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PERSPECTIVE

Research recommendations to better 
understand the potential health impacts 
of microplastics to humans and aquatic 
ecosystems
Leah M. Thornton Hampton1*, Hans Bouwmeester2, Susanne M. Brander3, Scott Coffin4, Matthew Cole5, 
Ludovic Hermabessiere6, Alvine C. Mehinto1, Ezra Miller7, Chelsea M. Rochman6 and Stephen B. Weisberg1 

Abstract 

To assess the potential risk of microplastic exposure to humans and aquatic ecosystems, reliable toxicity data is 
needed. This includes a more complete foundational understanding of microplastic toxicity and better characteriza-
tion of the hazards they may present. To expand this understanding, an international group of experts was convened 
in 2020–2021 to identify critical thresholds at which microplastics found in drinking and ambient waters present 
a health risk to humans and aquatic organisms. However, their findings were limited by notable data gaps in the 
literature. Here, we identify those shortcomings and describe four categories of research recommendations needed 
to address them: 1) adequate particle characterization and selection for toxicity testing; 2) appropriate experimental 
study designs that allow for the derivation of dose-response curves; 3) establishment of adverse outcome pathways 
for microplastics; and 4) a clearer understanding of microplastic exposure, particularly for human health. By address-
ing these four data gaps, researchers will gain a better understanding of the key drivers of microplastic toxicity and 
the concentrations at which adverse effects may occur, allowing a better understanding of the potential risk that 
microplastics exposure might pose to human and aquatic ecosystems.

Keywords:  Microplastic, Research recommendations, Hazard characterization, Aquatic organisms, Human health, 
Environmental management
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Introduction
Researchers are finding microplastics almost every-
where they look. Microplastics, defined as solid, poly-
meric particles with at least three dimensions greater 
than 1 nm and < 5 mm in size [19], contaminate marine 
[133], freshwater [53], and terrestrial [138] habitats, and 
more recently, have been detected in drinking water [69, 
102], food [12], and the atmosphere [13, 135]. Given 
their ubiquity, most organisms, including humans, are 

frequently exposed to microplastics. Studies in aquatic 
organisms show that microplastics can cause inflamma-
tion and tissue damage [63, 87], reduced growth [145], 
altered development [42], and reductions in reproductive 
success [26, 57]. Though the possible effects in humans 
are less well-defined, initial studies in rodent models sug-
gest that exposure to some forms of microplastics may 
impact endocrine signaling [2, 3, 54], initiate oxidative 
stress and inflammation [77, 136, 141], and reduce gam-
ete viability [4, 54, 80].

These findings have captured the attention of the public 
and increased societal concern for ecosystem and human 
health, prompting legislators, environmental manag-
ers, and other organizations to take action to better 
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understand the risks of microplastic exposure. Within 
the past decade, the United Kingdom Parliament, the 
European Chemicals Agency, the European Food Safety 
Authority, and the World Health Organization have all 
released comprehensive reports and specific recommen-
dations to assess the impact and potential risks of plastic 
and microplastic pollution [33, 37, 44, 100, 132]. Effective 
management of microplastics requires an understand-
ing of the potential adverse health effects on humans and 
the environment, as well as the key drivers of toxicity 
(e.g., particle size, composition, etc.) and concentration 
thresholds at which these effects begin to manifest. How-
ever, developing health-based thresholds for microplas-
tics is challenging because they represent a diverse suite 
of physical and chemical characteristics [111]. Toxicolog-
ical effects may be initiated via a variety of mechanisms 
rather than a single molecular initiating event, and some 
of these mechanisms are poorly elucidated. In support of 
legislative mandates to develop microplastics manage-
ment strategies for aquatic habitats and drinking water 
for human consumption [146, 147], the State of Califor-
nia convened a group of international experts in micro-
plastics research to identify and characterize the hazards 
associated with microplastics. Specifically, experts were 
tasked with identifying which microplastic characteristics 

(e.g., size, morphology, polymer, etc.) contribute most to 
toxicity [49] and developing health-based thresholds for 
both the aquatic environment [92] and drinking water 
[25]. These efforts were limited by critical gaps in knowl-
edge, or a lack of studies the experts deemed fit for the 
purpose of risk assessment [25, 45, 92]. Here, we identify 
those shortcomings and the research initiatives needed 
to address them, which can be grouped into four catego-
ries: 1) improved particle selection and characterization 
for toxicity testing; 2) experimental designs that allow 
for establishing dose-response curves; 3) the connec-
tion of microplastics to established or novel adverse out-
come pathways (AOPs); and 4) a clearer understanding of 
exposure (Fig. 1). Each of the four research gaps are dis-
cussed in depth below and recommendations for future 
study designs are postulated (Table 1).

I. Improved particle characterization and selection 
for hazard identification and characterization
Assessing potential microplastic toxicity in aquatic 
organisms has been achieved primarily via laboratory 
studies in which biota are exposed to microplastics 
at a given concentration or concentrations and physi-
ological responses are measured. Most exposure stud-
ies have been conducted using a single particle type 

Fig. 1  Visual summary of key research recommendations for microplastic hazard characterization
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(e.g., polystyrene spheres of a single size), but if par-
ticles are well characterized, these studies can provide 
important information on the potential hazards of spe-
cific microplastic types and characteristics (e.g., size, 
morphology, polymer type, etc.). In addition, there is 
also a need for studies in which organisms are exposed 
to combinations of microplastics as close as possible 
to what they would be exposed to in the ambient envi-
ronment. For instance, fibers and spheres respectively 
make up 52–73% and 1–3% of anthropogenic particles 
detected in the environmental water samples [7, 17, 
142], but roughly only 7% of studies published through 
2020 use fibers whereas 62% use spheres [50]. Simi-
larly, 82% of studies are conducted with polystyrene or 
polyethylene polymers, which make up only 5–28% of 
what is reported in the aquatic environment [17]. Only 
12% of aquatic organism tests used weathered particles 
[50], which are likely to present greater risks to biota 
due to increased ingestion probability, leachates, bio-
film formation, particle roughness, increased surface 
area, and potentially other mechanisms [51, 66, 83]. 
For studies focused on the potential human health 
impacts of microplastics, similar biases regarding 
particle selection were observed as 77% of the rodent 
in vivo studies used polystyrene spheres [50]. In addi-
tion, microplastic particles were often limited to a 
single size (69% of studies), and no studies used weath-
ered particles. This lack of particle diversity is also 
reflected in in vitro studies.

If particles are comprehensively characterized (see 
[28, 45] for guidance on minimum particle characteri-
zation), experiments that employ a single particle type 
may provide insight regarding specific relationships 
between microplastic characteristics and biological 
effects. Thus, it is recommended that future toxicity 
tests address one of two experimental objectives. The 
first is to determine how specific microplastic parti-
cle types (e.g., polyester fibers, tire wear particles) and 
characteristics (e.g., size, surface area, volume) may 
present a hazard to aquatic organisms and/or humans. 
Identification of the most harmful microplastic types 
is important for the development of monitoring pro-
grams, as there are numerous measurement tech-
niques that can be used to quantify microplastics, with 
some being more appropriate and cost-effective for 
different sizes, morphologies, and polymer types [27]. 
The second objective is to determine concentrations 
at which environmentally relevant distributions of 
microplastics cause adverse effects. The limited parti-
cle diversity and incomplete particle characterization 
in most existing studies are impediments to achieving 
either objective.

Recommendation 1: Identify microplastic characteristics 
that best predict hazards through extensive particle 
characterization and toxicity screening
Results from studies using singular particle types can be 
extrapolated to more relevant mixtures of microplastics 
found in the natural environment so long as particles are 
extensively characterized, and the relative importance 
of different particle characteristics to toxicological out-
comes are understood [70]. For example, Zimmerman 
et  al. [145] exposed Daphnia magna to polyvinyl chlo-
ride, polyurethane, or polylactic acid with or without 
extractable chemical additives. The particle morphol-
ogy (i.e., fragments) and size (i.e., 20–40 μm) were held 
constant. Using this experimental design, Zimmerman 
et  al., could discern which effects were driven by poly-
mer type and which were driven by additive chemicals. 
Perhaps most importantly, the size, polymer composi-
tion, and morphology of the microplastics used were all 
extensively characterized. These findings provide much-
needed insight into which microplastic characteristics 
may cause toxicity. More similarly designed studies are 
needed for other types of microplastics to identify which 
particle characteristics and polymer types are of great-
est toxicological concern. Study relevance may be fur-
ther increased by using particle types frequently most 
detected in the environment.

Particle size is a critical factor influencing microplas-
tic toxicokinetics and toxicodynamics [25, 49]. In aquatic 
organisms, smaller microplastics may be taken up via 
the gills and ingested, while larger plastics may inter-
fere with motility through entanglement [40, 58]. Once a 
particle is ingested, its size also influences the likelihood 
for translocation beyond the gut or gills to other tissues 
[91, 130], as well as their retention and excretion [68]. 
Current evidence indicates that size strongly affects the 
observed adverse outcomes, including differential effects 
on growth [116], immune function [81], oxidative stress 
[140], and mortality [46]. Many studies suggest that toxic 
effects are more likely to be observed following exposure 
to smaller particles [15], although larger particles may be 
more harmful to aquatic species in specific scenarios. For 
example, larger particles take up more volume in the gut 
once ingested, possibly leading to reduced food assimila-
tion and food dilution [49, 70].

In humans, size determines the extent to which par-
ticles may be taken up and distributed within the body. 
For instance, particles < 10 μm may be inhaled [104] and 
those < 1 μm may be taken up by cells [9, 43]. As the size 
of inhaled particles decreases, translocation efficiency 
increases [73]. Smaller, orally ingested microplastic par-
ticles are also expected to translocate from the gut more 
efficiently [134]. For instance, 50 and 100 nm polystyrene 
nanospheres were detected in the liver, spleen, blood, and 
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bone marrow of female rats after 10 days of exposure via 
gavage. In contrast, particles larger than 100 nm were not 
detected in the bond marrow and those larger than 300 
nm were not detected in the blood [59]. Yet despite these 
observations, there is insufficient data to reliably model 
the particokinetics of microplastics for humans [25] or 
other organisms [92], thus increasing uncertainties of 
risk assessments.

Experiments that disentangle the relative effects of 
different microplastic morphologies are also needed as 
particle morphology likely influences retention, translo-
cation, and toxicity. In aquatic organisms, a fiber, defined 
as having a length to width ratio of three or greater, may 
be retained in the gut for extended periods of time [137] 
or more likely to translocate via its smallest dimen-
sion [91] compared to fragments or spheres with simi-
lar particle lengths. Several studies report that fibers or 
irregularly shaped particles (e.g., fragments) are more 
toxic than uniform particles such as pellets or spheres 
[11, 108]. In some instances, specific morphologies may 
elicit unique adverse effects as fibers have been shown 
to cause respiratory stress [118]. Similar findings have 
been described in mammalian studies as fibers have been 
found to persist in airways in humans [96], and fragments 
were found to induce hemolysis in human-derived cells 
at rates proportionate to their roughness [23]. However, 
mammalian toxicity studies that use diverse particle mor-
phologies are limited, with most ingestion-based studies 
using spheres, several using fragments, and none using 
fibers [25].

At the interface of size and shape are particle volume 
and surface area, which were identified as being the 
primary drivers of food dilution and oxidative stress in 
aquatic species [49, 70] and used as the basis for thresh-
olds in the ambient environment [92]. Though food 
dilution is not relevant for human health, similar rela-
tionships between surface area and oxidative stress and 
other adverse effects have been detected in mammalian 
models. For example, Schmid and Stoeger [114] found 
that nanoparticle surface area was highly correlated with 
acute lung inflammation when in  vivo studies in mice 
and rats were retroactively analyzed. Surface area also 
influences the formation of the particle corona, which 
can include toxicants and antigens which influence both 
uptake and toxicity in humans and other organisms [38, 
89]. To date, most studies focused on the influence of 
surface area on toxicokinetics and toxicodynamics use 
small, spherical particles (typically less than 1 μm). Addi-
tional studies are needed to determine if the previously 
described relationships between surface area and tox-
icity persist across larger size ranges and other particle 
types with high surface area to mass ratios (e.g., frag-
ments, fibers).

In laboratory studies, volume and surface area particle 
characteristics may be estimated using equations based 
upon the shape (e.g., volume of a sphere = 4/3 πr^3). To 
estimate these parameters in environmental particles, 
modelling techniques may be used [71]. However, parti-
cle volume and surface area are not typically measured, 
estimated, or reported in microplastic occurrence or tox-
icity studies. Measurement or estimation of such param-
eters in laboratory studies is crucial to understanding 
the relevant exposure metric for specific types of toxico-
logical effects. Thus, it is important that studies not only 
report these characteristics but that they are considered 
as potential drivers of toxicity in future experiments 
using aquatic species or rodents.

Finally, experiments designed to decouple particle-
driven effects from those caused by chemical leachates 
(i.e., monomers, additive mixtures) and sorbed chemi-
cals (e.g., [145]) are critical to understanding the toxico-
logical drivers of microplastics. Adverse effects have been 
attributed to chemical additives following the inhalation 
of nylon fibers [104, 126] and polyvinyl chloride parti-
cles [139] in humans; and in aquatic organisms, leachates 
from tire wear particles [120, 123] and single-use food 
packing [144] have been demonstrated to be toxic. Dis-
entangling physical and chemical particle characteristics 
causing toxicity will facilitate more targeted, efficient 
management and mitigation strategies for reducing envi-
ronmental and human health risks from microplastics 
(e.g., prioritizing assessment of alternatives for chemical 
additives in plastics).

Though methods for microplastic analysis and particle 
characterization are still emerging, techniques for quan-
tifying particles as well as determining size, morphology, 
and polymer type are readily available for most particle 
types excluding nanoplastics (< 1 μm) [14, 106]. Micro-
plastics are most often enumerated by manually count-
ing particles via visual light microscopy, which may be 
facilitated by staining particles with nile red. For smaller 
particles < 20–50 μm, other microscopic or light scat-
tering techniques (e.g., scanning electron microscopy, 
transmission electron microscopy, dynamic light scat-
tering) are often preferrable. Particle size is most often 
assessed by manual measurements via microscopy, but 
other techniques such as dynamic light scattering can be 
used to generate size distributions. Polymer confirmation 
and identification are most commonly achieved via Fou-
rier-transform infrared spectroscopy (FTIR) or Raman 
spectroscopy, but polymers may also be identified using 
pyrolysis-gas chromatography/mass spectrometry. Other 
particle characteristics such as surface area and volume 
may be estimated in some cases [70, 72], but currently, 
there are no widely used techniques for gathering empiri-
cal data describing these characteristics in microplastics. 
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Future methodological studies should seek to develop 
methods for better particle characterization, particularly 
for characteristics hypothesized to drive toxicological 
effects (e.g., surface area, volume).

Recommendation 2: Better characterize microplastic 
hazards by conducting toxicity tests using polydisperse, 
environmentally relevant distributions of microplastic 
particles
To fully characterize the hazards of microplastics, it is 
important to understand how environmentally relevant 
mixtures of particles may cause toxicity [48]. Assess-
ing the integrated effects of multiple plastic types from 
exposures conducted with a single type of microplas-
tic is challenging as some evidence suggests organisms 
respond differently to diverse mixtures of microplastics 
(i.e., polydisperse) than each type of microplastic alone. 
For instance, Ziajahromi et al., [143] found polyester fib-
ers or polyethylene beads to be more toxic to Ceriodaph-
nia dubia when presented alone than when presented 
as a mixture [143]. There are few studies that have tried 
to mimic naturally occurring mixtures of microplastics 
by exposing organisms to more than one particle type 
at the same time (i.e., ~ 5% of aquatic organism studies, 
0% of human health studies [50]), but more studies are 
needed to definitively identify the primary hazards of 
microplastics.

Microplastic distributions vary greatly depending on 
the environmental matrix [72, 142]. However, some pat-
terns have emerged from studies aimed at describing 
mixtures of microplastics in the real-world [71]. In drink-
ing water, studies have shown that most samples are typi-
cally a mixture of relatively small (< 10 μm) fragments and 
fibers [102, 103], whereas in the aquatic environment, 
most surface water and sediment samples, and thus biota, 
appear to be dominated by fibers and a diverse array of 
fragments, films, and foams [17, 142]. Toxicity evalua-
tions reflective of these particle distributions would be 
useful in bridging the gap between laboratory studies and 
realistic exposures, ultimately leading to better hazard 
characterization.

Predicting microplastic toxicity may be further com-
plicated by the influence of environmental weathering. 
Most organisms will encounter microplastics that are 
weathered [121], fouled with life (including pathogens 
[1]), and that include a sorbed mixture of ambient chemi-
cal pollutants (organics and metals [112]). There is some 
evidence that particles aged in the natural environment 
have different bioavailability and toxicity compared to 
the effects observed from pristine microplastics [16, 21]. 
Studies have found enhanced effects from microplastics 
that had been soaked in ocean or lake water compared 
to virgin microplastics [16, 110]; though in some cases, 

weathering has been shown to decrease toxicity [115]. 
Other studies have found increased chances of translo-
cation [109]. Despite this, there is a lack of toxicity data 
for weathered particles as only roughly 12% of studies 
used microplastics that were collected from the envi-
ronment or artificially weathered prior to toxicity tests 
[50]. The use of weathered particles in future studies will 
provide more realistic assessments of microplastic toxic-
ity, though it is important that researchers fully describe 
approaches used for particle weathering to ensure that 
studies are representative of environmental conditions 
and repeatable.

Approaches for generating polydisperse, environmen-
tally realistic distributions of microplastics may include 
the acquisition or generation of the most prevalent par-
ticle types typically found within the habitat and matrix 
of interest. These particles may then be combined in 
toxicity tests in similar proportions observed in the 
environment. Artificial weathering can also increase 
environmental relevance as has been demonstrated in 
previous studies [84]. Alternatively, some studies have 
also used field-collected microplastics in toxicity test-
ing [16, 74, 101]. However, if this approach is taken, 
it is essential that particles are well-characterized as 
described in Recommendation 1.

II. Inform the development of health‑based thresholds 
for microplastics
Most microplastic toxicity studies are focused on deter-
mining if physiological or behavioral effects can be 
detected, rather than developing robust dose-response 
data. Though exploratory, hypothesis-driven studies have 
supplied the field with a foundational understanding of 
microplastic toxicity effect mechanisms (i.e., hazard iden-
tification), studies which generate robust dose-response 
data are needed to identify critical concentrations at 
which those effects manifest (i.e., hazard characteriza-
tion). Thus, future studies should aim to generate robust 
dose-response data from which critical effect metrics 
can be derived. Below, we discuss why this is important 
and provide specific recommendations for future stud-
ies seeking to inform health-based thresholds for aquatic 
organisms and humans.

Recommendation 3: Design experiments to generate robust 
dose‑response data for health‑based threshold development
Health-based guidance values are traditionally derived 
from chronic undefined laboratory studies [10], though 
in  vitro data may also be used for hazard characteriza-
tion (see Section III, Recommendation 5). However, it 
was challenging for the experts in the California Health 
Effects Workshop to derive health-based thresholds for 
drinking water and the aquatic environment due to the 
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availability of few fit-for-purpose studies [25, 92]. Of the 
in vivo studies in the Toxicity of Microplastics Explorer 
(ToMEx) database, only 52% of human health stud-
ies (n = 14) and 44% aquatic organism studies (n = 73) 
included three or more exposure concentrations in their 
experimental design [50]. Robust dose-response data is 
essential to threshold development because it captures 
the critical points at which contaminant concentrations 
elicit adverse health effects.

To analyze and describe dose-response relationships, 
different approaches should be used depending on the 
specific aims of the study. In environmental toxicology, 
no observed effect concentrations (NOECs) and lowest 
observed effect concentrations (LOECs) are often used 
to inform threshold development for the aquatic envi-
ronment. Here, it is important to consider that NOECs 
and LOECs are entirely dependent on the dose selec-
tion and experimental design of the study from which 
they are extracted [36, 75]. For instance, if the LOEC is 
also the lowest test concentration, it is possible that even 
lower concentrations not included in the design will 
induce an adverse biological response. This could result 
in an underestimation of risk. Conversely, if no effects 
are observed in a study, the highest observed effect 
concentration (HONEC) may overestimate risk. There-
fore, approaches that consider the whole dose-response 
curve such as effect concentrations (e.g., ECX) are pre-
ferred. Theoretically, only a minimum of three distinct 
test concentrations are required to derive lethal or effect 
concentrations of certain percentages (i.e., LCX or ECX, 
respectively), but a greater number of test concentrations 
is strongly recommended when possible to ensure that 
an adequate dose-response relationship may be observed 
[97]. Of the 162 studies in the ToMEx aquatic organisms 
database, only 16 report ECX or LCX for distinct species, 
most of which are cladocerans [50]. This represents a lack 
of robust dose-response data for aquatic species, particu-
larly for organism groups of regulatory interest such as 
bivalves and fish.

To understand dose-response relationships for human 
health, approaches similar to those used for ecological 
health are often employed. Here, NOEC and LOEC val-
ues (referred to as No/Lowest Observed Adverse Effect 
Levels, NOAELs/LOAELs for human health applications) 
are often used as a starting point for threshold devel-
opment [64, 124]. Alternative approaches like Bench-
mark Dose (BMD) modelling make use of all the data 
to describe dose-response relationships for a particular 
endpoint rather than only using discrete experimental 
concentrations [124]. A significant advantage of the BMD 
approach is that it provides an estimate of uncertainty via 
a confidence interval [34]. Another major benefit is that 
in  vitro data may be incorporated into a BMD analysis, 

so long as quantitative in  vitro to in  vivo extrapolation 
models are available (see Section III, Recommendation 
5). Yet, despite these advantages, only 53% of evalu-
ated in vivo studies were identified as having acceptable 
dose-response data appropriate for BMD modelling (i.e., 
at least three microplastic treatment groups with a con-
centration range ≥ 3, including control accompanied by 
estimates of uncertainty such as standard deviation) [25]. 
Thus, it is recommended that future studies ensure they 
use a sufficient number and spacing of exposure con-
centrations as close as possible to the linear range of the 
dose-response curve, and adequately report uncertainties 
associated with effects (e.g., standard deviation, 95% con-
fidence intervals).

III. Increase understanding of toxicological pathways 
induced by microplastics for improved Hazard 
characterization
Numerous studies have demonstrated the potential for 
microplastics to cause a wide array of biological effects 
in aquatic organisms, including oxidative stress [60], 
reduced growth [6, 86], tissue damage [63], reduced 
reproductive output [26, 57] and behavioral alterations 
[24, 41, 90]. In rodents, microplastic exposure has been 
shown to impact endocrine signaling [2, 3, 54], initi-
ate oxidative stress and inflammation [77, 136, 141], and 
negatively affect reproductive potential [4, 54, 80]. Yet, 
the specific mechanisms and pathways by which micro-
plastics cause adverse effects are not yet well understood. 
Many studies provide evidence of altered molecular or 
cellular-level responses following microplastic exposure 
[20, 39, 88], but it is often unclear if these observations 
are indicative of adverse effects at the organism or pop-
ulation level, or if they are merely adaptive and healthy 
responses (e.g., increased levels of antioxidative enzymes) 
to a stressor with no significant impact on overall health 
over longer time periods. In addition, it is unknown 
if effects observed on apical endpoints such as sperm 
count in male rodents [136] are due to general inflam-
mation or more specific mechanisms targeting sensitive 
tissues such as testis [25]. To address these uncertainties, 
it is recommended that future studies aim to character-
ize AOPs by assessing endpoints across multiple levels 
of biological organization in both humans and aquatic 
species. Initial efforts to identify AOPs for microplastics 
have indicated a need for further elucidation of mecha-
nisms linking molecular and whole organism adverse 
effects [61]. This effort may be accelerated using in vitro 
systems and a framework for linking in  vitro results to 
in  vivo effects [113]. Development of AOPs may also 
help to understand the interplay of physical and chemical 
effects from microplastics but should be based on realis-
tic exposure levels [62].
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Recommendation 4: Connect microplastics to existing 
or novel adverse outcome pathways
Workshop participants agreed that, while not necessary 
for developing risk-based regulatory thresholds, scien-
tific confidence in thresholds expands when the mode of 
action of the microplastic related effects and pathways of 
effect are understood. Such knowledge would facilitate 
read across attempts which are of importance for micro-
plastics due to their extreme diversity. AOPs provide a 
powerful conceptual mechanism for creating this linkage, 
often starting with a molecular initiating event ultimately 
leading to an effect at the organism level [5, 128]. For 
aquatic organisms, there is demonstrable evidence inges-
tion of microplastics can cause food dilution [29, 40, 70, 
129] and experts agreed that there is at least partial evi-
dence for the induction of oxidative stress responses fol-
lowing particle translocation [49]. In turn, these pathways 
were used to form the basis for thresholds for the aquatic 
environment [92]. However, experts also agreed that 
these pathways need further development and experi-
mental validation to increase confidence in the derived 
thresholds [92]. For human health, biomarkers suggestive 
of effect mechanisms (e.g., oxidative stress, inflammation, 
reactive oxygen species formation, etc.) have been identi-
fied at varying levels of biological organization, however 
confirmatory linkages to apical endpoints (e.g., sperm 
reduction in testis) are absent [25].

Though most toxicity mechanisms for microplastics 
are only partially understood or have yet to be explored, 
some recent studies have proposed partial AOPs or 
hypothesized which existing AOPs may be applicable to 
microplastics [55, 61, 62, 67, 85]. For instance, following 
a systematic literature review, Jeong and Choi identified 
several putative AOPs to which nano- and microplas-
tics could be connected, leading to adverse outcomes on 
growth, reproduction, and survival following oxidative 
stress [61]. Similarly, Coffin et al. [25] noted that several 
rodent studies found that microplastic ingestion induced 
oxidative stress responses in conjunction with impacts to 
reproductive biomarkers (e.g., [4, 136]), and that some 
responses had similarities with key events described in 
AOPs characterizing generalized inflammatory responses 
[127]. While it may be reasonable to assume that these 
observations are directly related, these effects have yet to 
be linked by distinct key event relationships and experi-
mentally observed within the same network of events. 
Furthermore, uncertainties with regards to particle char-
acterization (e.g., verification of the absence of chemical 
additives or impurities) in these studies prevent direct 
linking of molecular endpoints to apical endpoints [25]. 
Future studies should aim to identify and develop AOPs 
for microplastics using one or more strategies (summa-
rized by [128]). An example of this might be top-down 

development where researchers may begin with a well-
defined adverse outcome at the organismal level and 
work their way down biological levels of organization. 
Researchers should also draw upon existing AOP knowl-
edge, for example by using the AOP-wiki (aopwi​ki.​org) or 
AOP knowledgebase (aopkb.​oecd.​org), as these pathways 
are not contaminant-specific and multiple contaminants 
may share the same AOP. Thus, it is likely that some exist-
ing AOPs may inform microplastic effect mechanisms 
and require only experimental validation. Even if the pri-
mary goal of the study is outside the scope of AOP devel-
opment, researchers should always strive to describe 
cascades of specific biological responses and include 
endpoints across biological levels of organization. This is 
particularly important for aquatic organisms, and making 
mechanistic linkages between the cellular, organismal, 
population, and community levels can be achieved with 
carefully designed mesocosm or macrocosm approaches.

Recommendation 5: Increase the relevance of in vitro studies 
for hazard characterization by developing a framework 
for extrapolating in vitro results to in vivo effects
In vitro approaches in toxicology have become more 
widespread as new applications are developed and reduc-
tions in animal testing are encouraged [94, 98]. However, 
the use of such data for developing management thresh-
olds is currently limited due to unclear methods for reli-
ably extrapolating in  vitro results to potential in  vivo 
effects for particles [113], though strategies for soluble 
chemicals have been previously developed [117]. If reli-
able methods for extrapolating in vitro results to in vivo 
effects are established, researchers may take advantage 
of the cost, resource, and time benefits often provided 
by in  vitro systems while generating meaningful data 
that can be used to characterize the hazards of micro-
plastics. In vitro approaches could also be used as part of 
a tiered system, with the use of cell lines as a screening 
tool to prioritize which particle sizes, morphologies, etc. 
should be studied in costlier in vivo models. This strategy 
has been used and is recommended for soluble chemicals 
such as endocrine disruptors (e.g., [47]). In the United 
States, development of a quantitative in  vitro to in  vivo 
extrapolation model for microplastics and other contam-
inants may be necessary to conduct risk assessments due 
to the mandate phasing out the use of in vivo studies by 
the United States Environmental Protection Agency by 
2035 [125].

Microplastics are different from many other contami-
nants because they are comprised of both chemical and 
physical constituents and behave as colloid particles 
that can settle, diffuse, and agglomerate differentially. 
This presents a challenge in seeking to develop a tool for 
the extrapolation of in  vitro data. For instance, buoyant 

http://aopwiki.org
http://aopkb.oecd.org
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microplastics may rapidly move away from the cell sur-
face in an unagitated system, resulting in an exceedingly 
low effective concentration [119]. Thus, in addition to 
the concentration and exposure duration, particle (e.g., 
size, density, buoyancy, surface chemistry) and media 
characteristics (e.g., viscosity, density, presence of pro-
teins) must be extensively described to fully understand 
differences between in  vitro and in  vivo test systems. A 
second, unique challenge is that the organ partitioning of 
microplastics in vivo is not dictated by hydrophobicity as 
is the case for many chemical contaminants, but rather 
the phagocytic capacity of the organ [32, 105]. There are 
some interesting developments that may help in address-
ing the challenges associated with microplastic exposures 
in vitro, including the use of semi-wet [76, 95], inverted 
culture systems [18, 119, 131], or dynamically flowing 
systems such as cell-on-a-chip models, which may facili-
tate cell-particle contact.

Novel computation approaches need to be further 
developed to support the incorporation of in vitro data 
from microplastic studies into risk assessment exer-
cises. This firstly includes the use of dosimetry models, 
specifically tailored to capture the particle dynamics 
in  vitro such as the In  vitro Sedimentation, Diffusion 
and Dosimetry, In  vitro Sedimentation, Diffusion, Dis-
solution, and Dosimetry, and Distorted Grid models 
[30, 31, 52, 122] which provide time-dependent particle 
and aggregate concentrations at any given height in the 
media column. Secondly, efforts have also been made 
to predict in vivo microplastic concentrations based on 
results from in vitro studies using Physiologically Based 
Kinetic (PBK) models which take into account the par-
titioning of particle-based on phagocytic capacity as 
described earlier [78]. Thus far, PBK models have been 
developed for quantum dots (20 nm) [82], metallic nan-
oparticles (Bachler et  al., 2013), titanium dioxide (15-
150 nm) [8], nanocrystals and some polymers such as 
PLGA (50-135 nm) [22, 79]. In a final step, PBK models 
can be used in quantitative in  vitro to in  vivo extrapo-
lations of observed effects [65, 107]. Though these 
efforts demonstrate the possibility of in vitro to in vivo 
extrapolation for microplastics, research investments for 
improving estimates of dosimetry and generating reli-
able data describing the transport and partitioning of 
microplastic particles in vivo are warranted.

IV Improved exposure assessment for microplastics
Recommendation 6: Characterize understudied microplastic 
exposure routes
The primary purpose of this working group was hazard 
identification and characterization for the purposes of 
health-based threshold development. However, there is 
also a need for better microplastic exposure assessment 

to improve future assessments of risk. Most microplas-
tic toxicity studies have focused on a limited number 
of exposure routes. For aquatic organisms, most stud-
ies have added microplastics to water [15, 56]. How-
ever, effective risk assessment and management require 
a holistic understanding of relative contributions from 
multiple sources with a similar route of exposure (e.g., 
ingestion, dermal, inhalation). While this working group 
largely focused on aqueous exposures, aquatic organisms, 
particularly those species associated with the benthos, 
are likely to be exposed to microplastics via the sediment, 
which generally have higher microplastic concentrations 
than the water column [35]. Thus, it is recommended 
that future studies aim to evaluate microplastic exposure 
and toxicity in aquatic organisms in sediment and con-
duct depth-integrated risk assessments.

Here, ingestion-based studies where microplastics were 
added to food [77] or drinking water (Hou et  al., 2020, 
[4]) or administered via oral gavage (e.g., [99]) were the 
primary focus. However, humans are exposed to micro-
plastics via a wide variety of sources including food, and 
air [93]. The relative contribution of these sources to 
microplastic exposure, uptake, and toxicity are not well 
characterized in humans. Relative source contribution 
from drinking water was identified as the most sensitive 
parameter in the derivation of a health-based guidance 
level for drinking water [25]. As such, it is recommended 
that future studies aim to evaluate microplastic exposures 
such that a comprehensive exposure assessment through 
all relevant sources may be conducted. Having a compre-
hensive understanding of exposure for both will allow for 
more reliable estimations of risks that microplastics may 
pose to humans.

Conclusions
The field of microplastics research has reached the point 
where there is no longer any doubt of widespread expo-
sure of animals and humans to plastic particles. This has 
led the management community to seek advice regarding 
whether there is a need to set limits, and what those lim-
its should be, for microplastics in drinking water, foods, 
and the natural environment. Research into the bioavail-
ability and effects of microplastics have demonstrated 
that microplastics can cause harm, but it is often the case 
that these studies cannot readily inform risk assessments. 
Here, we have discussed the research gaps that need to be 
filled to increase our understanding of the risk microplas-
tics pose to biota and humans and best advise managers 
on setting health-based thresholds in a more accurate 
and relevant way. Such data are essential for researchers 
to understand the extent to which microplastics, varying 
in size, shape, and chemical profile, at environmentally 
relevant concentrations, and capturing myriad exposure 
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pathways, pose a risk to human health and the health 
of aquatic species, biodiversity, and ecosystems. With 
increased understanding, we can adapt management 
strategies and risk assessments to help effectively and 
efficiently manage this novel contaminant.
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