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Large global variations in the carbon dioxide
removal potential of seaweed farming due to
biophysical constraints
Isabella B. Arzeno-Soltero 1,2✉, Benjamin T. Saenz 3, Christina A. Frieder4, Matthew C. Long5,

Julianne DeAngelo 6, Steven J. Davis 1,6 & Kristen A. Davis 1,6✉

Estimates suggest that over 4 gigatons per year of carbon dioxide (Gt-CO2 year−1) be

removed from the atmosphere by 2050 to meet international climate goals. One strategy for

carbon dioxide removal is seaweed farming; however its global potential remains highly

uncertain. Here, we apply a dynamic seaweed growth model that includes growth-limiting

mechanisms, such as nitrate supply, to estimate the global potential yield of four types of

seaweed. We estimate that harvesting 1 Gt year−1 of seaweed carbon would require farming

over 1 million km2 of the most productive exclusive economic zones, located in the equatorial

Pacific; the cultivation area would need to be tripled to attain an additional 1 Gt year−1 of

harvested carbon, indicating dramatic reductions in carbon harvest efficiency beyond the

most productive waters. Improving the accuracy of annual harvest yield estimates requires

better understanding of biophysical constraints such as seaweed loss rates (e.g., infestation,

disease, grazing, wave erosion).
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Recent analyses of global climate scenarios suggest that
limiting warming to <1.5∘ above pre-industrial levels will
require large reductions in greenhouse gas emissions as

well as the removal of ~2.5–13 Gt-CO2 year−1 (~0.7–3.6 GtC
year−1) by midcentury1,2. Some strategies for reducing green-
house gas emissions include incorporating farmed macroalgae
(seaweed) into human and animal diets3–5 or generating
biofuels6–8, though some challenges still limit the efficient pro-
duction and commercial-scale use of seaweed-based biofuels9.
While concurrently providing ecosystem services10 or advancing
the bioremediation of coastal waters11–14, seaweed farming could
also enhance ocean carbon dioxide removal (CDR) by fixing
carbon from the surface ocean into organic biomass, which can
subsequently be sunk to the deep ocean, or otherwise isolated
from the atmosphere15–18. In contrast to terrestrial biomass,
seaweed farming does not require arable land or freshwater.
Indeed, the seaweed farming industry is growing: annual pro-
duction of seaweed increased by an average of 13% between 2015
and 2020, with 3.5 Mt of dry weight (~1 MtC) harvested globally
in 202019. Although most farming today occurs in the coastal
waters of China and Indonesia, technology to farm offshore is in
development20–24.

Early assessments of the global potential to farm seaweed,
though noteworthy, have generally extrapolated from observed
yields in high-nutrient regions13,15–17,25 or average global bio-
mass of wild seaweeds5,26, neglecting spatial variations in
hydrodynamics, nutrient fluxes, and uncertainty in seaweed
productivity and aquaculture yields. Meanwhile, dynamic models
of seaweed growth under nutrient and other environmental
limitations27–31 have often focused on relatively small (<500 km2)
coastal areas and have not examined the levels of intensive
nutrient uptake required to produce biomass at scales relevant to
the global carbon budget (e.g., >1 GtC). One recent study mod-
eled macroalgal cultivation worldwide but focused on one sea-
weed group and did not explore biophysical uncertainties32. Here
we develop and use a global dynamic model of seaweed growth,
the Global MacroAlgae Cultivation MODeling System (G-
MACMODS), to analyze the potential of seaweed farming to
produce Gt-scale biomass carbon under assumptions of growth-
limiting mechanisms. We focus on the offshore cultivation of four
seaweed types and systematically test the sensitivity of seaweed
harvested yield to a range of uncertain biophysical parameters.

Details of G-MACMODS, data sources, and analytical methods
are in Methods. In summary, the model (Supplementary Fig. 1;
informed by a previous macroalgae cultivation model33) predicts
spatially-resolved (1/12th∘ resolution) cultivated seaweed yield
with constraints from both extrinsic (environmental forcing) and
intrinsic factors (biological parameters; e.g., growth rates, nitrate
uptake, nitrogen exudation, and mortality, among others). To test
sensitivities and evaluate uncertainties, we performed
1012–1066 simulations of macroalgal growth and harvest for each
of four seaweed types (defined using biophysical characteristics
from currently-farmed temperate and tropical red and brown
genera). Each simulation sampled from a uniform distribution of
parameter values spanning the full range of relevant values
reported in the literature (Supplementary Table 1). Environ-
mental forcing included water temperature, solar irradiance,
current velocities, wave height, wave period, and nitrate con-
centrations, sourced from a combination of satellite measure-
ments (MODIS) and global ocean model simulations (HYCOM
and CESM). Although we tested the model with forcing data from
different years, results reported here reflect the year 2017 (a
recent year without strong El Niño/La Niña anomalies; Supple-
mentary Figs. 2, 3) and a representative seasonally-varying cli-
matology of physically-mediated nitrate fluxes (Supplementary
Fig. 4). Simulations that use parameter values best supported by

the literature or deemed the most appropriate by the authors are
termed standard runs. Seeding and harvesting for each seaweed
type were optimized based on the yields from this standard
configuration. We assess the importance of different model
parameters using “random forest” classification analysis.

G-MACMODS assumes that nitrogen is the limiting nutrient
because its demand relative to other nutrients, such as phos-
phorus, is often greater than its supply in the ocean34. The
average N:P ratio in macroalgae is 38:135, yet the median N:P
ratio in the ocean is 22:136. G-MACMODS specifically incorpo-
rates nitrogen in the form of nitrate, although other forms of
nitrogen (e.g., ammonium and urea) can contribute to seaweed
growth in low-nitrate environments37,38. Presuming that nitrogen
is the only limiting nutrient is a potential shortcoming of the
model framework, but we assume that other nutrient constraints
(e.g., iron scarcity) can be overcome by farming practices.

We consider two bounding nitrate scenarios: (1) an ambient
nitrate case in which average nitrate concentrations within the
top 20 m are available to seaweed without depletion or compe-
tition and (2) a limited nitrate case where biomass accumulation
is capped by that which is replenished daily through natural
vertical fluxes of nitrate across 100-m depth (i.e., through mixing
or upwelling). The ambient nitrate scenario, while unrealistically
optimistic for intensive production on a global scale without
artificial upwelling, is representative of the potential yield in a
given area if the farming intensity is low and does not generate
substantial feedback by modifying regional nitrate budgets. The
ambient nitrate case applies to small seaweed cultivation farms
such as those currently in operation in Indonesia (<1 ha39), the
Philippines (<3 ha40), or Chile (<25 ha41). In contrast, the limited
nitrate scenario may better reflect constraints under dense
farming, such as seen in China (> 3500 ha42), or under conditions
of phytoplankton competition32,43. In the limited nitrate scenario,
we cap the nitrate available to seaweed to that which is replen-
ished by natural vertical fluxes, since dense farms can limit
nutrient resupply from surrounding waters by stifling the cross-
shore exchange44. Both the ambient nitrate and the limited nitrate
cases are idealized scenarios because the “offline” implementation
of G-MACMODS does not explicitly account for feedback to
nitrate cycling or competition with phytoplankton. The different
scenarios are intended to help gauge the sensitivity of seaweed
growth to nitrate constraints. Our analysis focuses on offshore
production, under the assumption that competing uses of near-
shore environments will preclude dramatic expansion of near-
shore cultivation activities.

The purpose of this work is not to advocate for the widespread
deployment of seaweed farms over a substantial fraction of the
global oceans, as we expect this would come with unacceptable
trade-offs to ocean health32,45,46, but rather to assess the geo-
graphic distribution and potential of offshore seaweed farming to
produce harvestable biomass at climate-relevant scales. Our study
predicts potential seaweed biomass production in the surface
ocean and does not explicitly represent the fate of this biomass
after harvest. A companion study47 uses G-MACMODS to
develop a technoeconomic analysis quantifying the costs of sea-
weed cultivation for carbon removal (e.g., via sinking) or emis-
sions avoidance (e.g., using seaweed for food, animal feed, and
biofuels).

Global seaweed harvested yields. Maps in Fig. 1 show the
magnitude and types of seaweed harvested in our standard
simulations, including the ambient and limited nitrate scenarios;
we assume that the seaweed type with the greatest harvested yield
is farmed in each grid cell. Results indicate that seaweed could be
grown and harvested over large areas of the surface ocean
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(~200 million km2 and ~130 million km2 in the ambient and
limited nitrate runs, respectively, larger than previous
estimates16,32); however, annual harvests vary substantially in
space and are vastly different between the two nitrate scenarios.
The most productive locations include the equatorial Pacific and
upwelling regions (e.g., along coasts or near energetic western-
boundary currents). Nitrate limitation precludes substantial
productivity in oligotrophic regions; thus, almost no seaweed is
harvested within the subtropical gyres (Fig. 1b, c).

To provide context for the seaweed harvest distributions
simulated by G-MACMODS, we compare seaweed production of
particulate organic carbon (POC) to phytoplankton net primary
productivity (NPP) estimated from satellite ocean-color
observations48 (Fig. 1a, d). Notably, a substantial fraction of
phytoplankton NPP is fueled by nitrate recycled in the euphotic
zone; it represents an upper bound on a new product or,
similarly, net community production (NCP; typically, NCP <
phytoplankton NPP49) in the unperturbed natural system. In
steady-state, the upper ocean nutrient inventory is set by a
balance between biologically-mediated export (e.g., sinking
particulate organic matter), equivalent to NCP, and physically-
mediated supply; nutrient supply thus comprises an ultimate
constraint on the magnitude of NCP.

Macroalgal growth and carbon fixation generally occur at
slower rates than in unicellular phytoplankton because the
multicellularity and specialized tissues in macroalgae require
greater resources50–52. However, these specialized structural
tissues, including holdfasts and thalli, allow macroalgae to gain
access to more persistent light and nutrients at the ocean surface
in coastal areas. Moreover, resource storage and mobilization, as
well as chemical grazing defenses, permit survival during resource
gaps53,54. Combined with higher carbon-to-nitrogen (C:N) ratios
than phytoplankton55, these features allow macroalgae to achieve
equivalent or greater productivity56,57, and much greater biomass
density58, than phytoplankton for a given amount of nutrients.

Assuming that nutrient availability is the only constraint to
macroalgal growth (neglecting all other growth and nutrient
uptake limitations), we expect macroalgal productivity to be

proportional to NCP or, as an upper bound on new production,
phytoplankton NPP. Seaweed C:N average ~20:159,60 to
~40:161–63. These values are ~3–6 times higher than the ~6.6:1
(Redfield ratio) typical of phytoplankton. If seaweed consumed all
the nitrogen available to phytoplankton, then we would expect to
see, at most, six times as much seaweed POC as phytoplankton
NPP. However, in our ambient nitrate simulations, seaweed POC
is 10 to 12 times larger than observed phytoplankton NPP,
indicating that the modeled seaweed growth under the assump-
tion of nitrate availability surpasses the constraints imposed by
nitrate supply (Fig. 1a). This suggests that the ambient nitrate
case greatly overestimates the potential productivity of wide-
spread, intensive farming in the absence of artificial upwelling,
but it might provide a reasonable estimate of the localized
potential harvests of farming operations small enough in scale
(e.g., <25 ha39–41) so as to not dramatically alter local nitrate
budgets. Indeed, the harvested yields simulated in the ambient
nitrate scenario agree well with harvest values reported in the
literature for many small farms and a few large farms situated
near river mouths where nitrogen is likely more abundant
(Supplementary Figs. 5–8). In contrast, zonally-averaged produc-
tion of particulate carbon by seaweed is less than six times the
observed phytoplankton NPP in our limited nitrate simulations
(Fig. 1d). The lower harvests estimated in the limited nitrate
scenario may, therefore, better reflect production when farming at
scales large enough to substantially modify or deplete the surface
fixed-nitrate inventory, relying on the influx of new nitrate from
below the nutricline (Fig. 1c, d).

The standard simulations of both nitrate scenarios predict that
temperate brown and tropical red seaweed out-compete tempe-
rate red and tropical brown seaweeds over most of the global
ocean (Fig. 1f, g). The zonally-integrated annual harvest of
tropical red seaweed is ~4–5 times higher than that for tropical
brown seaweed; similarly, the zonally-integrated annual harvest
of temperate brown seaweed is ~4–12 times larger than that for
the temperate reds (Fig. 1e, h).

At regional scales (e.g., areas enclosed by boxes in Fig. 1b, c),
physical processes such as western-boundary currents, coastal

Fig. 1 Global seaweed harvest. Maps of G-MACMODS annual potential harvest per unit area (b, c) of the preferred seaweed group (the type with the
largest harvest in each grid cell; f, g). While G-MACMODS estimates biomass, we assume that carbon constitutes 30% of seaweed dry weight. White
boxes correspond to regions depicted in Fig. 2. Zonally-averaged annual harvest for the preferred seaweed group, seaweed production of particulate
organic carbon (POC) and phytoplankton net primary productivity (NPP) estimated from satellite observations48 are shown in (a, d). Zonally-averaged
annual harvests for the four seaweed types are shown in (e, h).

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00833-2 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:185 | https://doi.org/10.1038/s43247-023-00833-2 |www.nature.com/commsenv 3

www.nature.com/commsenv
www.nature.com/commsenv


upwelling, and frequent eddy activity influence environmental
variability and seaweed growth. Within the seaweed growth
model, four factors govern seaweed growth rate: water tempera-
ture, nitrate availability, light, seaweed density, or crowding
(equation (8)). Of these factors, water temperature largely
determines the latitudinal distribution of different seaweed types
(e.g., tropical seaweeds in the South/East China Sea (Fig. 2, top
row) and temperate seaweed in the Norwegian Sea (Fig. 2, third
row)). At smaller scales, nitrate availability controls regional
patterns of seaweed harvested yield and, as expected, is more
important in simulations with limited nitrate than in the ambient
nitrate scenario (Fig. 2). Light availability and crowding (e.g., self-
shading and sub-grid scale nitrate competition) can become
relatively important growth limitation factors in regions with
readily available nitrate.

Uncertainty analysis. To assess the sensitivity of our results to
uncertainty in the biophysical parameters in G-MACMODS, we
conducted a Monte Carlo analysis over a range of literature-based
parameter values with uniform distributions (Supplementary
Table 1). The standard deviation of Monte Carlo simulations
increases in direct proportion to the simulated harvested yield
(Fig. 3). For example, regions with larger harvests in our standard
simulations also show greater uncertainty in the Monte Carlo
results (Fig. 3e, f; Fig. 3a, b as compared to maps in Fig. 1b, c). In
the limited nitrate scenario, the average harvested yield in the

most productive 10% of the ocean can range from 136–875 tC
km−2 year−1, depending on the values of the biophysical model
parameters.

Based on a random forest analysis of Monte Carlo results, the
biological parameters that consistently govern the harvested
seaweed yield in both nitrate scenarios are the constant mortality
rate (not due to waves) and the wave factor (specifically
associated with wave mortality), as seen in Fig. 3g, h. Our Monte
Carlo simulations evaluate constant mortality rates from
0.003 day−1 –0.017 day−1; some prior models have used similar
or slightly lower values (0.001 day−1 –0.01 day−1)29,30,64,65.
Analogously, the wave factor varies from 0.3 to 1.7, decreasing or
increasing the impact of the wave mortality relationship
(equation (12)) to address the uncertainties around the wave-
driven loss of macroalgal biomass.

The maximum growth rate substantially influences harvest
yield in low-productive areas, such as those where less than
250 tC km−2 year−1 can be harvested (40% and 93% of grid cells in
the ambient and limited nitrate simulations, respectively; Fig. 3c,
d). Since seaweed is only harvested once it reaches a target weight
(see Methods), the maximum growth rate determines whether and
how quickly the seaweed reaches a harvestable condition.

Scaling production in EEZs. The maps in Fig. 4 show the area of
exclusive economic zones (EEZs) that would be required to
harvest seaweed biomass of 1, 2, and 3 GtC year−1 in our

Fig. 2 Regional harvest. (Maps a–d, i–l) G-MACMODS annual harvested yields for the boxed regions in Fig. 1, assuming that carbon constitutes 30% of
seaweed dry weight. (Bars e–h, m–p) The relative influence of growth parameters (equation (7)) in determining regional harvested yield for each seaweed
type. (Spark lines) Relative spatially integrated annual harvest for each seaweed type.
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standard, limited nitrate simulation, assuming that seaweed car-
bon content is 30% of its dry weight. Figure 4b–d provides
examples of productive regions, highlighting local variability.
Cumulative distribution functions of annual harvest derived from
the limited nitrate simulations as a function of EEZ area (sorted
by harvested yield, such that the areas with the largest harvests are
cultivated first; Fig. 4e) show diminishing returns from farming
more than ~15% of EEZs (locations scattered across the world),
with harvests approaching a limit of ~3.5 GtC year−1 at ~25% of
EEZs (Fig. 4e). In the standard, limited nitrate simulation, the
most productive ~0.8% of EEZs (1 million km2; located in the
equatorial Pacific; Fig. 4a, c) is enough to harvest 1 GtC year−1,
with a range of 0.35 to 1.6 GtC year−1 at the 5th to 95th per-
centiles of the Monte Carlo simulations– less than half the
2.2 GtC year−1 harvested in the standard, ambient nitrate
simulation (Fig. 4f). Assuming that macroalgal carbon content
could constitute as low as 20% or as high as 40% of its dry
weight35, then the area required to harvest 1 GtC year−1 would be
~2 million km2 or 0.8 million km2, respectively, with

corresponding uncertainties of 0.3–1.8 GtC year−1 and 0.4–1.6
GtC year−1 at the 5th and 95th percentiles.

Discussion and conclusion
This work is an improvement over previous estimates of seaweed
productivity and harvestable biomass because it employs a
dynamic growth model (G-MACMODS) to simulate seaweed
cultivation under two bounding nutrient scenarios and evaluates
parametric sensitivities. While excluding some ecosystem feed-
back, these simulations represent optimistic upper bounds on
seaweed production and harvest based on observed biological
rates, current farming practices, and ocean physics. The standard
simulation model results have been evaluated in comparison to
available and relevant published values of farmed and wild sea-
weed harvested yield (Supplementary Figs. 5–8 and Supplemen-
tary Tables 2–5). The ambient nitrate scenario, which assumes
that nitrate concentrations are unaffected by seaweed farms,
represents a global extrapolation of non-intensive seaweed

Fig. 3 Harvest uncertainty. Maps of standard deviation from the Monte Carlo results (a, b) and probability density function (PDF) of the standard run
annual harvested yield (c, d), assuming that carbon constitutes 30% of seaweed dry weight. The y-axis has been cut off to better visualize the smaller PDF
values (corresponding to larger harvests). Bin averages of Monte Carlo statistics are shown as a function of the standard run results (e, f). The median
harvest is shown as a solid line; the dark and light shading denotes the values between the 25th and 75th percentiles and the 5th and 95th percentiles,
respectively. The dashed 1:1 line shows where the median harvest would lie if it equaled the standard harvest. The relative importance of the biological
parameters in Supplementary Table 1, as quantified by random forest analysis, are depicted in (g, h). V�

max [μmol-Nm−2 h−1] is the product of the
maximum uptake rate (Vmax) and the ratio of the biomass-to-surface area (B:SA). The biological parameters not explicitly named are grouped under the
“other” category (Supplementary Fig. 9).
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farming, similar to many current efforts in coastal areas39–41.
However, under high-density, intensive farming it is clear that
depleted nitrate could not be replaced through transport from the
surrounding environment without quickly straining the inventory
of near-surface ocean nutrients and disrupting the natural bio-
logical carbon pump32. Sustaining the levels of production
simulated in the ambient nitrate scenario over large areas would
thus require some form of nitrate amendments (e.g., artificial
upwelling or depth-cycling23) which would, in turn, entail addi-
tional costs and environmental consequences. Our limited nitrate
simulations reflect optimistic upper bounds of offshore seaweed
production that might be supported by using only the new
nitrogen that is naturally replenished from the deep ocean (fluxed

upward across the 100-m depth plane through natural upwelling
and mixing processes and not artificially upwelled). Relative to
the ambient scenario, the limited nitrate simulations reduce
potential seaweed harvest worldwide by a median of 90%.

Recent studies on macroalgae farming highlight this industry’s
potential to offset greenhouse gas emissions5,15–17 without
addressing geographical variability in seaweed productivity. In
this study, using the limited nitrate simulations, we estimate that
a climate-relevant mass of carbon (e.g., 1 GtC year−1) could be
harvested by farming seaweed in the most productive 0.8% of
EEZs worldwide (Fig. 4f; ~1 million km2), representing a ~370-
fold increase in the area where seaweed is currently farmed
(~2500 km2 66,67). For comparison, the area occupied by all

Fig. 4 Total potential harvest in EEZs. a–d Areas of exclusive economic zones (EEZs) required to harvest 1, 2, and 3 GtC year−1 of seaweed biomass in
standard, limited nitrate simulations, sorted by harvested yield (i.e., prioritizing the most productive areas). The white boxes in (a) correspond to the
locations depicted in (b–d). e, f Cumulative distribution functions of total seaweed carbon harvested relative to the share of global EEZs farmed. Results
from the ambient and limited nitrate standard runs are depicted as dashed lines. The solid green line and surrounding shading indicate the range of
harvests of Monte Carlo, limited nitrate simulations. While G-MACMODS estimates biomass, we assume that carbon constitutes 30% of seaweed dry
weight.
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agricultural cropland in the United States is ~1.6 million km2 68.
The US National Academy of Sciences, Engineering, and Medi-
cine suggests that, as one of several CDR strategies, seaweed
cultivation could play a meaningful role in atmospheric CO2

reduction at an extraction level of ~0.03 GtC year−115; however,
even this target requires increasing the current seaweed cultiva-
tion area by over tenfold, sustaining high yields in the most
productive regions of the ocean, and ensuring that harvested
biomass is sequestered. Reaching climate-relevant carbon targets
is even more challenging when cultivating seaweed outside of the
most productive areas of the EEZs (the equatorial Pacific). Har-
vesting 0.1–1 GtC year−1 outside of the most productive 1 or 5%
of the EEZs, would require growing macroalgae over 200,000–
3 million km2 or 1 million–24 million km2, respectively,
according to our standard runs. This is similar in magnitude to
existing estimates15,69 yet beyond the capacity of the current
seaweed-farming industry. When entertaining such massive
changes to the ocean for offsetting greenhouse gas emissions, we
must also consider technoeconomic challenges47, as well as limits
to CO2 removal due to time scales of air-sea carbon fluxes, and
disruptions to the natural biological carbon pump32,70,71.

As indicated by the spread across the Monte Carlo simulations,
the largest uncertainties in our estimates of seaweed harvest cor-
respond to biophysical parameters related to seaweed mortality,
which we divide into a wave-related erosion term, and a constant
loss term, set at 1% per day, that accounts for senescence, dis-
lodgement, disease, epiphytic infestation, grazing, and other loss
processes. The wave-loss term (dw, equations (12, 13)) varies with
significant wave height (Hs) and wave period (Tw). As an example
of its magnitude, for Hs= 1m and Tw= 12 s, the wave-loss term
would reach dw= 0.3% per day. Existing models and observations
span both lower29,30,32,65,72 and higher mortality rates59,73,74, yet
these sources, which primarily consider nearshore farms, often do
not distinguish between wave-related mortality and other sources
of loss, and may have limited applicability to mortality on open
ocean farms. Moreover, real mortality might be episodic and
associated with disturbance events like storms or disease outbreaks.
Our results thus highlight the importance of further research to
constrain seaweed mortality under the conditions faced during
cultivation to improve harvest predictions.

Using the dynamic biophysical seaweed growth model, G-
MACMODS, we estimate the global potential for seaweed farm-
ing in detail. Our results suggest that biophysical ocean limits
may support annually harvested seaweed containing 1 GtC
year−1 from intensive farming in ~1 million km2 of the most
productive ocean areas. However, practical, but different
assumptions about the geographical location of farms, farming
intensity, and the optimization of seeding and harvesting can
cause the estimates of the area required to reach the same 1 GtC
year−1 goal to increase substantially. In addition to narrowing
uncertainties and accounting for the effects of climate change,
future work must further assess the economic and political fea-
sibility of farming seaweed over large areas that may have other
uses or protections (e.g., fishing, shipping traffic, and marine
protected areas). Similarly, if the purpose of harvesting such large
quantities of seaweed is to sink it into the deep ocean and thereby
sequester carbon, the effects on abyssal ecosystems75–77 and the
possibility of increasing the extent of hypoxic regions78,79 deserve
more investigation80. Given that there remain many unknowns
and hurdles for large-scale seaweed farming, our analysis suggests
that refinement of the global seaweed cultivation potential war-
rants investment in future research.

Methods
G-MACMODS overview. The Global MacroAlgae Cultivation MODeling System
(G-MACMODS) used in this study draws on recent work on within-farm

biophysics33, using elements from previously published research27–29. The state
variables in the model are seaweed biomass (B; g-DW m−2; where DW is dry
weight) and nitrogen cell quota (Q; mg-N g-DW−181). Nitrogen in the form of
nitrate is the limiting macronutrient in G-MACMODS, although other forms of
nitrogen (e.g., ammonium and urea) can contribute to seaweed growth in low-
nitrate environments37,38. We recognize that other macronutrients and micro-
nutrients could further limit our results in, for example, high-nitrogen, low
chlorophyll environments82. G-MACMODS estimates seaweed biomass in units of
dry weight; biomass is converted to units of carbon by assuming that carbon
constitutes 30% of the seaweed dry weight for all seaweed groups35,83,84, though
carbon content may vary across time, space, and genus35,62. We address how other
carbon-content assumptions affect our conclusions under the section Scaling
Production in the EEZs.

A diagram of the conceptual model is presented in Supplementary Fig. 1. The
model has a daily time step and considers macroalgae to be grown at 2 m depth
below the surface for the purposes of light attenuation. Seaweed biomass is depth-
integrated across the top 20 m of the water column to account for the depth of kelp
cultivation.

G-MACMODS state variables. Temporal changes in the state variables (B and Q)
can be described with the following equations:

dQ ¼ Vdt þ Q
1

1þ μdt
� 1

� �
� EðQ� QminÞdt; ð1Þ

and

dB ¼ μBdt � dMBdt; ð2Þ
where V is the nitrogen uptake rate [μmol-N (g-DW h)−1], E is a fractional
exudation rate (day−1; Supplementary Table 1), μ is the fractional growth rate
(day−1; equation (7)), and dM is the total fractional death rate (day−1;
equation (12)).

G-MACMODS nitrogen uptake. The rate of nitrogen uptake by seaweed is
determined by extrinsic (environmental) and intrinsic (biological) limiting factors:

V ¼ Vmax f ðQÞ f ðjuj;Tw;CÞ; ð3Þ
where Vmax is the maximum uptake rate (Supplementary Table 1), f(Q) represents
a dynamic nitrogen cell quota which allows for luxury uptake of nitrogen, and f(∣u∣,
Tw, C) represents both kinetic and mass-transfer limitations on nitrogen uptake.
We use a linear nitrogen cell quota33:

f ðQÞ ¼ Qmax � Q
Qmax � Qmin

; ð4Þ

where Qmin is the minimum amount of nitrogen that should be found in a seaweed
cell (structural nitrogen), Qmax is the maximum amount of nitrogen stored
internally, such that uptake decreases as the internal nitrogen concentration
increases, and f(Q) is a unitless coefficient between 0 and 1. The parameter f(∣u∣,
Tw, C) in equation (3) is a limit on uptake based on a combination of
Michaelis–Menten kinetics and mass-transfer limitation regulated by the sur-
rounding waves and currents85–87 :

f ðjuj;Tw;CÞ ¼
C

Km
C
Km

þ 1
2 γþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4 C

Km

q� �� � ; ð5Þ

where γ ¼ 1þ Vmax=βKm

� �� C=Km

� �
, Km is the half-saturation constant (Sup-

plementary Table 1), C is the external concentration of nitrogen, and

β ¼ D
δD

þ 4δD
Tw

∑
1

n¼1

1� exp �Dn2π2Tw

2δ2D

� �
n2π2

0
@

1
A ð6Þ

with units of m s−1. In equation (6), D is the molecular diffusivity of nitrate at 18∘

C (7.3 × 10−10 m2 s−1)33,88, Tw is wave period, and δD is the thickness of the
diffusive boundary layer, defined using the thickness of the viscous boundary layer
δD ¼ δν ¼ 10ν=ð ffiffiffiffiffiffi

CD

p jujÞ where ν is the molecular kinematic viscosity
(10−6 m2 s−1) and CD is the drag coefficient87 (Supplementary Table 1). The
parameter f(∣u∣, Tw, C) is unitless and varies between 0 and 1. Note that this
nitrogen uptake model assumes that (a) the diffusive boundary layer is completely
stripped away every half a wave period, regardless of the size of the wave, (b) the
thickness of the diffusive boundary layer (δD) can be parameterized with the
thickness of the viscous boundary layer (δν), and (c) that we can ignore near-
boundary turbulent transport (i.e., assume the blade is smooth)87, though this has
been shown to enhance exchange rates89. We do not consider within-canopy flow
reduction, which negatively affects uptake33,90. We assume that wave height has a
negligible effect on uptake, since renewal of the diffusive boundary layer (and,
hence, enhanced nitrate uptake) can occur through blade flapping in a low-flow
environment91. Thus, equation (3) is used to estimate the amount of nitrogen that
the seaweed could, theoretically, take up from the environment (dN).

Two nitrate scenarios are tested in this study: (1) a case where nitrate
concentrations from a global ocean model (CESM) are averaged over the top 20 m
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of each grid cell and are available to seaweed without depletion or competition is
referred to as the ambient nitrate scenario and (2) a case where the amount of
nitrate available for uptake is capped by the nitrogen that is naturally fluxed
upward through the 100-m depth plane (Nnew), referred to as the limited nitrate
scenario. In the limited nitrate scenario, the nitrogen uptake rate (equation (3)) is
still determined by the ambient (average of top 20 m) nitrate concentration, but if
the amount of nitrogen that would be theoretically taken up by seaweed at a given
time is greater than that fluxed upward at 100 m depth, dN >Nnew, then uptake (V
in equation (1)) is capped using dN=Nnew. Additional simulations were
performed to test an alternate depth for estimating Nnew—at the annual maximum
mixed-layer depth at each grid cell—but resulting harvested yield differences were
relatively small compared to other uncertainties presented in the Uncertainty
Analysis section (median increase of 6% in the annual harvest).

G-MACMODS growth. Similar to the nitrogen uptake rate, growth rate (μ) is also
constrained by extrinsic and intrinsic limiting factors:

μ ¼ μmax gðkÞ gðQÞ gðTÞ gðEÞ: ð7Þ
The maximum growth rate allowed under ideal conditions (μmax) is constrained

by crowding effects that account for self-shading and sub-gridscale nutrient
limitations [g(k)], internal nitrogen reserves [g(Q)], water temperature [g(T)], and
light [g(E)], all of which are represented by unitless coefficients, varying between
0 and 1.

The growth rate limitation imposed by crowding in the seaweed canopy [g(k)]
embodies the general idea that less-dense seaweed can grow faster, or

gðkÞ ¼ kR
μmax

B
Bcap

 !�0:75

; ð8Þ

where Bcap (g-DW m−2) is the biomass density at which seaweed grows by a
fraction kR= 0.05 day−1 under ideal conditions. We tuned Bcap to match field
observations from the literature (see Model-Field Data Comparison). The power
law in equation (8) was derived by re-fitting data from a comprehensive meta-
analysis92. Our fit was applied to the data in ref. 92 and binned to 0.01-width bins
from 0–1 g L−1 and 0.1-width bins for 1–60 g L−1 seaweed density, weighted by the
number of observations in each bin (with a minimum weight of eight
observations). Our fit excluded data corresponding to total-nitrogen (NO3+NH4)
conditions not likely to be found in the surface ocean (values above 20 μM).
Although according to equation (8), g(k)→∞ as B→ 0, we cap g(k) at 1.

The nitrogen quota limitation g(Q) in equation (7) is a modified form of the
Droop model81:

gðQÞ ¼ Q� Qmin

Q
Qmax

Qmax � Qmin
: ð9Þ

where Qmin and Qmax are set per seaweed type (Supplementary Table 1). The
temperature limitation term in Equation (7) is similar to a Gaussian probability
curve93:

gðTÞ ¼ expð�β1ðT � ToptÞ2Þ;T <Topt

gðTÞ ¼ exp �β2ðT � ToptÞ2
� �

;T >Topt

gðTÞ ¼ 1;T ¼ Topt;

ð10Þ

where Topt is a 5∘ optimal temperature range for each seaweed group
(Supplementary Table 6), T is the daily temperature, and the β1 and β2 coefficients
are adjusted to reach zero near the lower- and upper-temperature limits,
respectively.

The light limitation in equation (7) is largely informed by phytoplankton
studies94:

gðEÞ ¼ f
I � Ic
Is � Ic

exp � I � Ic
Is � Ic

þ 1

� �
; ð11Þ

where Is and Ic are the daily-averaged saturating and compensating irradiance
(Wm−2), f is the fraction of daylight that is implemented to account for periods of
darkness, and I is the irradiance reaching an underwater depth of 2 m. The
irradiance is attenuated following the implementation in the Marine
Biogeochemistry Library (MARBL)95,96.

G-MACMODS mortality. The total mortality rate, dM in equation (2), is the sum
of a constant daily mortality rate that is meant to incorporate grazing, aging, and
disease (d; Supplementary Table 1) and a term that accounts for breakage from
waves (dw), such that

dM ¼ d þ Πdw: ð12Þ
The dw term is dependent on wave power and, as such, is variable in both time

and space97:

dw ¼ ð2:3 ´ 10�4ÞðP ´ 10�3Þ þ 2:2 ´ 10�3; ð13Þ

where P is wave power in Watts:

P ¼ ρg2

64π
H2

sTw
ð14Þ

where ρ is the density, Hs is the significant wave height, and Tw is the wave period.
Ref. 98 offers a different macroalgal wave mortality equation, but the one we
implement penalizes seaweed growth to a lesser degree. However, in equation (12),
Π (Supplementary Table 1) is a wave factor that accounts for the uncertainty
surrounding the use of a single equation to represent wave mortality across all
seaweed types. For our standard runs, Π= 1 and dM= d+ dw.

Environmental data. The environmental inputs applied to our model (water
temperature, solar irradiance, current velocities, wave height, wave period, and
nitrate concentrations) stem from a combination of satellite measurements and
global ocean model outputs spanning multiple years. For the purposes of this
manuscript, we explore a suite of simulations using inputs from 2017, the most
recent year with available data that is also not identified as having a strong ENSO
index. Input data from 2003–2019 were used in simulations examining interannual
differences in estimated seaweed growth (Supplementary Fig. 11); however,
regional interannual variability was comparatively small with respect to parameter
uncertainty and is therefore not the focus of this study.

Sea surface temperature (SST) and surface photosynthetically active radiation
(PAR) are used as a proxy for in situ temperature and irradiance, respectively, over
the depth of macroalgal growth. SST and PAR used in this study are 8-day averages
from the Moderate Resolution Imaging Spectroradiometer (MODIS; R2018), on
the NASA Earth Observing System, with a spatial resolution of 1/12∘. Net oceanic
primary productivity (NPP) was estimated from MODIS chlorophyll
measurements using the Vertically Generalized Production Model (VGPM)48. SST,
PAR, and NPP were downloaded from the Ocean Productivity website99,100.

Zonal and meridional current velocities were extracted from the HYbrid-
Coordinate Ocean Model (HYCOM101) Global Ocean Forecasting System (GOFS)
3.1102. HYCOM is a global data-assimilating model103 with 1/12∘ horizontal
resolution and 41 depth levels, of which we use the surface velocities.

Significant wave height and wave period were taken from the European Centre
for Medium-Range Weather Forecasts (ECMWF) ERA5104 atmospheric reanalysis
produced by the Copernicus Climate Change Service105. ERA5 provides hourly
significant wave height of combined wind waves and swell, and mean wave period
with a 1/2∘ horizontal resolution. The data were averaged in 8-day time intervals.

Nitrate information is taken from a high-resolution biogeochemical simulation
led by the National Center for Atmospheric Research (NCAR) and run in the
Community Earth System Model (CESM) framework106–108. The biogeochemical
model has a 1/10th ∘ horizontal resolution and 62 depth levels. Fields used in this
study include 5-day mean nitrate concentrations averaged over the upper 20 m,
and vertical fluxes of nitrate across the 100-m depth plane were calculated to
provide an estimate of fluxes of new nitrogen into the euphotic zone.

Although G-MACMODS steps forward with a daily time step, we apply the
8-day environmental inputs that best correspond to the G-MACMODS time
stamp. All environmental inputs were spatially interpolated onto a 1/12 ∘ global
grid, using linear interpolation if the input data were of higher resolution, or
nearest-neighbor if the input data were of lower resolution.

Seaweed groups. Here, we focus on four seaweed groups containing seaweed
genera that are among the world’s ten most cultivated by weight109: tropical reds
(e.g., Eucheuma, Kappaphycus), tropical browns (e.g., Sargassum), temperate reds
(e.g., Pyropia), and temperate browns (e.g., Saccharina, Laminaria, and Macro-
cystis). Values of parameters required by G-MACMODS were gathered from
available literature for a few representative seaweed genera (Supplementary
Table 1); standard runs were defined using average (when multiple parameter
estimates were available) or speculated values (based on information from other
genera when there were few or no published values), though we modify some of the
values implemented in the standard runs to improve comparison with the field data
(see the section on Model-Field Data Comparison). We define the temperature
parameters in equation (10) similarly, using available information for representa-
tive genera (Supplementary Table 6). The optimal temperature range in equation
(10) is extended to a 5∘ width, rather than a single number, to account for varia-
tions within a seaweed genus.

The standard runs were spun up for 1 year, and the seeding was optimized by
choosing the run initialization date that yielded the largest yearly biomass harvest
(averaged across 2003–2019) for every grid point. Tropical and temperate brown
seaweed runs were seeded with 50 g-DW m−2. Tropical and temperate red seaweed
runs were seeded with 200 g-DW m−2 and 10 g-DW m−2, respectively, following
examples in the literature (see Supplementary Tables 2–5). Seaweed are seeded with
an initial nitrogen cell quota (Q0), such that

Q0 ¼ Qmin þ
N
35

Qmax � Qmin

� �
; ð15Þ

where N/35 is the ratio of the ambient nitrogen concentration at the time of
seeding to the a representative N concentration below the nutricline (35 μM).
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Model-field data comparison. To test our choice of standard parameters (Sup-
plementary Table 1) and calibrate Bcap (equation (8)), we compared biomass from
our G-MACMODS standard runs to published observations of seaweed mar-
iculture and wild seaweed standing stock surveys. Only farmed values published
after the year 2000 are included in this comparison to account for changes in
technology and methods across the years, whereas we include wild stock values
from literature published as far back as 1990. Overall, G-MACMODS produces a
range of biomass that agrees with what has been observed in published field studies
(Supplementary Figs. 5–8). We carried out further detailed comparisons to
examine the performance of G-MACMODS at the locations specified in the
published studies. To do so, we applied the following protocols to our analysis:

● If the published manuscript mentioned specific coordinates or a coordinate
range, we found the spatial mean of our variable of interest within a 50 km
radius of the specified coordinates or within the specified coordinate range,
respectively. If the manuscript included a map with sampling locations (no
specific coordinates) or enough geographic information to narrow down a
location to a single point, we found the most representative coordinates of
that location and calculated the spatial mean of our variable of interest
within a 50 km radius of those representative coordinates. However, if the
manuscript did not provide enough information to narrow down a location
to a specific point, then we estimated the spatial mean of our variable of
interest within a 3∘ × 3∘ box in the general region of the published study.

● If the published manuscript reported biomass, rather than harvest weight,
we compared the article’s maximum attained biomass to the maximum
biomass grown in G-MACMODS over the course of the specified harvest
cycle at the corresponding location.

● Any biomass reported in fresh weight is converted to dry weight using a
10:1 ratio.

● Unless otherwise specified, these G-MACMODS simulations use the 2017
temperature, PAR, current velocity, and wave fields typical of our
standard runs.

We applied some additional protocols that vary across seaweed types:

1. Tropical red seaweed: The G-MACMODS simulations were seeded with a
biomass density equivalent to that used in the referenced publications; the
biomass was harvested back to seed weight at the corresponding harvest
period (Supplementary Table 2). If the referenced publications did not
provide seed or harvest period information, then we assumed a seed density
of 200 g-DW m−2 and a 45-day harvest period, which was the most
common farming configuration. The validations were run with a constant
nitrate concentration comparable to the maximum nitrate concentration
reported for each field experiment; if no nitrate information was available,
we used the CESM nitrate field previously described under the Environ-
mental Data subsection of the Methods. We compared the temporal
maximum of the G-MACMODS harvested biomass to the mean harvest
yield reported in the corresponding literature to examine whether
G-MACMODS could approximate the values observed in the field,
notwithstanding the lack of information from the published field studies.
The G-MACMODS runs for these comparisons did not include wave
energy, since most tropical red seaweed cultivation takes place in shallow
sheltered areas.

2. Tropical brown seaweed: Given that the published studies that we reference
report wild seaweed standing stock (Supplementary Table 3), we did not
include harvesting in the G-MACMODS comparison simulations. The
seeding process, however, followed the protocol established for our standard
runs. In addition, these G-MACMODS simulations did not include wave
energy and used the CESM nitrate field previously described under the
Environmental Data subsection of the Methods.

3. Temperate red seaweed: We simulated temperate red macroalgae cultivation
across the same time period as specified in the published literature
(Supplementary Table 4) using an identical harvest scheme and seed density
to that applied in our standard runs. When reported, we applied the mean
NO3 concentration in the field studies to the G-MACMODS simulations. As
a metric of model performance, we compared the harvest yield from the
G-MACMODS simulations to the mean harvested biomass from the
literature.

4. Temperate brown seaweed: We simulated temperate brown seaweed
cultivation across the same time period as specified in the published
literature (Supplementary Table 5), assuming a biomass density of 50 g-DW
m−2 after 30 days of cultivation, with only one harvest at the end of the
cultivation period, when applicable. We did not include harvesting in the
G-MACMODS simulations that try to reproduce field studies of macroalgal
standing stock. If reported, we applied the mean NO3 concentration in the
field studies to the G-MACMODS simulations. When relevant, we
compared the harvest yield from the G-MACMODS simulations to the
mean harvested biomass from the literature using units of g-DW m−1,
assuming a 1-m line separation in the G-MACMODS simulations. Waves
were included in these G-MACMODS simulations.

Overall, G-MACMODS has the capacity to produce biomass at the levels
observed in published field studies (Supplementary Figs. 5–8, panel b). Some of the

more specific comparisons do not agree with each other (Supplementary Figs. 5–8,
panel c); however, we expected some disagreement since, in many cases, we lacked
the information to adequately reproduce individual studies’ field conditions. For
example, many studies did not include any nitrate information (Supplementary
Tables 2–5). While the CESM nitrate fields were, at times, enough to replicate the
conditions in the published studies, the CESM NO3 cannot account for farming
practices that include nitrate fertilization110 or the placement of seaweed farms
downstream of a substantial nitrate source (e.g., fish farm, river outlet, or other
coastal feature). Given those exceptions, we find G-MACMODS to perform
adequately when compared to field data.

Harvest. Harvest schemes were based on available information of current farming
practices20,32,39–41,111,112 and optimized for each seaweed group to achieve max-
imal biomass per harvest based on standard run tests of three harvest schemes:
periodic harvesting, periodic harvesting with a biomass threshold, and conditional
harvesting (with dual criteria of a target weight or when death exceeds growth).
The test runs also allowed for optimization of the target weight to initiate harvest
(10, 20, 30, 40, 50, or 80% of Bcap), as well as the percent of biomass removed at
each harvest (40, 60, or 80%). Finally, the number of harvests per year were limited
based on documented cultivation practices. The temperate brown and red algae are
commonly harvested twice20 and six times a year111, respectively, while the tropical
brown and red algae are harvested up to eight times a year40,113. Temperate brown
seaweeds were allowed to grow without consideration for harvest for at least
60 days after seeding. Considering the above factors, the harvesting schemes that
produced the highest harvested yields for each seaweed group are as follows:

1. Tropical red and brown seaweeds: Harvest occurs every 45 days only if the
seaweed biomass has reached the target weight of 800 g-DW m−2 (40% of
Bcap) for tropical reds and 400 g-DW m−2 (80% of Bcap) for tropical browns.
If 45 days elapse and the seaweed does not reach its target weight, another
45-day period must transpire before re-evaluating the biomass. If the
biomass has reached its target weight, then 80% of the biomass is harvested.

2. Temperate red seaweeds: Harvest is initiated whenever the biomass reaches
the target weight (80 g-DW m−2, 64% of the Bcap) within 150 days after
seeding or if the death exceeds growth for 7 days. If the biomass has reached
its target weight, then it is harvested down to 60 g-DW m−2. If the death
exceeds growth for >7 days or the final harvest period is reached, 99% of the
biomass is harvested (1% loss rate assumed in the final total harvest).

3. Temperate brown seaweeds: Harvest occurs when the biomass reaches the
target weight (1350 g-DW m−2, 68% of the Bcap) within 220 days after
seeding or if death exceeds growth for 7 days. If the biomass has reached its
target weight, then 80% of the biomass is harvested; if the death exceeds
growth for >7 days or the end of 220 days is reached, 99% of the biomass is
harvested (1 % loss rate assumed in final total harvest).

Monte Carlo simulations. We used Monte Carlo methods to estimate the
uncertainty surrounding our standard run harvest amounts. We performed
between 497–534 Monte Carlo simulations for each seaweed group and nutrient
scenario (ambient vs. limited nitrate). Each Monte Carlo simulation chose the value
of the seaweed biological parameters using a uniform probability distribution
bounded by the magnitudes in Supplementary Table 1. When possible, these
bounds are 25% greater (lower) than the maximum (minimum) biological para-
meter values found in the literature. However, we prioritized having symmetric
bounds over bounds that cover the range of values in the literature to aid the
interpretation of the results. The mean, median, standard deviation, and percentiles
(5th, 25th, 75th, and 95th) of annual harvested yields resulting from these Monte
Carlo simulations were calculated across each model grid cell. The relative
importance of each Monte Carlo parameter value upon harvested biomass was
evaluated using random forest analysis.

Model limitations. G-MACMODS and our scenarios are subject to a number of
important limitations and caveats. First, operating farms will not have the benefit of
hindsight that our model uses to optimize seeding and harvest schedules, and the
model assumptions are optimistic with regard to micronutrient fertilization and
environment/strain optimization in cultivars. Second, neither of the implemented
nutrient scenarios considers how seaweed farms affect the surrounding hydro-
dynamics, which can substantially affect nitrate uptake and yields33 but are chal-
lenging to resolve in a global-scale model. We expect that densely-packed farms
would impede thinning of the diffusive boundary layer, thus reducing macroalgae’s
ability to take up nitrate. Third, the nitrate data (from CESM simulations) do not
resolve nitrate runoff in coastal areas114, sources of nitrogen other than nitrate (e.g.,
ammonium or urea), nor consider other limiting macronutrients such as phos-
phate. However, standard ambient nitrate runs using a second set of nitrate inputs
from a biogeochemical hindcast model that incorporates riverine nutrients (pro-
duced at Mercator-Ocean and distributed by E.U. Copernicus Marine Service
Information; DOI:10.48670/moi-00019) suggests that the uncertainty associated
with the source of nutrients is within the range of uncertainty related to the
biological parameters in our model (Supplementary Fig. 10).
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G-MACMODS would also benefit from a more refined expression of seaweed
mortality that could account for episodic events (e.g., storms, diseases) and
nonlinear grazing pressure, among other factors, as well as an improved
understanding of wave mortality for different genera. Moreover, we do not
explicitly model the effects of climate change and projected changes in ocean
conditions that can stress growing seaweeds, shift their geographical distribution,
increase the frequency and severity of storms, decrease nitrate fluxes by enhanced
stratification, and make diseases and epiphytes more prevalent115,116. These are
important areas for future research. Although certainly not a proxy for the many
effects of climate change, we note that interannual variability in environmental
forcing (2003–2019) affects our harvest estimates less than the uncertainties related
to biological parameters (Supplementary Fig. 11).

Data availability
To facilitate reproducibility and enable further analysis, we provide access to the
G-MACMODS output presented in the main manuscript and the Supplementary
Information through https://doi.org/10.7280/D1VT4V. The G-MACMODS simulations
admit a variety of environmental inputs, as described in Methods. For the simulation
results presented in this manuscript, we used MODIS sea surface temperature (SST),
MODIS surface photosynthetically active radiation (PAR), and net oceanic primary
productivity (NPP) downloaded from the Ocean Productivity website (https://sites.science.
oregonstate.edu/ocean.productivity/index.php). Specifically, 8-day NPP can be found at
http://orca.science.oregonstate.edu/1080.by.2160.8day.hdf.vgpm.m.chl.m.sst.php, whereas
8-day MODIS inputs are from https://sites.science.oregonstate.edu/ocean.productivity/
1080.by.2160.8day.inputData.php. Zonal and meridional surface current velocities were
taken from the HYbrid-Coordinate Ocean Model (HYCOM99) Global Ocean Forecasting
System (GOFS) 3.1, accessed from https://www.hycom.org/dataserver/gofs-3pt1/analysis.
Significant wave height and wave period were taken from the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA5 atmospheric reanalysis (DOI:
10.24381/cds.adbb2d4). Surface nitrate concentrations and vertical nitrate fluxes can be
found in the UCAR/NCAR - GDEX (https://doi.org/10.5065/hpae-3j62).

Code availability
The code and documentation for G-MACMODS are now accessible to the public via
GitHub (https://github.com/macmods/G-MACMODS.git).
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