Passive-Sampler-Derived PCB and OCP Concentrations in the Waters of the World—First Results from the AQUA-GAPS/MONET Network

Rainer Lohmann¹, Branislav Vrana², Derek Muir³, Foppe Smedes², Jaromír Sobotka², Eddy Y. Zeng⁴, Lian-Jun Bao⁴, Ian J. Allan⁵, Peleg Astrahan⁶, Ricardo O. Barra⁷, Terry Bidleman⁸, Evgen Dykyi⁹, Nicolas Estoppey¹⁰, Gilberto Fillmann¹¹, Naomi Greenwood¹², Paul A. Helm¹³, Liisa Jantunen¹⁴, Sarit Kaserzon¹⁵, J. Vinicio Macías¹⁶, Keith A. Maruya¹⁷, Francisco Molina¹⁸, Brent Newman¹⁹, Raimon M. Prats²⁰, Manolis Tsapakis²¹, Mats Tysklind⁸, Barend L. van Drooge²⁰, Cameron J. Veal^{15,22}, and Charles S. Wong¹⁷

ABSTRACT

Persistent organic pollutants (POPs) are recognized as pollutants of global concern, but so far, information on the trends of legacy POPs in the waters of the world has been missing due to logistical, analytical, and financial reasons. Passive samplers have emerged as an attractive alternative to active water sampling methods as they accumulate POPs, represent time-weighted average concentrations, and can easily be shipped and deployed. As part of the AQUA-GAPS/MONET, passive samplers were deployed at 40 globally distributed sites between 2016 and 2020, for a total of 21 freshwater and 40 marine deployments. Results from silicone passive samplers showed α -hexachlorocyclohexane (HCH) and γ -HCH displaying the greatest concentrations in the northern latitudes/Arctic Ocean, in stark contrast to the more persistent penta (PeCB)-and hexachlorobenzene (HCB), which approached equilibrium across sampling sites. Geospatial patterns of polychlorinated biphenyl (PCB) aqueous concentrations closely matched original estimates of production and use, implying limited global transport. Positive correlations between log-transformed concentrations of Σ_7 PCB,

¹Graduate School of Oceanography, University of Rhode Island, Narragansett, RI

²RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic

³Aquatic Contaminants Research Division, Environment and Climate Change Canada, Ontario, Canada

⁴Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China

⁵Norwegian Institute for Water Research (NIVA), Oslo, Norway

⁶Israel Oceanographic and Limnological Research, Kinneret Lake Laboratory, Haifa, Israel

⁷Faculty of Environmental Sciences and EULA Chile Centre, University of Concepción, Concepción, Chile

⁸Department of Chemistry, Umeå University, Umeå, Sweden

⁹National Antarctic Scientific Center, Kyiv, Ukraine

¹⁰School of Criminal Justice, University of Lausanne, Lausanne, Switzerland

¹¹Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Rio Grande, RS, Brazil

¹²Centre of Environment, Fisheries and Aquaculture Science, Lowestoft, U.K.

¹³Ontario Ministry of the Environment, Conservation and Parks, Ontario, Canada

¹⁴Air Quality Processes Research Section, Environment and Climate Change Canada, Ontario, Canada

¹⁵Queensland Alliance for Environmental Health Sciences, (QAEHS), The University of Queensland, Queensland, Australia

¹⁶ Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico

¹⁷Southern California Coastal Water Research Project, Costa Mesa, CA

¹⁸ Environmental School, Faculty of Engineering, University of Antioquia UdeA, Medellín, Colombia

¹⁹Council for Scientific and Industrial Research (CSIR), Coastal Systems Research Group, Durban, South Africa

²⁰Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain

²¹Institute of Oceanography, Hellenic Centre for Marine Research, Crete, Greece

²²Seqwater, Queensland, Australia

 Σ DDTs, Σ endosulfan, and Σ chlordane, but not Σ HCH, and the log of population density (p < 0.05) within 5 and 10 km of the sampling sites also supported limited transport from used sites. These results help to understand the extent of global distribution, and eventually time-trends, of organic pollutants in aquatic systems, such as across freshwaters and oceans. Future deployments will aim to establish time-trends at selected sites while adding to the geographical coverage.

Due to distribution restrictions, the full-text version of this article is available by request only. Please contact pubrequest@sccwrp.org to request a copy