.g., community variation due to 
natural gradients among different locations) without dampening the 
“signal” (e.g., community change due to stressor gradients) one is 
interested in understanding. Benthic invertebrate and eutrophication 
data from these environmentally similar sites were then used to create 
reach-specific logistic regression models that predicted the probability 
of the reach supporting reference condition biota across a gradient of 
eutrophication stress. From the logistic models, the level of eutrophi
cation stress with a 90 % probability of supporting reference condition 
stream biota was then set as a threshold of potential impact for a given 
reach. Once thresholds were identified, the relative heterogeneity of 
stream invertebrate-eutrophication relationships across the watershed 
was compared among all sites or segments within the watershed, as well 
as to thresholds developed from a California-wide data set. 

Fig. 1. An illustration of the Santa Margarita River watershed in south coast of California, U.S.A. Streamlines are based upon NHD + information and are colored to 
delineate the upper (dark green), middle (blue), and lower (eggplant) sections of the watershed, in following with how the watershed is typically delineated by local 
agencies. The points depict the locations of the previously sampled bioassessment sites that fall within the watershed. The color of the points indicate the their 
observed condition based upon benthic macroinvertebrate community composition (CSCI, Mazor et al., 2016). The inset shows the approximate location of the 
watershed along the Pacific coast of California. Base map obtained from www.maps.stamen.com with the ggmap package (v3.0.0) in R (Kahle and Wickham, 2013). 
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2.2. Study area and data set 

The Santa Margarita River and its tributary streams, including 
Murrieta, Temecula, Pechanga, Devils, Stone, Rainbow, Sandia, De Luz, 
and Fallbrook creeks, is located along the southern Pacific coast of 
California, U.S.A. (Delong et al., 2023). It is represented by 832 unique 
stream segments in the medium-resolution NHD + data set that 
comprise 1,790 km of stream-length. The watershed drains nearly 1,927 
square kilometers of urban, agricultural, and undeveloped uplands. The 
region has a Mediterranean climate with a cool, winter wet season 
(November – April), dry hot summers, and an average annual rainfall of 
241 mm (Yoon and Stein, 2008). The Santa Margarita River is one of the 
few remaining free flowing, undammed rivers in the region and the 
lower 43 km of the river to its estuarine headwaters are not channelized. 
Like many wadeable streams in heterogenous landscapes like California, 
the whole of the Santa Margarita River watershed contains a wide di
versity of topographic elevation, climate, hydrogeomorphology and bi
otic communities (Ode et al., 2016b). The Santa Margarita River and its 
tributaries traverse strong natural gradients, from its headwater streams 
that drain off the slopes of the San Jacinto and Palomar mountains, the 
Santa Rosa Plateau, and the alluvial fan of Temecula Valley, through the 
Elsinore fault zone and into the Santa Margarita Estuary. 

Human activities across the watershed have resulted in altered flows 
and increased nutrient loading to the tributaries of the Santa Margarita 

River. These alterations have resulted in elevated nitrogen and phos
phorus concentrations, chronic algal blooms and, in certain parts of the 
main stems, low dissolved oxygen (Sutula et al., In Review). These 
eutrophication problems have triggered a 303(d)-impairment listing for 
nutrient pollution and stakeholders are pursuing a process to identify 
total maximum daily loads, for which in-stream eutrophication thresh
olds are needed. The watershed is also part of regional and state-wide 
bioassessment monitoring programs that use a combination of random 
ambient and targeted site sampling (e.g., Mazor, 2015, Rehn, 2021), 
with 46 discrete bioassessment monitoring sites that have been sampled 
in the watershed (Fig. 1). 

As part of the monitoring programs, synoptically collected benthic 
macroinvertebrates, physical habitat characteristics, and eutrophication 
measures have been collected and analyzed from 46 locations within the 
Santa Margarita River watershed, as well as 6,200 + others across the 
state. The implementation program for stream bioassessment in Cali
fornia is supported by well-established protocols, training and quality 
assurance, and a broad network of minimally disturbed reference sites 
(Ode et al., 2016a,b). As a result, a robust state-wide bioassessment data 
set exists; comprised of benthic macroinvertebrates and algal assem
blage information, organic matter distribution, and a comprehensive set 
of eutrophication drivers (e.g., nutrients, flow, and water temperature) 
available for analysis. 

Benthic macroinvertebrates, habitat, and eutrophication data 
collected between 2001 and 2019 were obtained from the from the 
Stormwater Monitoring Coalition (SMC)/ Surface Water Ambient 
Monitoring Program (SWAMP) data portal (https://smc.sccwrp.org/). 
Benthic macroinvertebrates were collected across 150-m stream reaches 
using a 500-µm D-frame kicknet following Ode et al., (2016a). All fauna 
were preserved in ethanol and identified to Southwest Association of 
Freshwater Invertebrate Taxonomists (SAFIT) Standard Taxonomic 
Effort Level 2 (i.e., mostly to species, Chironomidae to genus) (Richards 
and Rogers, 2011). The condition of each sampling location was based 
upon macroinvertebrate assemblage composition scored with the Cali
fornia Stream Condition Index (CSCI) (Mazor et al., 2016). 

Following Mazor et al. (2022) benthic algal biomass as chl-a (mg 
m− 2), benthic organic matter accumulation measured as ash-free dry 
mass (mg cm− 2), macroalgal percent cover (%), water column total ni
trogen (TN) and total phosphorus (TP) concentrations (mg L-1) were 
selected as direct or indirect measures of eutrophication stress. These 
data were obtained from the SMC and SWAMP data portal (https://smc. 
sccwrp.org/). All eutrophication measures were collected following 
standardized field and lab protocols (Ode et al., 2016a). 

2.3. Identification of ecologically similar sites 

The ecological similarity approach is an extended application of 
Observed-to-Expected (O:E) bioassessment indices. It approximates the 
ability of any two stream reaches to support similar macroinvertebrate 
communities in the absence of anthropogenic disturbance using taxa 
profiles and capture probabilities predicted from underlying natural 
gradients modelled from reference sites (Gillett et al., 2019). Specif
ically, the O:E index predicts reference community composition using 
latitude, elevation, 10-year (2000–2009) mean annual precipitation, 10- 
year (2000–2009) mean annual air temperature, and watershed area for 
bioassessment sites following Mazor et al. (2016) or for NHD + stream 
segments following Beck et al. (2019). Expected ecological similarity 
allows us to infer the biological composition, as well as the expected 
response to stress, in each NHD + segment, irrespective if it had been 
sampled or not (Gillett et al., 2019). 

Expected biological similarity was calculated as pair-wise values 
based upon the Bray-Curtis dissimilarity formulation (Bray and Curtis, 
1957) using the expected taxa capture probabilities from a Santa Mar
garia River site or segment and the expected taxa capture probabilities 
from other sites in the state-wide bioassessment data set (Gillett et al., 
2019). Sites were considered similar to a given Santa Margarita River 

Fig. 2. A diagram contrasting the reach-specific modelling approach versus a 
state-wide/ecoregional approach to developing thresholds of potential biolog
ical impact. Both approaches start with a state-wide bioassessment data set, 
represented by the large circle of data points. The reach-specific approach 
creates a subset of data based upon the selection of environmentally similar 
sites, represented by the dashed circles and solid arrows. These sub-data sets are 
then used to create stressor-response models, represented by the logistic curve, 
from which a threshold of biological response specific to that reach can be 
extracted. For the state-wide approach, all data within the state-wide data set 
are selected. These data are then used to create a model from which a threshold 
applicable to all reaches across the state can be extracted. 
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site or segment if their pairwise expected biological similarity value was 
less than 0.1 following Gillett et al. (2023). This process produced 
different reach-specific data sets for each location (either sites or seg
ments) within the Santa Margarita River watershed. 

2.4. Estimating eutrophication thresholds 

The reach-specific data sets generated from the ecological similarity 
filtering process were subsequently used to generate biological response 
models for each distinct reach (i.e., bioassessment site or NHD +
segment) in the watershed. For each reach, a logistic regression model 
was created from the eutrophication and biological data collected at 
their ecologically similar sites. If an ecologically similar site had been 
sampled multiples times, the sampling event with the highest CSCI score 
was selected for use. The logistic regression was structured with the 
probability of observing a CSCI score >=0.79 (i.e., 10th percentile of 
index scores at reference sites) as the response variable and one of the 
five eutrophication stress measures as the predictor variable (i.e., 5 re
gressions per site/reach). 

The regression models were constructed to only consider the effects 
of one eutrophication indicator at a time. In reality however, the biota in 
many of the streams from which the data used to build those models 
were obtained were exposed to a variety of other stressors beyond the 
eutrophication stress. To allow us to compare results among logistic 
models whose underlying data represent varying degrees and diversities 
of non-eutrophication stressors in addition to the eutrophication, the 
probabilities at each stressor increment were re-scaled by dividing them 
by the maximum probability observed at the y-intercept for a given 
model. This approach, described in Mazor et al. (2018) and Mazor et al. 
(2022), effectively anchored the relative probability of observing 
reference condition biology under minimal eutrophication stress at 1 
and creates relative probabilities versus absolute probabilities from the 
unadjusted regressions. The relative logistic regression approach, 
though a simplistic approach for partially separating eutrophication 
impacts from multiple stressors occurring in the field data, allowed us to 
standardize the effects of eutrophication stress across all the different 
models. This standardization allowed for clearer communication of 
potential threshold values with a management-focused audience. 

The stressor value that produced a relative probability of 0.9 was 
selected as the threshold for maintaining reference condition benthic 
macroinvertebrates at the given Santa Margarita River reach. It is worth 
noting that though we used logistic regression models in this study, 
other types of response models (e.g., general additive models, linear 
regression, random forest regression) could be used with this reach- 
specific approach. Each of the five eutrophication measures were ex
pected, a priori, to have an inverse relationship with biotic condition (e. 
g., Dodds, 2006, Hilton et al., 2006, Johnson and Hering, 2009). As an 
illustration: increasing TN should reduce the probability of observing a 
CSCI score >=0.79. Consequently, if the coefficient for the eutrophi
cation measure in the regression model was greater than 0, the regres
sion was rejected as violating our conceptual model and the threshold 
was not retained. Similarly, if the p-value associated with the regression 
coefficient was >0.1, the regression was rejected as a non-useful model 
and the threshold was not retained. All regressions were modeled using 
the glm function with a logit link in R v3.6.3. Likelihood ratio pseudo r2 

values (Nagelkerke, 1991) to approximate the goodness of fit for each 
model were calculated using the rsq function in the R package rsq v2.6 
(Zhang, 2023). Receiver operating curve (ROC) characteristics for each 
model to characterize model performance were calculated using the roc 
function in the R package pROC v1.18 (Robin et al., 2011). 

The heterogeneity of the threshold values among the bioassessment 
sites within the watershed was approximated by calculating the coeffi
cient of variation (CV) within each eutrophication measure. CV values 
were calculated using the cv function in the R package EnvStats (Millard, 
2013). Heterogeneity of the segment-scale thresholds was evaluated by 
comparing values from the upper, middle, and lower sections of the 

watershed using a Kruskal-Wallis rank sum test with Dunn post-hoc 
comparisons (α = 0.1). Following local practice, the NHD + segments 
of watershed was divided into the three sections: 1) Upper - upstream of 
the Temecula Gorge, including the San Bernardino Mountain headwa
ters; 2) Middle – from Temecula Gorge and the coastal mountains down 
to the confluence with De Luz Creek; and 3) downstream of the 
confluence with De Luz Creek, which demarcates the beginning of the 
alluvial sediments (Fig. 1). Values for the reach-scale thresholds were 
compared between these upper, middle, and lower sections of the 
watershed using a Kruskal-Wallis rank sum test with Dunn post-hoc 
comparisons (α = 0.1). The Kruskal-Wallis tests were calculated with 
R v3.6.3 and the Dunn tests were conducted with the dunnTest function 
in the R package FSA v.0.8.32 (Ogle et al., 2021). 

3. Results 

Based upon expected biological similarity, between 482 and 1,138 
ecologically similar sites were identified for each selected bioassessment 
site within the Santa Margarita River watershed. Of those groups of 
ecologically comparable sites, each group had at least 113 sites with an 
expected biological similarity value <0.05 to their paired bioassessment 
site. For each of the Santa Margarita River bioassessment sites, nearly all 
of their ecologically similar sites were located within the coastal and 
inland chapparal regions of southern California, with a few sites located 
in central or northern coastal California (Fig. 3). 

Across the NHD + stream segments, between 479 and 1,218 
ecologically similar sites were identified for each segment, based upon 
their expected biological similarity values. The ecologically similar sites 
for the stream segment followed a similar geographic distribution to 
those of the bioassessment sites, with most of the similar sites found in 
the coastal chapparal of southern California and a handful of sites in 
central California, as well as northern/central parts of the coast. 

Using the stressor and biological data from the ecologically similar 
sites in the logistic regression models, thresholds of critical biological 
response to each of the eutrophication measures were identified for 
nearly all of the bioassessment sites in the watershed (Fig. 4). The 
thresholds were not uniform across the different sites, though the ma
jority of the site thresholds were clustered tightly together (if the 
extreme values are ignored). Quantitatively, there was a considerable 
degree of heterogeneity in thresholds for algal cover (CV = 0.55) and TP 
(CV = 0.94) across the different bioassessment sites (Fig. 4). The 
thresholds for AFDM (CV = 0.14) and Chl-a (CV = 0.08) showed less 
heterogeneity, while TN (CV = 0.3) showed moderate variability. 
Visually, one can see that the thresholds for AFDM and benthic Chl a fell 
out into three relatively distinct groups of values (Fig. 4). The thresholds 
for TP had two groups, with an additional high and a low value apart 
from the others. Similarly, the thresholds for TN were clustered 
together, with the addition of a high and low value apart from the 
central group. In contrast to the other eutrophication metrics, the % 
algal cover thresholds fell out in a continuous gradient, without any 
distinct grouping. 

Thresholds for % algal cover, TN, and TP could not be identified for 
one bioassessment site as each regression coefficient had a p-value >0.1 
and therefore their models were rejected. Similarly, a threshold for % 
algal cover could also not be identified for another, nearby bio
assessment site. Both of these sites were located in the upper portion of 
the Santa Margarita watershed. Both sites were within a relatively high 
elevation, spring-fed stream on the north side of Palomar Mountain (R. 
Mazor, pers. observation), which represents a relatively unique setting 
compared to other bioassessment sites in the watershed. 

The segment-specific analyses provided a greater granularity in 
stressor response patterns than the site-specific approach. A visual in
spection of the thresholds identified for each reach of the Santa 
Margarita River watershed indicates that the modeled sensitivity of the 
resident biota to eutrophication stressors was clearly not uniform across 
the watershed (Fig. 5). The lower reaches of the watershed (costal, low 
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gradient) had statistically lower thresholds for AFDM, algal cover, TN, 
TP than the upper (mountainous, high gradient) reaches of the water
shed (Fig. 5, Table 1). Middle reaches had thresholds typically between 
the other two. A clear pattern in the magnitude of the thresholds for each 
eutrophication measure was also apparent geographically (Fig. 7). 
Thresholds tended to clump together, with the eastern reaches consis
tently being different than the other parts of the western and southern 
parts of the watershed. Of the 832 stream segments considered, 
thresholds for TN could not be identified for 26 segments (3 % of total), 
as well as 160 (19 %) for % algal cover and 15 (2 %) for TP. As with the 
bioassessment sites, all of these instances where the regression co
efficients had a p-value >0.1 and therefore their model were rejected. 
Thresholds for Chl a and AFDM could be calculated for all 832 stream 
segments. 

Interestingly, many of the out-lying thresholds (i.e., beyond the 25th 
or 75th percentiles) for both the bioassessment sites and stream seg
ments were from locations that had comparatively fewer numbers of 
ecologically similar sites with eutrophication data in their regression 
models (Figs. 4 & 5). However, those models had >200 data points, 
which would suggest that they had sufficient sample size. The patterns in 
standard error of the different threshold estimates for the bioassessment 
sites (Fig. 6) indicate that the models with lower sample sizes produced 
thresholds with greater amounts of associated variance than those with 
greater data density for AFDM, TN, and TP. For the lower data density 
AFDM models, the variance was ~2X the other models. The variance 
was much greater for the low data density TN (~3.5X) and TP (~15 X). 
This may suggest that the differences in threshold and variance around 
those estimates may be a function of some site-specific anomaly of these 

Fig. 3. An example illustration of the ecologically similar sites used to model the stressor response relationships at one of the bioassessment sites (902SMRDRx) 
within the Santa Margarita River watershed. The yellow triangle illustrates the approximate location of the site and the dots represent other bioassessment sites 
within California. The color of the dots indicates their relative similarity to the Santa Margarita River site. Similarity was measured as expected biological similarity 
calculated from modeled taxa capture probabilities (see Gillett et al., 2019 for full details). Only sites classified with similarity ≤ 0.1 were used in the subsequent 
stressor-response modelling. 
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locations rather than the influence of 220 data points versus 300 + data 
points. Irrespective of the threshold values, the comparatively lower 
number of ecologically similar sites indicates that those locations were 
comparatively distinct in both their underlying ecology among the other 
parts of the Santa Margarita River watershed and the state as a whole. 
The high variance/lower data density models were mostly associated 
with higher elevation, mountainous sites. When these factors are com
bined with the relatively warmer temperatures and lower rainfall of 
southern California, these types of sites are rare within the California 
landscape (see Mazor et al., 2016 for detailed discussion) and would be 
expected to have relatively fewer environmentally similar sites. 

Nearly every threshold identified for Santa Margarita River bio
assessment sites or stream segments was higher than the thresholds 
derived from similar state-wide statistical modeling (Mazor et al., 2022). 
The exceptions were thresholds identified for algal cover, which were 
always below the state-wide number in the site-specific analyses. Within 
the segment-specific analyses, the thresholds of algal cover from the 
lower and middle portions of the Santa Margarita River watershed were 
all or nearly all below the state-wide threshold. In contrast, approxi
mately 66 % of the reaches (n = 420) from the upper portion of the 
watershed had algal cover thresholds less than the state-wide model 
threshold. The reach-scale models yielded better fits of their reach-scale 
data sets (i.e., greater likelihood pseudo R2 values) than their statewide 
counterparts did with the state-wide data set (Fig. 8). Conversely, the 
reach-scale and state-wide models had relatively similar classification 
accuracy (i.e., AUC values) to each other for all of the eutrophication 
models. The AFDM models were the lone exception, as the state-wide 
model performed better than all of the reach-scale models (Fig. 8). 

4. Discussion 

Our modelling of the biotic condition of streams in relation to 
eutrophication stressors indicated that even in moderately sized (1,927 

km2) systems like the Santa Margarita River, it may be common to 
observe different responses to disturbance across a watershed. The na
ture of the response was similar in the majority (95.6 %) of reaches 
across the watershed – increases in the eutrophication measures 
decreased the likelihood of observing a reference-condition macro
benthic community. However, the magnitude of stressor exposure likely 
to degrade the biotic communities beyond a critical point varied in both 
the site- and segment-scale analyses. The degree of heterogeneity among 
the critical points did differ from indicator to indicator – total nitrogen 
thresholds were quantitatively similar to each other but benthic ash free 
dry mass and chlorophyll a were more varied. To our knowledge, this is 
the first study to characterize the heterogeneity of stressor-responses to 
eutrophication at these type of fine spatial scales within a single 
watershed. 

Differences in the sensitivity to stress among distinct waterbodies has 
been observed in a variety of previous studies conducted at inter- 
watershed, ecoregional, or state-wide scales (e.g., Lamon and Qian, 
2008, Heiskary and Bouchard, 2015). Many of these modeling studies 
were designed to account for natural gradients in their data sets. How
ever, the results were still likely influenced by large scale variations in 
climate, topography, and geology that would obscure small scale het
erogeneity. The differences between the eutrophication thresholds 
derived from reach-specific and state-wide response models (Mazor 
et al., 2022) that we observed were quantitatively different and of a 
scale that would be meaningful to regulated parties potentially 
responsible for achieving a given threshold in their streams. Moreover, 
there was concordance in the thresholds, where nearly every reach- 
specific threshold of four of the five eutrophication measures across 
the Santa Margarita were higher than those thresholds derived from the 
state-wide analysis. This type of pattern suggests that the Santa 
Margarita River as a whole may have a different, dampened response to 
eutrophication stress than other wadeable streams across the state. 
Conversely, it is logical to assume that there are other watersheds within 

Fig. 4. Schematic box plots of site-specific thresholds derived from logistic regression models for five eutrophication measures across the 46 bioassessment sites of 
the Santa Margarita River watershed. The shade of the dots represents the number of data points used in the respective logistic regression. The dashed line indicates 
the state-wide model threshold for that measure from Mazor et al. (2022). Please note that for easier visual interpretation of the box plot, one total nitrogen threshold 
value (3.0 mg L-1) and one total phosphorus threshold value (0.88 mg L-1) were omitted from their respective panels. 
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California that are more sensitive to eutrophication stress than the 
threshold suggested by the single state-wide analysis. 

Beyond being a watershed with a different scale of response to 
eutrophication than others in its region, the Santa Margarita River also 
serves as an illustration of a watershed with intra-watershed heteroge
neity in stressor response patterns. Three or four distinct portions of the 
watershed were apparent, each with different sensitivities to 

eutrophication. The spatial patterns in the eutrophic measures’ thresh
olds from the segment-scale analyses were indicative of some degree of a 
sub-catchment level of organization (Fig. 7). Contiguous reaches tended 
to have similar thresholds, which suggests that the abiotic, environ
mental setting across different parts of the watershed may have been 
mediating that stressor response relationship. The threshold patterns for 
TN and TP behaved the most similarly, with greater sensitivity in the 
middle and lower portions of the watershed and greater tolerance in the 
upper/eastern part of the watershed and some of the upper reaches of 
lower tributaries. The distribution of thresholds for AFDM and algal 
cover were similar to that of TN and TP, though not as bimodally 
distributed. The distribution of thresholds for benthic Chl a were the 
inverse of the other measures, most sensitive in the upper/eastern por
tions and higher thresholds in the central and lower parts of the 
watershed. 

This kind of spatial organization of thresholds makes some sense, as 
the natural environmental setting of a waterbody can influence stressor 
response relationships at relatively small spatial scales irrespective of 
anthropogenic disturbance (e.g., Graeber et al., 2017, Kim et al., 2021, 
Turunen et al., 2021), especially with a complex stressor like eutrophi
cation. Watershed characteristics (e.g., rainfall, geology, topography) 
influences the in-stream and riparian habitat, which can alter light 
availability and water temperature (Ferréol et al., 2005; Vannote et al., 
1980). Furthermore, small-scale changes in slope will influence stream 
velocity and water residence time. These abiotic factors specifically in
fluence primary production and accumulation of excessive organic 

Fig. 5. Schematic box plots of segment-specific thresholds derived from logistic regression models for five eutrophication measures across the 832 NHD + stream 
segments of the Santa Margarita River watershed. The letter annotations indicate similar/different values (α = 0.1) between reaches from the three sections of the 
watershed, based upon Dunn post-hoc comparisons Kruskal-Wallis test results. The shade of the dots represents the number of data points used in the respective 
logistic regression. The dashed line indicates the threshold derived from the state-wide model for that measure from Mazor et al. (2022). 

Table 1 
Summary output of Kruskal-Wallis rank sum tests comparing reach-specific 
thresholds for each eutrophication measure among the three sections of the 
Santa Margarita River watershed. An underline in the post-hoc comparisons 
indicates that there were no differences in threshold values between sections of 
the watershed based upon a Dunn post-hoc test with α = 0.1.  

Eutrophication 
Measure 

Number 
of 
Reaches 

df Chi-sq 
statistic 

p- 
value 

Watershed 
Post-Hoc 
Comparison 

AFDM (mg cm− 2) 829 2  232.3  <0.001 Lower Middle 
Upper 

Chl a (mg m− 2) 829 2  6.8  0.034 Middle Upper 
Lower 

Total Nitrogen 
(mg L-1) 

803 2  47.3  <0.001 Lower Middle 
Upper 

Total Phosphorus 
(mg L-1) 

814 2  18.1  <0.001 Lower Middle 
Upper 

Algal Cover (%) 669 2  78.9  <0.001 Lower Middle 
Upper  
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matter (i.e., eutrophication) in a system (Nijboer and Verdonschot, 
2004). Though we lack the data within this this system to test these 
kinds of mechanistic relationships, the pattern we observed in the 

thresholds is suggestive of how reach-scale habitat may attenuate some 
types of anthropogenic pressures and stressors on the resident biota 
(Birk et al., 2020; Turunen et al., 2019, 2018). However, it is also 

Fig. 6. Scatter plots of the site-specific thresholds derived from logistic regression models for five eutrophication measures across the 46 bioassessment sites of the 
Santa Margarita River watershed as a function of the number of data points used in their respective models. The error bars represent the +/- standard error of each 
threshold. The threshold values represent the magnitude of the eutrophication metric with 0.9 probability of supporting a reference condition (California Stream 
Condition Index score >=0.79) as also presented in Fig. 4. 

Fig. 7. Watershed maps depicting the segment-specific thresholds derived from logistic regression models of AFDM (a), Algal Cover (b), benthic Chlorophyll a (c), 
water column total nitrogen (d), and water column total phosphorus (e) across the 829 NHD + stream reaches of the Santa Margarita River watershed. Where 
thresholds could not be derived, the color was averaged between the next most proximate segments. Base maps obtained from www.maps.stamen.com with the 
ggmap package (v3.0.0) in R (Kahle and Wickham, 2013). 
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important to consider that reach-scale habitat may not influence the 
stressor-response relationships for other classes of stress like elevated 
conductivity or pesticides that have a more direct effect on in-stream 
benthic macroinvertebrates. 

In addition to influencing how a stressor like eutrophication is 
manifest in a stream, the habitat of stream reaches will also influence the 
population dynamics and recruitment of the benthic fauna that live 
there in the absence of disturbance (a key tenant in our modelling 
approach) (Gasith and Resh, 1999; Herlihy et al., 2008; Johnson and 
Hering, 2009). Different taxa, “selected” by the filter of a stream’s 
environmental setting, will respond to a given stressor on a taxa-by-taxa 
basis, which combine together to create the community responses to 
stress that were observed between the Santa Margarita River and other 
systems used in the state-wide modelling efforts. Mechanistically dis
entangling the two ways in which natural environmental gradients 
concurrently affect both the stressor exposure and the biological 
response is not an easy proposition and beyond the scope of this work. 

Overall, the Santa Margarita River watershed serves as an interesting 
case study for the development of reach-specific stressor response 
models and water quality criteria in general. There was intra-watershed 
variability in the responses of the stream biota to eutrophication, which 
may have been due to small-scale differences in the environmental 
settings (e.g., slope, riparian zone, channel morphology). Though they 
were not homogeneous across the watershed, nearly all of the different 
reaches had eutrophication thresholds higher than those derived using 
all of the wadeable streams in California. These Santa Margarita versus 
state-wide differences were likely the product of variability in envi
ronmental settings, as well as reach-to-reach differences in the expected 
fauna. What is unclear, is how this pattern of intra- and inter-watershed 
differences in response to stress would play out in other systems – both 
within an environmentally heterogeneous place like California (Ode 
et al., 2016b) or in a homogeneous location elsewhere in the United 
Sates or the world. 

Our modelling approach to determine reach-specific stressor- 
response thresholds was unique because it pre-screens data to only 
include biotic and abiotic data from stream sites that were ecologically 

similar to the bioassessment site or stream segment of interest in lieu of 
simply using every available data point blindly. In post-hoc modeling or 
analysis of field collected data, there will always be the tradeoffs of 
maximizing sample size versus isolating the variance of interesting 
variables versus controlling for the heterogeneity of background vari
ance that is not of interest to the question at hand. Our approach is 
designed to control the environmental and biogeographic differences/ 
similarities among different sites a priori, which then allows the models 
to reflect the biological response more accurately to the stressor of in
terest. Accordingly, the reach-scale models did typically produce better 
fits between stream biota and eutrophication data than their state-wide 
analogs. However, though they dealt with variance in the data better, 
the reach-scale models were not more accurate in their predictions than 
the state-wide models. The prediction accuracies were reasonable, 
though not perfect (i.e., AUC values between 0.6 and 0.8). This pattern 
was likely reflective of multiple stressors affecting the condition of the 
stream fauna concurrently with the eutrophication measures that were 
modelled at reach and state-wide scales. 

An alternative to building the reach-scale models could be to build 
more complex stressor response models with multiple predictors (e.g., 
the same predictors used to model expected taxa in the OE models used 
for our expected similarity). However, that inherent complexity could 
make it more difficult to simultaneously run the 800 + models that were 
needed to completely cover a medium sized watershed like the Santa 
Margarita. Furthermore, there is inherent value in the parsimony of 
models from a statistical perspective (e.g., Burnham and Anderson, 
2002) and for the communication of complex ecological ideas to less 
technical audiences like water quality managers. 

Reach-specific thresholds can improve watershed management 
because they can build stakeholder confidence that the unique envi
ronmental conditions in their areas are properly accounted for and they 
can highlight specific places where ecoregional or typological thresholds 
are inappropriate. The California State Water Resources Control Board is 
proposing to adopt water quality criteria protective for wadeable 
streams against nutrient pollution and eutrophication based on state- 
wide or regional statistical stress response modeling (Mazor et al., 

Fig. 8. Top Panel: A comparison of model classification accuracy measured as receiver operator curve (ROC) area under the curve (AUC) values for reach-scale 
models (grey dots) from the Santa Margarita River bioassessment sites and state-wide models from Mazor et al. (2022) (white squares). Bottom Panel: A compar
ison of model goodness of fit measured as Nagelkerk’s (1991) likelihood pseudo r2 values between reach-scale models (grey dots) from the Santa Margarita River 
bioassessment sites and state-wide models from Mazor et al. (2022) (white squares). The dots of have been jittered left and right to improve readability. 
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2022; Sutula et al., 2022). The Santa Margarita River represented a 
situation where stakeholders were concerned that eutrophication targets 
derived from state-wide modeling might be inappropriate for their 
watershed. Both regulated and regulatory parties felt that biological 
response models that accounted for the watershed’s diversity and nat
ural gradients were necessary. Our study showed that the regulators and 
regulated parties were not wrong and that state-wide model thresholds 
may indeed be overly stringent for most parts of the Santa Margarita 
River. However, the practical aspects of enforcing reach-specific 
thresholds may be too challenging for implementation. It may be that 
something more granular than a single, state-wide threshold, but more 
integrative than reach-by-reach thresholds (e.g., watershed or sub- 
watershed) could represent a reasonable compromise. 

We believe reach-specific models can still be useful, even where their 
implementation may be impractical. For example, reach-specific models 
can be used to evaluate the appropriateness of a priori, homogeneous 
typologies, or they can provide a way to identify previously unrecog
nized sub-regions of a watershed requiring different management stra
tegies. It is important to highlight that though we have only presented 
results from Southern California, the approach of identifying environ
mentally similar sites and building reach-specific models can be applied 
in other regions that have a sufficiently large bioassessment data set and 
an O/E predictive model. Within the United States, the National Rivers 
and Streams Assessment (NRSA) program provides both of these ele
ments (US Environmental Protection Agency, 2020) and could support 
this type of reach-specific modelling approach. 

5. Conclusions 

We have presented an approach to create reach-specific eutrophi
cation stressor response models and thresholds derived from ecologi
cally similar streams. The application of the reach-specific relationships 
revealed a degree of heterogeneity in the potential response of benthic 
macroinvertebrates to eutrophication stressors across a single water
shed. Those thresholds, in turn, were different than thresholds derived 
using the same statistical modeling approach for a large, state-wide 
dataset. Beyond the ecologically interesting patterns the delineation of 
reach-specific threshold reveals across heterogeneous watersheds, the 
reach-specific modeling approach could provide resource managers and 
regulators options to better manage their water resources by quantifying 
small scale differences in condition, biology, and biological response to 
stress. In most situations it is probably not practical to consider man
aging individual stream segments or sites with independent objectives 
and thresholds. However, some aggregation of these models and their 
derived thresholds may be useful in the development of watershed- or 
catchment-scale water quality improvement plans for 303d list water
bodies or strategic protective plans for high quality waterbodies in non- 
degraded conditions. The spatial heterogeneity of the thresholds that 
were identified and their relative difference to state-wide derived 
thresholds should provide managers the information to make informed 
decisions and balance the needs for uniform regulations and site speci
ficity inherent to diverse, complex ecosystems like large stream 
networks. 
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