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Abstract

Assessments of the ecological health of algal assemblages in streams typically

focus on measures of their local diversity and classify individuals by

morphotaxonomy. Such assemblages are often connected through various eco-

logical processes, such as dispersal, and may be more accurately assessed as

components of regional-, rather than local-scale assemblages. With recent

declines in the costs of sequencing and computation, it has also become

increasingly feasible to use metabarcoding to more accurately classify algal

species and perform regional-scale bioassessments. Recently, zeta diversity has

been explored as a novel method of constructing regional bioassessments for

groups of streams. Here, we model the use of zeta diversity to investigate

whether stream health can be determined by the landscape diversity of algal

assemblages. We also compare the use of DNA metabarcoding and

morphotaxonomy classifications in these zeta diversity-based bioassessments

of regional stream health. From 96 stream samples in California, we used vari-

ous orders of zeta diversity to construct models of biotic integrity for multiple

assemblages of diatoms, as well as hybrid assemblages of diatoms in combina-

tion with soft-bodied algae, using taxonomy data generated with both DNA

sequencing as well as traditional morphotaxonomic approaches. We compared

our ability to evaluate the ecological health of streams with the performance

of multiple algal indices of biological condition. Our zeta diversity-based

models of regional biotic integrity were more strongly correlated with existing

indices for algal assemblages classified using metabarcoding compared to

morphotaxonomy. Metabarcoding for diatoms and hybrid algal assemblages

involved rbcL and 18S V9 primers, respectively. Importantly, we also found

that these algal assemblages, independent of the classification method, are

more likely to be assembled under a process of niche differentiation rather

than stochastically. Taken together, these results suggest the potential for zeta

diversity patterns of algal assemblages classified using metabarcoding to

inform stream bioassessments.
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INTRODUCTION

Biological assemblages in streams provide a variety of
ecosystem services such as breaking down organic matter
in runoff (Schäfer et al., 2012), sustaining the health of
fisheries (Colvin et al., 2019), and regulating the forma-
tion of algal blooms (Castilla et al., 2015). Quantification
of the condition of these streams has often utilized com-
parisons of the compositions of biological assemblages at
locations of interest against their expected composition
without the effects of human activities (Abbasi & Abbasi,
2011; Danielson et al., 2011). These bioassessments have
often utilized measures of their alpha diversity, such as
species and functional group richness, in order to quan-
tify the ecological impacts of human activities (Hitt &
Angermeir, 2011; Mazor et al., 2016; Xu et al., 2021).
One such set of assemblages used in the creation of
bioassessments of stream conditions is benthic algae.

A particular region of interest in assessing the
impacts of human activities is the State of California,
USA which covers a wide variety of ecological and
anthropogenic gradients (Ode et al., 2016; Mazor et al.,
2016), across a near-continental scale landscape. In
California, stream biotic integrity is assessed using algal
assemblages to calculate the Algal Stream Condition
Index (ASCI; Theroux et al., 2020), a multimetric index
that scores sites based on their deviation from reference
(minimally impacted) expectation. This index can be
used to assess biological integrity via diatoms communi-
ties in the phylum Bacillariophyta (D_ASCI), as well
as hybrid assemblages of diatoms and soft-bodied
algae including cyanobacteria and other eukaryote spe-
cies in the phyla Charophyta, Chlorophyta, Rhodophyta,
Ochrophyta, Miozoa, Euglenozoa, Heterokontophyta,
and Cryptophyta (H_ASCI). The ASCI indices allow for
the assessment of algal communities on a site-by-site
basis. However, algal assemblages are connected through
mechanisms such as dispersal, and may be more accu-
rately assessed as components of regional-scale assem-
blages (Grönroos et al., 2013; Socolar et al., 2016;
Vanschoenwinkel et al., 2007). As a result, it may there-
fore be more accurate to pair both local and regional
measures of diversity in assessing the biotic integrity of
algal assemblages in streams as means of performing
bioassessments (Heino, 2013; Socolar et al., 2016).

To assess potential relationships between environmen-
tal gradients and multiassemblage diversity, several studies

have used beta or “landscape” diversity (i.e., shared species
diversity between sites) (G�al et al., 2019; Ruhí et al., 2017).
Although beta diversity is a well established ecological
concept, it is somewhat limited in describing large num-
bers of assemblages. First, as beta diversity involves only a
pairwise comparison of interassemblage diversity it can
only fully quantify diversity patterns concurrently across
two assemblages (Chao et al., 2008). Second, although var-
ious measures of average beta diversity have been devel-
oped to account for regional trends, they are potentially
biased toward the presence of rare organisms found
only in a few sampled assemblages (Beck et al., 2013;
Latombe et al., 2017). These limitations necessitated the
recent development of a new ecological measure, called
zeta diversity, to expand upon and complement alpha and
beta diversity (Figure 1).

Zeta diversity, a generalized extension of alpha and
beta diversity, was developed to describe the number of
unique organisms held in common between two or more
assemblages (Hui & McGeoch, 2014). In general, zeta
diversity, denoted as ζN, quantifies the average number of
unique organisms held in common between N assem-
blages. By simultaneously comparing the compositions of
arbitrarily large groups of assemblages, zeta diversity can
capture regional trends in the gain or loss of both wide-
spread and rare taxa, whereas beta diversity tends to
be biased toward changes in the presence of rare taxa
(Latombe et al., 2017). There is the well established prac-
tice of using changes in populations of widely distributed
organisms to capture the effects of environmental degrada-
tion at individual locations (Baker et al., 2019; Gaston &
Fuller, 2008; Pond, 2012), and the role of environmental
gradients and spatial separation in influencing variations
in the diversity of stream assemblages across a landscape
(Heino, 2013; Patrick & Swan, 2011). Investigations of
the roles of environmental gradients in shaping spatial
patterns of biodiversity have been carried out using zeta
diversity (Latombe et al., 2017; McGeoch et al., 2019).
Further investigations using zeta diversity have been
applied to assessing the ecological condition of streams on
a regional basis, where changes in patterns of both local
and landscape diversity were strongly associated with
regional ecological degradation (Simons et al., 2019).

The use of zeta diversity can also help to investigate
other questions relevant to the use of biological assem-
blages to track the effects of environmental changes, such
as determining the relative likelihoods for different
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models of community assembly. Prior studies of groups
of organisms used as biological indicators of anthropo-
genic activities have illustrated the importance of
selecting assemblages that contain taxa with a diverse
array of ecological niches and environmental sensitivities
(Hilty & Merenlender, 2000; Resh, 2008; Simonin et al.,
2019; Smol & Stoermer, 2010), with evidence also
suggesting a process of niche differentiation being more

likely than a stochastic one in such assemblages (Gillett
et al., 2021; Passy & Legendre, 2006; Simons et al., 2019).
The relative likelihood of these two models of community
assembly, niche differentiation, and a stochastic process,
can then be respectively calculated from the relative like-
lihoods of a power law and exponential decay models of
how ζN decays with N (Hui & McGeoch, 2014; McGeoch
et al., 2019). This is of particular relevance to the

F I GURE 1 An illustration of the first four orders of zeta diversity. The mean number of unique categories of organisms per sample, a

measure of alpha diversity, is represented by the value ζ1. In comparing two or more samples the average number of unique categories of

organism held in common between any two samples is represented by the value ζ2. This process can be extended to N samples, allowing for

a determination of the values ζ1 through ζN.
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selection of assemblages as indicators of anthropogenic
environmental changes, with correlations having been
observed between degrees of ecological disturbance and
an increase in the relative likelihood of a stochastic over
niche-differentiated process of community assembly
(Britton et al., 2017).

In addition to the application of zeta diversity to
assessing stream health, this study also compared the use of
DNA metabarcoding to traditional morphotaxonomy in
determining the composition of biological assemblages.
Stream bioassessments have relied on morphologically clas-
sified algae (Fetscher et al., 2014; Theroux et al., 2020),
however this is a time-consuming and error-prone process
(Brown et al., 2015; Hebert et al., 2004; Lanzén et al., 2016;
Pauls et al., 2010; Ristau et al., 2013). With the recent
development of metabarcoding it is now possible to rapidly
and reliably classify organisms using DNA fragments from
environmental samples (Banerji et al., 2018; Elbrecht &
Leese, 2017; Keck et al., 2017), and with it the potential
for developing bioassessments which are unencumbered
by the limitations of morphologically based methods
(Hajibabaei et al., 2011; Ji et al., 2013; Pawlowski et al.,
2018; Ratnasingham & Hebert, 2007; Taberlet et al., 2012).
With this technique, the composition of several algal assem-
blages used in the bioassessment of freshwater streams has
been evaluated, including both soft-bodied algae (Banerji
et al., 2018; Minerovic et al., 2020; Wolf & Vis, 2020), and
diatoms (Bailet et al., 2019; Valentin et al., 2019; Vasselon
et al., 2017). The use of metabarcoding-based methods has
demonstrated its potential for both improved efficiency for
the detection of rare organisms, as well as finer taxonomic
resolution (Baird & Sweeney, 2011; Gibson et al., 2015;
Stein, Martinez, et al., 2014; Stein, White, et al., 2014;
Sweeney et al., 2011; Zhan et al., 2013). This indicates its
potential for far more sensitive and nuanced bioassessments
than those derived from traditional morphology-based
methods (Elbrecht & Leese, 2017; Mort�agua et al., 2019;
Stein, White, et al., 2014).

The application of zeta diversity in bioassessments
of multisite assemblages has been demonstrated in sev-
eral environments including islands (Leihy et al., 2018),
protected areas in aquatic environments (Britton et al.,
2017), and forests (Lazarina et al., 2019). Furthermore,
evidence of relationships between environmental gradi-
ents and measures of landscape diversity has been found
in streams for soft-bodied algae (Passy & Blanchet, 2007;
Wu et al., 2018) and diatoms (Jyrkänkallio-Mikkola
et al., 2016; Soininen et al., 2004). Using the zeta diversity
framework, we were also able to demonstrate that the
effects of ecological degradation of streams in a region
could be assessed by the change in patterns of local and
landscape diversity alone (Simons et al., 2019). Building
on previous work, we used zeta diversity patterns of

algal assemblages, classified via metabarcoding and by
morphology, to construct stream bioassessments on a
regional scale. This study compares these zeta diversity-
based regional-scale bioassessments, constructed using
algal assemblages classified using either morphotaxonomy
or metabarcoding, to existing algal indices. The goal of this
study was as follows:

1. Demonstrate that patterns in zeta diversity, across
multisite algal assemblages found in streams, can be
used as indicators of their biotic integrity on a
regional scale.

2. Compare the performance of morphotaxonomic
versus DNA metabarcode sequencing for assessing the
performance of these zeta diversity-based indices of
regional biotic integrity.

3. Use zeta diversity to assess the relative likelihoods for
models of community assembly for these multisite algal
assemblages, classified using both morphotaxonomy
and metabarcoding, and test if algal assemblages in
streams are more likely to be assembled via a process
of niche differentiation rather than stochastically.

With this work, we aimed to evaluate the potential of
zeta diversity as an additional tool for assessing the eco-
logical health of streams across a region, and to investi-
gate the impact of morphology versus DNA-based
taxonomy identification on this metric.

MATERIALS AND METHODS

Sample collection and scope

The samples used in this study were collected at wadable
stream reaches located throughout California as part
of four regional monitoring programs, the Stormwater
Monitoring Coalition (SMC), the Perennial Stream
Assessment (PSA), the Reference Condition Monitoring
Program (RCMP), and the Reference Monitoring Pro-
gram (RMP). The data used in this study were taken from
96 samples across 92 stream reaches (Figure 2) during
the period 2016–2018. These stream reaches represented
a spectrum of ecological conditions, ranging from coastal
to alpine environments, as well as a wide scope of human
impacts, ranging from relatively undisturbed “reference”
sites with low to no modifications of the immediate land-
scape (as defined in Ode, Rehn, et al., 2016) to sites under
high levels of anthropogenic stress from human land-
scape modifications.

Briefly, this protocol involves the collection of benthic
algae subsamples along 11 transects within a 150 m
stream reach, which are used to create a composite algal
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sample representative of multiple stream substrata
(e.g., cobbles, sand, large wood, etc.) in proportion to
their abundance across the reach. This composite sample
is subsampled for diatom and soft-bodied algae taxo-
nomic analyses as well as DNA analyses (detailed below).
Laboratory procedures for morphological classifications
and enumerations of both the soft-bodied algae and dia-
tom communities followed Stancheva et al., 2015. The
abundance of diatoms was recorded as a valve count, and
those of soft-bodied algae were recorded as a biovolume,
although both of these sets of values were converted to a
simple presence/absence format for ASCI index calcula-
tions (Theroux et al., 2020).

DNA extraction, metabarcoding, and
bioinformatics

We collected a fraction of the composite algal samples
described above for DNA extraction and analysis.
For each sample we filtered between 10 and 50 ml of
composite material, composed of a homogenate of
diatoms and soft-bodied algae, onto 0.2-μm Whatman
Nucleopore polycarbonate filters (GE Healthcare Life
Sciences, Buckinghamshire, UK). We first preserved each
filter in bead solution storage buffer (Mo Bio Laboratories,
Inc., Carlsbad, CA) at −80�C. Following a thaw at 4�C, we
performed DNA extractions on the filters using the

F I GURE 2 Sample sites colored by their level of disturbance based on upstream land use.
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Mini-Beadbeater-96 homogenizer (BioSpec, Bartlesville,
OK) and PowerSoil DNA kit and protocols (Mo Bio
Laboratories, Inc., Carlsbad, CA). Following extractions,
we quantified DNA yield using a NanoDrop 8000 spectro-
photometer (Thermo Scientific, Wilmington, DE, USA).

Because of the multiphyletic nature of algae, we chose a
universal 18S V9 primer (Amaral-Zettler et al., 2009) to tar-
get combined populations of soft-bodied algae and diatoms.
To specifically target diatoms alone we used an rbcL primer
(Vasselon et al., 2017). Paired-end sequencing of all of the
resulting barcoded amplicons was performed on an
Illumina MiSeq platform by Laragen, Inc. (Culver City, CA,
USA) using either 2 × 150 reads (18S V9) or 2 × 250 reads
(rbcL). The resulting DNA amplicons were processed and
demultiplexed using the Illumina MiSeq Recorder, which
enabled the removal of barcodes, primers, and adapter
sequences. We stored the processed amplicons on the
Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra)
as BioProject no. PRJNA545290.

We processed DNA sequences using QIIME2 2019.07
(Bolyen et al., 2019, http://qiime2.org). In our workflow,
forward and reverse reads were first merged into contigs.
These contigs were then filtered by first removing chimeric
sequences, then removing reads which occurred less than
two times in any individual sample. We then generated
Amplicon Sequence Variants (ASVs) within QIIME2 using
DADA2 (Callahan et al., 2016). Taxonomic assignments
for algae were then performed for 18S ASVs using
BLAST within QIIME2 against the SILVA v132 database
(Quast et al., 2012). As with our morphotaxonomic
classifications, we classified taxa within the phylum
Bacillariophyta as diatoms, with taxa within the
phyla Charophyta, Chlorophyta, Rhodophyta, Ochrophyta,
Miozoa, Euglenozoa, Heterokontophyta, and Cryptophyta
as members of the soft-bodied algal community. Hybrid
algal communities then contain taxa within either diatoms
or soft-bodied algae. This filtering step yielded 2632 unique
18S ASVs covering 2,356,473 reads from an initial set of
11,793 ASVs covering 4,663,161 reads. For ASVs classified
using the rbcL primer we used BLAST taxonomic assign-
ment as implemented in QIIME2 against a custom refer-
ence database comprised of the R-Syst database (Rimet
et al., 2016) and diatom rbcL sequences from GenBank for
diatom-specific taxonomic assignments. This filtering step
yielded 5513 unique rbcL ASVs covering 712,791 reads from
an initial set of 7049 ASVs covering 815,672 reads. ASV
counts were then converted into a percentage of total reads
per sample as a way to normalize differential read counts.
Rarefaction was not used on read counts as it has been
found to increase the likelihood of false positives
(McMurdie & Holmes, 2014). Code documenting the
workflow to produce ASV tables is available online
(10.5281/zenodo.7402027).

Calculating the D_ASCI and H_ASCI

For each sample, algal multimetric index scores were cal-
culated based on diatom (D_ASCI) or diatom and soft-
bodied algae (hybrid, H_ASCI) taxonomy data after
Theroux et al. (2020). In brief, morphotaxonomic counts
were converted to presence/absence data and a series of
individual metrics are calculated (proportion planktonic
species, proportion low nitrogen taxa, etc.). These metrics
were scored based on the expected value predicted from a
site’s local environment, such as geology, climate, and
watershed area (Theroux et al., 2020); the larger the devi-
ation from reference expectation, the lower the metric
score. The metric scores were aggregated and the final
D_ASCI and H_ASCI scores were calculated, ranging
from ~0 (highly impacted) to ~1.5 (reference). Code
documenting the workflow to calculate the D_ASCI and
H_ASCI are available online (10.5281/zenodo.7465435).

Land use

To determine the geographic distribution of land use
upstream of each sampling site we used National Land
Cover Data (NLCD) acquired in the year 2011 (Homer
et al., 2015). We define land use as the total percentage of
land cover in a designated area dedicated to human
activity, such as agricultural land, parks, and impervious
urban surfaces. These designated areas are defined by
a watershed-clipped buffer running 5 km upstream
from the sampling site as determined with ArcGIS
tools (version 10.3; Environmental Systems Research
Institute). We selected this geographic scale for defining
land use as it has been commonly used in assessments by
SCCWRP to capture local variations in anthropogenic
activity (Mazor et al., 2016; Simons et al., 2019; Theroux
et al., 2020). Sites were then classified into one of three
categories of disturbance based on the percentage land
use dedicated to human activity: undisturbed (0%–3%),
intermediate (3%–15%), and disturbed (15%–100%).
Of the 96 sample sites in this study, 56 were categorized
as undisturbed, 19 as intermediate, and 21 as disturbed.

Sample data structure

For each sample the structure of our data was as follows:
morphologically classified soft-bodied algae and diatoms,
soft-bodied algae and diatoms classified by an 18S V9
primer, diatoms classified using an rbcL primer, site alti-
tude in meters, the percentage of total developed land
use (agricultural, urban, and managed landscapes) within
a 5 km clipped buffer of the watershed upstream of the
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sampling site, and scores of the biotic integrity of hybrid
algal and diatom assemblages as measured by H_ASCI
and D_ASCI respectively. For algae classified both by
morphology and metabarcoding we converted count and
abundance data to a presence/absence sample by taxa
matrix for use in calculating zeta diversity.

Sample group selection

To analyze patterns between measures of zeta diversity
and environmental conditions we randomly subsampled
15 sites, 100 times, from each of the three disturbance
categories described above (undisturbed, intermediate,
and disturbed) (Figure 3), producing a set of 300 sample

groups. Each sample group was kept at a uniform size of
15 samples, a size sufficiently larger to calculate the
decay of zeta diversity beyond zeta10, the highest zeta
diversity order used in this study. In total, 100 subsamples
were chosen, as this was sufficient for capturing a repre-
sentative and balanced set of sample groups for each dis-
turbance category, while avoiding oversampling within
both the intermediate and disturbed sample groups given
the number of samples within each sample group. For
each subsample group the following environmental
values were calculated: the mean percent developed
upstream land use (“land use”), mean sample site alti-
tude (“altitude”), and mean geographic separation dis-
tance between samples (“distance”). Distance between
sample sites was calculated, in meters, using the function

F I GURE 3 Analysis workflow diagram.
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“distm” within the R package geosphere (Hijmans
et al., 2017). For each group of 15 samples, using assem-
blages classified both by morphology and metabarcoding,
we also calculated the values of ζ1, ζ2, and ζ10, the mean
values of the D_ASCI and H_ASCI, linear models of the
D_ASCI and H_ASCI built using our three zeta diversity
measures, as well as Akaike Information Criterion (AIC)
scores for the relative likelihoods of two models of how
zeta diversity decays with sample order (Figure 3).

Calculations of zeta diversity

For this study we focused on three orders of zeta diver-
sity, ζ1, ζ2, and ζ10, to describe changes in both local and
landscape diversity for our sampled communities
(Simons et al., 2019). All three of these zeta diversity
orders were calculated using the function “Zeta.decline.
ex” within the R package zetadiv (Latombe et al., 2018).
The value of ζ1, our measure of local diversity, was calcu-
lated as the average taxonomic richness per sample in a
group of samples. For measures of zeta diversity of
order N, the function “Zeta.decline.ex” calculated the
average fraction of unique taxa held in common
between any N samples selected from a group of sam-
ples. For our measures of landscape diversity, ζ2, and
ζ10, we therefore calculated the average fraction of
unique taxa held in common between any 2 or 10 sam-
ples selected from our group of 15 samples.

We then investigated how the number of unique
taxa shared between N sampled communities within a
sample group decayed with N. The two models we
tested, a power law of the form ζN = ζ1N−b and an expo-
nential of the form ζN = ζ1eb(N−1), were chosen as they
had been found to account for the majority of cases for
how zeta diversity distributions most likely decayed
with N (Hui & McGeoch, 2014). The value of the expo-
nent for our zeta diversity decay models (b) is a measure
of intercommunity dissimilarity within our sample
groups, with a greater value indicating a more rapid
decay in similarities between communities. Both models
were fitted using the first 10 orders of zeta diversity, ζ1
through ζ10, for each group of 15 samples. Only the first
10 orders of zeta diversity were chosen, as it was found
to be sufficient to demonstrate an asymptotic level of
similarity in the average number of unique taxonomic
groups held in common across our sample groups. The
relative likelihoods of both models of zeta diversity
decaying with sample order, the first a power law and
the second an exponential decay model, were then
assessed using an AIC score generated using the func-
tion “Zeta.decline.ex.”

Modeled index scores

We constructed linear models, based on zeta diversity, of
the mean regional value of algal biotic integrity. Zeta
diversity-based models of the mean biotic integrity
(D_ASCI and H_ASCI) per sample group were constructed
using the “lm” function within the R package stats (v3.5.1
R Core Team, 2018), with ζ1, ζ2, and ζ10 as predictors. We
then compared the behavior of these mean and modeled
indices to changes in land use, altitude, and distance. Two
sets of linear models were then constructed using land
use, altitude, and distance as predictors: the first predicting
the mean biotic integrity and the second predicting the
zeta diversity-based model of biotic integrity. To calculate
the relative importance of variables in our models of biotic
integrity we then used the function “calc.relimp” within
the R package relaimpo (Grömping, 2006). The function
“calc.relimp” was used to calculate the percentage varia-
tion in our zeta diversity-based models of biotic integrity
attributed to zeta diversity orders. The function “calc.
relimp” was similarly used to calculate the percentage var-
iation attributed to land use, altitude, and distance in
predicting the mean or modeled indices of biotic integrity.
To summarize how well our linear models predicted
regional algal biotic integrity, we performed a 10-fold
cross-validation, with 100 repeats, between the mean and
modeled algal biotic integrity scores per sample group.
These cross-validations were performed using Pearson cor-
relation coefficients and the “train” function within the
R package caret (Kuhn, 2008).

RESULTS

We found that our zeta diversity-based models of the
biotic integrity of groups of algal assemblages, both for
diatoms alone as well as in combination with soft-bodied
algae, tended to be strongly and significantly correlated
with the mean values of their biotic integrity (Figures 3
and 4). The strength of these correlations varied by
method of classification, community type, and the taxo-
nomic level at which community members were aggre-
gated. We found that the mean biotic integrity of groups
of algal assemblages could be more reliably predicted
with zeta diversity-based models for combined assem-
blages of diatoms and soft-bodied algae classified via
metabarcoding rather than by morphotaxonomy, with
the strength of correlations generally increasing when
using more finely resolved taxonomic levels (Table 1). In
comparing the relative likelihoods for two models of how
zeta diversity for algal assemblages decay with sample
order we consistently found a power-law model to be
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F I GURE 4 Pearson correlations between environmental variables (A–H), measures of zeta diversity, mean and modeled indices for

algal communities (p < 10−4). × indicates lack of statistical significance.
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more likely than an exponential one (Table 2), providing
evidence that all of the algal assemblages in this study
were more likely to be assembled via a process of niche
differentiation rather than stochastically.

Linear models of diversity and biotic
integrity

Using three parameters, ζ1, ζ2, and ζ10 linear models were
constructed to predict the mean value of biological index
scores for various communities aggregated at taxonomic
levels ranging from species to order. The strength of the
Pearson correlation coefficients between the mean value of
various index scores for assemblages within a set of samples
ranged from 38%, for diatoms classified using an rbcL
primer and aggregated to order, to 87% when these same
sequences were aggregated to family order (Table 1). We
observed that linear models which could most strongly pre-
dict the mean index of biotic integrity, across all levels of
taxonomic aggregation were constructed using hybrid algal
communities classified using an 18S V9 primer (Table 1).
We found the performance of these linear models tended to
be improved by the use of assemblages classified via
metabarcoding rather than morphotaxonomy, with the
exception of diatoms aggregated to the level of species
(Table 1).

The behavior of zeta diversity-based models of the
D_ASCI or H_ASCI on a regional basis was found to be
similar to their mean values, across the taxonomic levels

considered, when varying land use, altitude, and distance
(Figures 4 and 5). The behavior of both the mean and
modeled algal stream condition indices was similar
whether the algal assemblages were classified by
morphotaxonomy or metabarcoding (Figures 4 and 5).

Zeta diversity patterns and the
environment

Across our study area we found that both the average tax-
onomic richness of hybrid algal assemblages (ζ1), as well
as the number of unique taxa shared between any two or
ten samples (ζ2 and ζ10 respectively), tended to increase
with land use (Figure 4). However, the opposite of these
trends was observed when only the diatom component of
these assemblages was considered (Figure 5). For hybrid
algal assemblages both measure local (ζ1) and landscape
diversity (ζ2 and ζ10) were found to be negatively corre-
lated with both altitude and distance (Figure 4), while
the trends were reversed for diatoms (Figure 5). In both
cases these trends were independent of whether the algal
assemblages were classified by morphotaxonomy or
metabarcoding, although the correlations were stronger
when metabarcoding was used to classify algal assem-
blages (Figures 4 and 5).

The relative importance of local and
landscape diversity table

We found a series of distinct trends regarding the
relative importance of measures of local (ζ1) and land-
scape (ζ2 or ζ10) diversity in our zeta diversity-based models
of algal biotic integrity. For assemblages of diatoms classi-
fied through metabarcoding or by morphology, we found
variations in landscape diversity to be of greater relative
importance to our models of the D_ASCI than changes in
local diversity (Table 3). However, for hybrid assemblages
of diatoms and soft-bodied algae we found measures of
landscape diversity to be of relatively lower importance in
our models of the H_ASCI (Table 3). For hybrid algal
assemblages classified by morphotaxonomy local diversity

TAB L E 1 Ten-fold cross-validated Pearson correlations

between mean and modeled stream condition indices, D_ASCI for

regional groups of assemblages of diatoms and H_ASCI, using

regional groups of assemblages aggregated to various taxonomic

levels (p < 10−4).

Taxonomic
level

Morphological
algae

18S V9
algae

Morphological
diatoms

rbcL
diatoms

Species 0.75 0.80 0.65 0.38

Genus 0.63 0.79 0.77 0.81

Family 0.64 0.78 0.53 0.87

Order 0.72 0.71 0.49 0.71

TAB L E 2 Akaike Information Criterion scores of exponential (power-law) models of zeta diversity decay with sampling

order (p < 10−4).

Taxonomic level Morphological algae 18S V9 algae Morphological diatoms rbcL diatoms

Species −7.4 (−30.7) −7.4 (−44.4) −11.6 (−19.7) 4.3 (16.3)

Genus −12.6 (−48.2) −11.6 (−54.1) −16.4 (−44.4) −4.8 (−25.1)

Family −19.8 (−49.2) −16.0 (−62.8) −26.7 (−43.0) −16.3 (−48.4)

Order −26.9 (−60.6) −22.9 (−65.4) −33.4 (−64.1) −24.1 (−52.4)
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F I GURE 5 Pearson correlations between environmental variables (A–H), measures of zeta diversity, mean and modeled indices for

diatom communities (p < 10−4). × indicates lack of statistical significance.
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tended to be of greater importance than measures of land-
scape diversity in models of the H_ASCI, however all three
measures of zeta diversity were of similar importance in
our models of the H_ASCI when algal assemblages were
classified using metabarcoding (Table 3).

The relative importance of environmental
measures in our modeled indices

We observed similar patterns in the relative impor-
tance (altitude > land use > distance) of our measures
of the physical environment in both the mean and
modeled H_ASCI scores for hybrid algal assemblages
(Table 4). However, the relative importance of these
variables was far higher for models of the H_ASCI
constructed using hybrid algal assemblages classified
using metabarcoding rather than morphotaxonomy.
For diatoms we generally found a different order (land
use > altitude > distance) of variable importance in
our models of the D_ASCI. As with hybrid algal assem-
blages, the relative importance of these variables was
also higher in models of the D_ASCI constructed using
metabarcoding rather than morphologically classified
assemblages.

Of the environmental measures considered, we
tended to observe altitude and land use as having the
greatest relative importance for our modeled stream-
health indices for hybrid algal assemblages or diatoms,
respectively (Table 4). We also tended to observe opposite
trends comparing modeled indices to either altitude or

distance as those compared to land use (Figures 4 and 5).
While we used calculations of relative importance to help
account for collinearity in our environmental variables,
we do note broadly negative trends between land use and
altitude (r = −0.95, p < 10−4) as well as land use and dis-
tance (r = −0.47, p < 10−4) across our sample groups.

Statistics for assemblages classified by
morphology and metabarcoding

For our assemblages classified via metabarcoding we
obtained more than three times as many reads using an
18S V9 primer to classify hybrid algal assemblages than
using an rbcL primer to classify diatoms (Appendix S1:
Table S1). We did find a greater proportion of DNA
sequence reads could be assigned a taxonomy for hybrid
algal assemblages classified using an 18S V9 primer as
compared to diatom assemblages classified using an
rbcL primer (Appendix S1: Figure S1A). Although this
reflects the greater numbers of taxonomic groups could
be resolved for our hybrid algal assemblages as com-
pared to diatoms (Appendix S1: Figure S1B). For algae
that could be resolved to species, we did find the most
common ones were detected in more samples using
morphotaxonomy rather than metabarcoding
(Appendix S1: Table S2). For both diatoms and hybrid
algal assemblages we found metabarcoding identified
unique taxonomic groups, including a greater number
of total phyla as well as total species (Appendix S1:
Figure S1B).

TAB L E 3 The percentage relative importance of zeta diversity orders in models of the mean value of biotic integrity, D_ASCI for

assemblages of diatoms and H_ASCI for assemblages of diatoms and soft-bodied algae, using regional groups of assemblages aggregated to

various taxonomic levels.

Taxonomic level and ζ order Morphological algae 18S V9 algae Morphological diatoms rbcL diatoms

Species ζ1 9.7 36.8 8.9 2.6

ζ2 41.4 25.6 14.6 11.4

ζ10 5.4 2.3 18.2 0.1

Genus ζ1 20.8 25.9 15.0 11.9

ζ2 13.9 30.9 36.7 43.5

ζ10 5.0 5.9 7.0 10.0

Family ζ1 0.5 23.8 5.5 11.0

ζ2 36.0 17.5 20.4 54.6

ζ10 4.9 19.4 2.3 9.8

Order ζ1 1.2 17.9 5.1 5.0

ζ2 39.9 15.8 12.7 22.9

ζ10 10.9 17.0 6.5 21.8

Note: The zeta diversity order with the greatest relative importance per model is marked in bold.
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Zeta diversity and models of community
assembly

We found evidence supporting a greater likelihood that
the structure of algal assemblages in streams tend to be
shaped by a process of niche differentiation rather than a
stochastic one. This was found in hybrid algal assem-
blages across all taxonomic levels, classified by morphol-
ogy and an 18S V9 primer, where a power-law model was
likelier than an exponential one in describing the decay
of zeta diversity with sample number (Table 2). A similar
pattern was found with diatoms, classified using an rbcL
primer as well as by morphology, with the only exception
being with metabarcoded diatoms classified to species
(Table 2).

DISCUSSION

For both diatom and hybrid algal assemblages, we found
that zeta diversity indices were able to reliably predict
the biotic integrity across a region and, in particular,
these indices performed best when algal assemblages
were identified using metabarcoding rather than mor-
phology. Unlike current indices of algal biotic integrity,
these zeta diversity-based modeled indices do not rely on
the use of undisturbed reference communities or the
presence of particular indicator species, but simply pat-
terns of algal diversity across a landscape. For these rea-
sons, we believe they may be used to develop tools to

assess environmental conditions in streams in regions
beyond the original geographic scope of this study.

Metabarcoding and limitations with
taxonomic assignments

Between hybrid algal and diatom assemblages, and
between assemblages classified using metabarcoding or
morphology, we found large differences in the number of
unique groups which could be resolved at each taxo-
nomic level (Appendix S1: Figure S1B). Many of these
differences could be attributed to the limited ability to
generate species-level taxonomic assignments for DNA
metabarcode data, a common limitation in sequence-
based taxonomy (Clarke et al., 2014; Debroas et al., 2017;
Elbrecht & Leese, 2017; Meyer et al., 2021). Likewise,
many of the California algae species currently lack DNA
reference sequences and therefore taxonomic assignment
is constrained to genus or higher levels of taxonomy
(Somervuo et al., 2017; von Ammon et al., 2018). Prior
work in developing indices of algal biotic integrity has
shown improvements in reliability using assemblages
resolved to species (Fetscher et al., 2014; Stancheva
& Sheath, 2016), although certain indices can attain ade-
quate sensitivity with taxonomic resolution limited to
higher levels such as genus or family (Mueller
et al., 2013). With this in mind, there is the potential to
use zeta diversity-based regional bioassessments of algal
assemblages in streams with relaxed levels of taxonomic

TAB L E 4 The relative importance of land use, altitude, and distance for both modeled and (mean) indices of biotic integrity for

regional groups of assemblages of diatoms, assessed using the D_ASCI, and regional groups of assemblages of diatoms and soft-bodied algae,

assessed using the H_ASCI.

Taxonomic level and variable Morphological algae 18S V9 algae Morphological diatoms rbcL diatoms

Species Land use 18.1 (38.8) 31.9 (38.8) 26.9 (32.5) 20.4 (32.5)

Altitude 27.3 (42.4) 32.0 (42.4) 22.2 (38.3) 11.9 (38.3)

Distance 2.0 (4.8) 7.5 (4.8) 8.9 (4.3) 1.9 (4.3)

Genus Land use 19.0 (38.8) 31.2 (38.8) 25.1 (32.5) 35.2 (32.5)

Altitude 22.9 (42.4) 33.0 (42.4) 27.5 (38.3) 34.2 (38.3)

Distance 4.4 (4.8) 7.0 (4.8) 4.6 (4.3) 3.1 (4.3)

Family Land use 14.3 (38.8) 27.9 (38.8) 13.5 (32.5) 35.1 (32.5)

Altitude 24.9 (42.4) 31.9 (42.4) 12.3 (38.3) 37.9 (38.3)

Distance 1.4 (4.8) 5.2 (4.8) 3.0 (4.3) 4.8 (4.3)

Order Land use 20.0 (38.8) 20.5 (38.8) 12.3 (32.5) 29.3 (32.5)

Altitude 33.6 (42.4) 29.2 (42.4) 10.7 (38.3) 25.4 (38.3)

Distance 2.1 (4.8) 3.9 (4.8) 4.1 (4.3) 5.0 (4.3)

Note: The variable with the greatest relative importance per model is marked in bold.
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sufficiency, greatly reducing the amount of time needed
to perform taxonomic assignments as part of
bioassessments.

The importance of local and landscape
diversity in predicting regional measures
of stream community health

We observed a significant role for both our measures of
local (ζ1) and landscape diversity (ζ2, and ζ10) in our
models of regional biotic integrity for both diatoms as
well as hybrid algal assemblages, potentially reflecting a
number of ecological processes. As zeta diversity order
increases, for example from ζ2 to ζ10, there is an increased
sensitivity to changes in the presence of common catego-
ries of organisms across a landscape (Latombe et al.,
2017). Consequently, we propose that assessments of the
impacts of environmental degradation cannot be
described solely from the loss of relatively rare or com-
mon categories of organisms, but that such changes must
be accounted for together.

We did find some key distinctions between patterns
in the behavior of local and landscape diversity and
regional biotic integrity for hybrid algal assemblages or
diatoms. For example, the regional biotic integrity of
hybrid algal assemblages tends to decline with increases
in both local and landscape diversity (Figure 4), while the
opposite trend is observed with just diatoms (Figure 5).
This may indicate, at least using our two primers, that
the less similar the taxonomic compositions of a group of
hybrid algal assemblages the greater their average biotic
integrity, with the opposite pattern found when focusing
on diatoms alone.

Greater environmental stress has been found to act as
an environmental filter with diatoms, whereby a reduced
set of resilient species persist in degraded environments
(Huttunen et al., 2020; Pound et al., 2019). Across
California we do find that assemblages of diatoms in
degraded environments tend to be more similar to one
another, which is reflected in the positive correlations we
observed between regional biotic integrity and landscape
diversity (Figure 5). However, this taxonomic convergence
is absent, as seen with negative correlations between land-
scape diversity and biotic integrity (Figure 4), when con-
sidering soft-bodied algae in combination with diatoms.
This difference may in part reflect differences in the rates
of dispersal between diatoms, which are free-floating, and
soft-bodied algae, and which are often sessile (Schneider
et al., 2012). With hybrid algal assemblages, environmental
degradation may lead to a convergence in the compositions
of their more mobile diatom components, but locally
unique declines in more sessile populations of soft-bodied

algae. These trends have been observed elsewhere in
soft-bodied algae, where degraded assemblages undergo
both a decline in local taxonomic richness (Schneider
et al., 2012, 2013; Stancheva & Sheath, 2016) as well as
interassemblage similarity (Dunck et al., 2021).

Measures of regional stream health and
environmental variables

The behavior of the modeled H_ASCI, whereby the com-
positions of hybrid algal assemblages converge while
their biotic integrity is degraded as a result of greater land
use, reflects prior observations of a decline in the beta
diversity of soft-bodied algal assemblages under elevated
anthropogenic stresses (Passy & Blanchet, 2007). That is,
elevated land use degrades regional biotic integrity for
hybrid algal assemblages, with degraded assemblages
tending to look more similar in composition (Figure 4).
This in turn indicates that the modeled H_ASCI is cap-
turing the effects of strong environmental filtering
(Dunck et al., 2019) on regional groupings of hybrid algal
assemblages.

As altitude is negatively correlated with land use, the
tendency of hybrid algal assemblages to have greater
biotic integrity at higher elevations, and with it the diver-
gence in the compositions of hybrid algal assemblages
with altitude (Figure 4), may indirectly reflect the corre-
lation observed between measures of landscape diversity
and land use. Elevated sites in our data tended to be
found on mountain slopes scattered across California
(Figure 2), which is reflected in the negative correlation
between distance and altitude (Figure 4). With elevated
sites tending to be more isolated from one another geo-
graphically, dispersal limitation in soft-bodied algae may
underly the negative relationship between measures of
landscape diversity and altitude (Branco et al., 2020). All
three orders of zeta diversity for our hybrid algal assem-
blages are negatively correlated with distance, and given
that our zeta diversity-based model of regional biotic
integrity for hybrid algal assemblages is positively corre-
lated with all three of these diversity measures, may then
at least partially underlie the tendency of elevated sites to
have greater biotic integrity.

With assemblages of diatoms, as with hybrid algal
assemblages of diatoms and soft-bodied algae, we find
that increases in land use, or declines in altitude, are
associated with a decline in interassemblage similarity
(Figure 5). These patterns suggest that increases in land
use effectively fragment habitats across a landscape and
interfere with dispersal (Matthiessen et al., 2010; Vander
Laan & Hawkins, 2014) and therefore reduce regional
biotic integrity for diatoms. In many cases, there is a lack
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of uniformity in the local loss of free-floating species such
as diatoms and invertebrates, leading to the decline in the
compositional similarity of assemblages scattered across
networks of streams subjected to environmental stresses
(Fugère et al., 2016; Hawkins et al., 2010; Lib�orio &
Tanaka, 2016; Mykrä et al., 2017; Pound et al., 2019).
While the ecological response of diatoms to anthropogenic
stress differs from that of hybrid algal assemblages, our
zeta diversity-based model of D_ASCI appears to capture
reliable patterns connecting environmental gradients and
regional biotic integrity of diatom assemblages.

Zeta diversity decay and models of
community assembly

Using models of how zeta diversity decays with sample
order we found evidence of freshwater algal assemblages,
both diatom and hybrid, tending to be assembled via a
process of niche differentiation, which is in line with ear-
lier studies (Dunck et al., 2021; Narwani et al., 2013; Pan
et al., 1999; Passy & Legendre, 2006; Soininen, 2007),
These results supported the use of zeta diversity in ana-
lyzing the ecology of freshwater algae, particularly with
identifying likely processes of assembly. This is important
in identifying the type of niche-differentiated assem-
blages useful in constructing bioassessments, ranging
from marine invertebrates (Gillett et al., 2021) to lichens
(Nascimbene et al., 2013).

Not only was the process of assembly for algal assem-
blages found to be dominated by a process of niche differ-
entiation, but it was found to be increasingly likely as
assemblages were aggregated from the level of species up
toward order (Table 2). The only exceptions to this pat-
tern appear to be metabarcoded diatoms aggregated at
the level of species (Table 2), but this may be an artifact
of the relatively few numbers of reads with species-level
taxonomic assignments disrupting any diversity-based
analyses. Given broad correspondences between func-
tional and taxonomic diversity at higher taxonomic
levels (Anacker & Strauss, 2016; Keck et al., 2016;
Lu et al., 2016), our results are in line with observations
of stronger relationships between measures of functional,
rather than taxonomic, diversity and the biotic filters
driving assembly via a process of niche differentiation
(Khalil et al., 2018; Siefert et al., 2013). Both diatoms
(He et al., 2020; Rimet & Bouchez, 2012) and soft-bodied
algal (Branco et al., 2020) species tend to be highly
diverse and endemic, but more cosmopolitan at higher
taxonomic levels, which may also underlie part of the
shift in likelihood that we observed from a stochastic
model of community assembly as we aggregated assem-
blage data at coarser taxonomic levels. That we identify

the same general pattern in the relative likelihood of two
community assembly processes across multiple taxo-
nomic levels, and that assemblages containing diatoms
(Minerovic et al., 2020; Rimet & Bouchez, 2012) can be
reliably used in bioassessments when aggregated to taxo-
nomic levels higher than species, implies zeta diversity
may provide useful information regarding key ecological
processes and assessments when using algal assemblages
aggregate to genus or even higher levels of taxonomy.

CONCLUSION

With this study we demonstrate the potential for zeta diver-
sity to be used in analyzing ecological processes in freshwa-
ter algal assemblages, as well as developing regional-scale
assessments of freshwater stream ecosystems. We found
that biotic integrity on a regional scale, for hybrid algal
assemblages, as well as diatoms alone, could be reliably
predicted using zeta diversity alone. This suggests that
much of the information needed in assessing the regional
biotic integrity of algal assemblages is encoded in diversity
patterns, potentially enabling the development of new
bioassessment metrics which can be more rapidly deter-
mined than methods dependent on the presence of particu-
lar taxa. However, it should be noted that these results
were dependent on how these assemblages were classified,
with our best results derived from hybrid algal assemblages
classified using an 18S V9 primer.

We have also demonstrated the utility of applying
analysis of zeta diversity patterns of various types of algal
assemblages, as classified using metabarcoding, as a means
of assessing their ecological health. However, the accuracy
of this approach appears to be strongly dependent on the
completeness of the reconstructed assemblages, whether
from morphotaxonomic or DNA-based taxonomy data, in
addition to the assemblage type, primer, and the complete-
ness of the reference library used to assign taxonomies
(Baker et al., 2010; Christensen & Olsen, 2018; Lan et al.,
2012; Mande et al., 2012; Marcy et al., 2007; Rinke
et al., 2013). To overcome these limitations, future work
on the development of biological assessments of streams
using zeta diversity and sequence data should evaluate
a shift toward reference-free based approaches of classify-
ing sequences and organizing them into assemblages
(Dubinkina et al., 2016; Linard et al., 2019; Ren et al.,
2018; Tang et al., 2018; Zielezinski et al., 2019). Such
approaches have shown a significant improvement over
standard taxonomic approaches in the completeness
with which sequences can be incorporated into profiles
of assemblage composition (Apothéloz-Perret-Gentil et al.,
2017), and have begun to demonstrate promise in building
tools for biological assessment (Pawlowski et al., 2018).

ECOLOGICAL APPLICATIONS 15 of 20

 19395582, 2023, 3, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2812, W

iley O
nline L

ibrary on [21/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Future work on the development of biological assessments
based on patterns of zeta diversity is therefore likely to
improve with the incorporation of assemblage data
constructed using reference-free approaches.
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