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Large state or regional environmental flow programs, such as the one based on the
California Environmental Flows Framework, rely on broadly applicable relationships
between flow and ecology to inform management decisions. California, despite having
high flow and bioassessment data density, has not established relationships between
specific elements of the annual hydrograph and biological stream condition. To address
this, we spatially and temporally linked USGS gage stations and biological assessment
sites in California to identify suitable paired sites for comparisons of streamflow alteration
with biological condition at a statewide scale. Flows were assessed using a set of
functional flow metrics that provide a comprehensive way to compare alteration and
seasonal variation in streamflow across different locations. Biological response was
evaluated using the California Stream Condition Index (CSCI) and Algal Stream
Condition Index (ASCI), which quantify biological conditions by translating benthic
invertebrate or algal resources and watershed-scale environmental data into an overall
measure of stream health. These indices provide a consistent statewide standard for
interpreting bioassessment data, and thus, a means of quantitatively comparing stream
conditions throughout the state. The results indicate that indices of biological stream
condition were most closely associated with flow alteration in seasonality and timing
metrics, such as fall pulse timing, dry-season timing, and wet season timing. Magnitude
metrics such as dry-season baseflow, wet season baseflow, and the fall pulse magnitude
were also important in influencing biological stream conditions. Development of ecological
flow needs in large-scale environmental programs should consider that alteration to any of
the seasonal flow components (e.g., dry-season baseflow, fall pulse flow, wet-season
baseflow, spring recession flow) may be important in restructuring biological communities.
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1 INTRODUCTION

Flow alteration is a pervasive and significant issue globally and in
California, where over 95% of California’s gaged streams have
altered flow (Poff et al., 2007; Grantham et al., 2014; Zimmerman
et al., 2017). Hydrologic alteration of flow by dams, diversions,
and urbanization impacts seasonal and inter-annual flow
variability, population connectivity, gene flow, biodiversity,
and ecological processes (Dudgeon et al., 2006; Yarnell et al.,
2010; Carlisle et al., 2011; Peek et al., 2021). While the causes and
related impacts of flow alteration are well documented (Poff et al.,
2007), significant gaps remain in linking flow management with
ecological responses to track current stream conditions, evaluate
restoration efficacy, and provide future flow recommendations
(Poff and Zimmerman, 2010).

A critical component of developing ecological flow needs for
management is to identify relationships between specific flowmetrics
that represent distinct characteristics of the annual hydrograph and
measures of biological stream conditions at broad spatial scales (Poff
and Zimmerman, 2010). A variety of datasets and approaches have
been used for assessing stream conditions, with benthic invertebrates
and algae as the most common indicators of stream health in a wide
range of flow alteration studies across the United States (Stevenson
and Smol, 2003; Lawrence et al., 2010; Stevenson et al., 2010; Lunde
et al., 2013; Stevenson, 2014; Mazor et al., 2016; Steel et al., 2018). For
example, hydrologic alteration or impairment has been shown to
strongly influence aquatic benthic invertebrate communities (Poff
et al., 2007; Rehn, 2009), and benthic invertebrates have been used to
link metrics of hydrologic variability to biological community
response (Poff and Zimmerman, 2010; Steel et al., 2018). Studies
of the direct relationships between algae and flow are limited
(Kirkwood et al., 2009; Miller et al., 2009; Schneider et al., 2016),
with some exceptions involving algal blooms in large rivers (Cheng
et al., 2019; Xia et al., 2020) and directly following a flood (Schneider
et al., 2016). However, impacts of flow alteration on water quality
(Nilsson and Renöfält, 2008) can also indirectly influence the
composition of algal communities (Allan, 2004; Lange et al.,
2016). Yet, evaluation of direct relationships between individual
flow metrics and biologic response across broad spatial scales and
assessment of whether such relationships provide a means of
quantitatively comparing stream conditions across large regions
remains limited.

Unified assessment tools have been developed to compare
biologic stream conditions across large heterogeneous
landscapes, such as California (see (Mazor et al., 2016; Beck
et al., 2019b; Theroux et al., 2020); however, quantitative
comparison of biologic metrics with flow metrics to assess
ecological response to flow alteration at these large spatial scales
has not been completed. Two key datasets in California provide the
opportunity to explore quantitative flow-ecology relationships
across a diversity of climate, geology, hydrology, and land use
impacts. For streamflow data, the US Geological Survey (USGS)
National Water Information System (NWIS) is a comprehensive
and distributed application that provides a wide range of water
data, including daily stream flows from over 28,000 stations across
the United States, including over 700 stations in California. To
describe and quantify the different flow components and

characteristics of California’s seasonal hydrograph, a functional
flows approach provides a standardized hydrologic method to
evaluate the role of the flow regime in structuring stream
ecosystems (Yarnell et al., 2020). Twenty-four functional flow
metrics were developed for California by Yarnell et al. (2020)
that quantify five key flow components (fall pulse flow, wet-season
baseflow, peak flow, spring recession flow, and dry-season
baseflow) of the flow regime, with individual metrics describing
the magnitude, timing, frequency, duration and rate of change of
each functional flow component (Supplementary Appendix S1).
The functional flow metrics are not directly linked to individual/
specific organisms/groups, but are associated with specific
biological and ecosystem processes (Yarnell et al., 2020).
Calculated from existing daily flow data, functional flow metrics
provide a comprehensive way to compare alteration and seasonal
variation in streamflow across different locations.

For biological and biophysical data, the SurfaceWater Ambient
Monitoring Program (SWAMP) is tasked with assessing surface
water quality throughout California. The program coordinates
water quality monitoring across the state and collects data to
support water resource management by the State Water Board.
The data collected by SWAMP’s probabilistic Perennial Stream
Assessment survey is used to characterize in-stream biological
conditions and make estimates about the extent of healthy
streams in different regions of the state. These data include two
standardized bioassessment indices, the California Stream
Condition Index (CSCI) based on benthic macroinvertebrate
data and the Algal Stream Condition Index (ASCI), that
provide quantitative measures of biologic stream conditions
across broad spatial scales (Mazor et al., 2016; Theroux et al.,
2020). CSCI and ASCI are predictive multimetric indices
developed for California streams (Mazor et al., 2016; Theroux
et al., 2020) and include many stream and landscape components
that describe biological sensitivities or tolerances to disturbance.
The indices allow for the evaluation of biotic response without
specificity to one individual metric (e.g., taxa richness), enabling
coverage of a broader range of characteristics and stressors
associated with individual watersheds. These indices are
intended to aid stream management (e.g., condition assessment,
prioritization, and flow target development; see (Stein et al., 2017;
Mazor et al., 2018; Beck et al., 2019a)) and have been integrated
into unified assessments of stream health (Beck et al., 2019b). With
low regional bias and consideration of natural variation, CSCI and
ASCI can distinguish between reference and biologically degraded
sites, can be applied at multiple scales, and are appropriate to apply
to the diverse landscapes of California (Mazor et al., 2018).
Leveraging these statewide biological datasets in conjunction
with methods for quantifying hydrologic variability via
functional flow metrics across California (Grantham et al., 2021.
this issue; Stein et al., 2021 this issue; Yarnell et al., 2020) provides a
unique opportunity to assess biological response to hydrologic
alteration across the large-scale diversity of California.

Here, we aim to address the need for broadly applicable
quantitative relationships between flow and ecology that
inform management decisions across large diverse regions,
such as California. Our objectives were to: 1) identify
functional flow and biological condition metrics that explain
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the greatest variation in statewide and regional data, and 2) assess
relationship trends between functional flow metrics and
biological condition. This research has important implications
for environmental flow management, particularly where
practitioners seek to link biological response to functional
flows, assess restoration efficacy, and track change in managed
freshwater systems.

2 MATERIALS AND METHODS

2.1 General Approach
To assess relationships between streamflow condition and stream
health, all ASCI and CSCI sites were spatially and temporally
paired with proximal USGS gages across California. In some cases
where ASCI and CSCI sites were associated with more than one
USGS gage, all site pairs were retained for the analysis. Using
these paired sites, we calculated 24 functional flow metrics
defined by Yarnell et al. (2020), using a minimum of 10 years
of continuous flow data at each selected USGS gage site. We
calculated hydrologic alteration (delta hydrology) using a
normalized difference between the observed median value and
predicted median value of each functional flow metric. Statistical
models were then developed to identify which of the functional
flow metrics were most closely associated with biological index
scores, and the directionality of those relationships.

2.2 Pairing of Biological Stream Condition
(California Stream Condition Index and
Algal Stream Condition Index) Sites With US
Geological Survey Gage Sites
We identified all bioassessment sites (n � 2,935) in the SWAMP
dataset with available ASCI and CSCI scores from data sampled
between 1994–2018 during late spring and summer months (May

to September, when sampling typically occurs). To pair
bioassessment sites with USGS gage sites, we filtered locations
to include only bioassessment sites occurring in the same
Hydrologic Unit Code (HUC) catchment as USGS gages with at
least 10 years of contiguous daily flow data (Figure 1). We filtered
bioassessment sites from the previous step to include only sites on
the same National Hydrography Dataset (NHD) mainstem stream
or river as the USGS gage (in the same HUC12 catchment)—
provided each site was within 10 km downstream of the
gage—using the nhdplusTools, dplyr, and sf packages in R
version 4.1.1 (Blodgett, 2018; Pebesma, 2018; Wickham et al.,
2018, 2019; R Core Team, 2021). Using this list of biological-
gage site pairs, we removed sites that did not contain flow data after
1994 to ensure temporal overlap with the biological assessment
sampling events (i.e., all ASCI and CSCI data was collected and
calculated after 1994). Data from final site pairs were used in all
subsequent analyses. For bioassessment sampling events and
resulting ASCI or CSCI scores that occurred in the same water
year at the same location, we calculated the median value of these
replicate scores to use in the statistical modeling.

2.3 Calculating Delta Hydrology Using
Functional Flow Metrics
Once the selected ASCI and CSCI sites were paired with proximal
USGS sites, we calculated functional flow metrics (FFM) over the
longest contiguous period of record for each USGS gage using the
using the Functional Flows Calculator API client package in R
(version 0.9.7.2)1, which uses hydrologic feature detection
algorithms developed by Patterson et al. (2020) and the
Python functional flows calculator2. We calculated a

FIGURE 1 | Workflow diagram of steps used to pair biological stream condition sites with USGS gage locations.

1https://github.com/ceff-tech/ffc_api_client.
2https://github.com/NoellePatterson/ffc-readme.
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normalized hydrologic alteration metric based on the departure
from the predicted reference flow (difference between the
observed FFM and the predicted [unimpaired reference
condition] FFM) associated with the stream segment at the
USGS gage (see Grantham et al. this issue for additional
details on how predicted reference-based functional flow
metrics were modeled). This measure of delta hydrology was
calculated as:

(50 percentile Observed FFM

− 50th percentile Predicted FFM)/ 50th percentile Predicted FFM

In some cases, the FFM value for a single water year at a gage
could not be calculated, resulting in an “NA” value. This could
occur for several reasons, such as the data record was incomplete
or the annual hydrograph was extremely different compared with
the predicted reference condition. These instances would often
lack a seasonal flow pattern that the flow calculator relies on to
derive subsequent metrics (Patterson et al., 2020). If more than
70% of the annual values for a metric across the period of record
at a gage were NA, then the flow alteration for that metric at that
gage was not included in the dataset. One additional metric,
seasonality, was calculated for each gage using the same period of
record; seasonality is based on Colwell’s metrics, which measure
the seasonal predictability of environmental phenomena
(Colwell, 1974). These metrics are defined in terms of
Predictability (P), Constancy (C), and Contingency (M)—
where M represents temporal variability and P is the reliable
recurrence of seasonal patterns across multiple cycles.
Importantly, Colwell’s P is maximized when environmental
phenomenon is constant throughout the year, if the seasonal
fluctuation is consistent across all years, or a combination of both
(Tonkin et al., 2017). Following Tonkin et al. (2017), we
calculated seasonality as Colwell’s M/P, as it can be applied in
a wide range of ecological studies (Tonkin et al., 2017; Radecki-
Pawlik et al., 2020; Peek et al., 2021) and provides a measure
ranging from 0 to 1, with 1 being highly seasonal, of how the
environment or daily flow varies within a single year.

2.4 Statistical Analysis of Stream Condition
Indices vs. Functional Flow Metrics
To determine which FFMs had the strongest association with
streamflow alteration, we modeled estimates of delta hydrology
(departure from the predicted reference flow) for each FFM
against biological condition scores (i.e., ASCI and CSCI) using
boosted regression tree analysis, following methods from Steel
et al. (2018).

Each model was run with CSCI or ASCI as the response and
the delta hydrology statistic for each FFM and seasonality as the
covariates. Boosted regression trees, a method from the decision
tree family of statistics, are well suited for large and complex
ecological datasets; they do not assume normality nor linear
relationships between predictor and response variables, they
ignore non-informative predictor variables, and they can
accept predictors that are numeric, categorical, or binary (Elith
et al., 2008; Brown et al., 2012). Boosted regression trees are also

unaffected by outliers and effectively handle both missing data
and collinearity between predictors (De’ath, 2007; Dormann
et al., 2013). Importantly, such methods are becoming more
common in ecological analyses and have been shown to
outperform many traditional statistical methods such as linear
regression, generalized linear models, and generalized additive
models (Guisan et al., 2007). Boosted regression tree models were
run with grid iteration and tuning across parameters (shrinkage
[0.001–0.005], interaction depth [3–5], number of minimum
observations in a node [3–10], and bag fraction [0.75–0.8]) in
model validation, following guidelines from Elith et al. (2008). To
assess the relative influence of each FFM in the model, we used
the mean-square error method (Ridgeway, 2015).

The most influential FFMs were further examined by plotting
the delta hydrology metric values against biological condition
scores. To better understand regional patterns and assess
relationships across different scales, we also analyzed ASCI
and CSCI scores and delta hydrology for FFMs across three
stream classifications—snowmelt, rain, and mixed (combination
of rain, snow, or groundwater)—based on Patterson et al. (2020)
and (Lane et al., 2017). Thus, each model was also run using only
sites associated with one of these stream classes.

3 RESULTS

3.1 Pairing of Biological Stream Condition
Sites With US Geological Survey Gage Sites
We mapped a total of 2,935 unique locations with CSCI values,
2,320 unique locations with ASCI values, and 736 USGS gage sites
(Figures 2–3) across California. Despite a relatively large pool of
sites to work with, after filtering and pairing, we identified 233
ASCI and 231 CSCI sites associated with 222 USGS gages across
the state. Thus, approximately 10% of the total bioindicator sites
exist in close spatial proximity (<10 river kilometers) to USGS
gage sites with long-term flow data (>10 years). Eight metrics
were dropped (Supplementary Appendix S1) from the FFM
calculations due to incomplete data, thus, for every site pair, data
included a single biologic condition score, and 16 flow alteration
metric scores, one for each of the remaining functional flow
metrics. The functional flow calculator returned a wide range of
values that indicate the broad array of regional hydrologic
conditions across California, including a small percentage (<2)
of extreme outliers that occurred in the 98th percentile or greater
of all data (Figure 4).

3.2 Statistical Analysis for Statewide Site
Pair Dataset
Boosted regression tree models with delta hydrology and
seasonality metrics explained 46% of the deviance in CSCI
data, with a cross-validation correlation of 0.678 (se � 0.019)
and 31% in ASCI with a cross-validation correlation of 0.552 (se �
0.041). Of the 16 functional flow metrics included in the model,
eight had relative importance values greater than 5%, and
Colwell’s seasonality metric was consistently one of the top
three variables in all models (Figure 5, Table 1). The two

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 7906674

Peek et al. Linking Functional Flows with Stream Condition

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


most influential FFMs in the statewide model were fall pulse
timing (CSCI � 13.6, ASCI � 12.3% relative influence) and
seasonality (CSCI � 15.5%, ASCI � 7.6%) (Figure 5). Dry
season timing was one of the most important variables in the
CSCI model, but it was not influential in the ASCI model
(Table 1). Three of the top metrics for CSCI related to timing
(fall pulse timing, Coldwell’s seasonality, and dry-season timing),
while the remaining significant metrics were associated with flow
magnitudes (wet-season baseflow and fall pulse magnitude)
(Table 1, Figure 5). For ASCI, the top metrics were also
primarily associated with timing (fall pulse timing, Colwell’s
seasonality, wet season timing, and spring timing), while other
influential metrics were largely associated with flow magnitude
(dry-season baseflow, wet-season baseflow, and fall pulse
magnitude). When comparing both ASCI and CSCI
cumulatively, the strongest metrics were fall-pulse timing and
Colwell’s seasonality, followed by dry-season baseflow and wet-
season timing. Interestingly, the smallest difference in relative
importance occurred in the fall pulse magnitude metric (Figure 5,
Table 1).

Normalized delta hydrology (departure from reference
value) for three of the top FFMs was plotted against the
ASCI and CSCI scores, grouped by the degree of stream
alteration based on bioassessment stream condition
thresholds defined by Mazor et al. (2016) and Theroux et al.
(2020). Values that fall below zero indicate flow values that are
earlier (timing) or decreased (magnitude) from the expected
reference condition (Figure 6). Based on the delta hydrology,
fall pulse timing occurred earlier than the expected reference

FIGURE 2 |Maps of California showing (A)CSCI (n � 2,935) and ASCI (n � 2,320) sites, (B) USGS gages (n � 736), and (C)CSCI-USGS (n � 231) and ASCI-USGS
(n � 233) site pairs with >10 years of flow data. Note, some ASCI and CSCI sites paired with more than one USGS gage site.

FIGURE 3 |Map of California showing selected biological sampling sites
for CSCI (circles, n � 231) and ASCI (diamonds, n � 233) data overlaying
stream classifications from Patterson et al. (2020).

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 7906675

Peek et al. Linking Functional Flows with Stream Condition

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


condition across all bioassessment threshold
categories—though the lowest values typically corresponded
with the most altered category—for both ASCI and CSCI.
For magnitude metrics, the pattern was more distinct in the
fall pulse magnitude metric for ASCI, which showed all but the
“Likely intact” scores were reduced from the expected reference
condition, and for CSCI, all the “very likely altered” and “likely
altered” categories had distributions that were reduced
compared to the expected reference conditions (Figure 6).
Interestingly, for Colwell’s measure of seasonality, there was
a consistent positive trend towards higher CSCI and ASCI
scores with more predictable and consistent seasonality
(recurring intra-annual patterns of temporal variability, e.g.,
summer low flow periods and winter floods occurring each year)
(Figure 7).

3.3 Statistical Analysis by Stream Class
Using the paired sites, we split sites based on stream class
(Patterson et al., 2020), with the largest number of sites
occurring in stream segments classified as Rain (Snowmelt:
ASCI � 37, CSCI � 55; Mixed: ASCI � 88, CSCI � 83; and
Rain: ASCI � 231, CSCI � 226). Because ASCI and CSCI sites
paired with multiple proximal USGS gages, sample sizes differed
from the total number of unique stations (Figures 2–3). Stream
class models of delta hydrology showed seasonality, fall pulse, dry
season, and wet season flow components were consistently

important in all regional models, while spring recession flow
was important primarily in the rain and mixed stream class
models (Table 1, Figure 8). The only regional model that
included a peak flow component was the ASCI-snowmelt class
model. In the snowmelt class models, the 10-years flood
magnitude had the highest relative influence score for ASCI,
while seasonality and fall pulse timing had the highest influence
for CSCI, respectively (Table 1). The fall pulse timing was also the
most influential metric for CSCI in the rain class model and for
ASCI in the model of mixed stream class sites (Table 1, Figure 9).

Several metrics with the highest relative influences in the
regional stream class models were further examined by
plotting the delta hydrology values for each FFM against the
paired bioindicator scores by the thresholds identified in each
bioassessment index. Figure 9 shows the highly variable nature of
data inherent to the wide diversity of climate and topography
across California. However, trends in the data indicated potential
underlying relationships that should be explored further. In
particular, the data indicated that as seasonality increases,
stream condition (ASCI or CSCI) index also generally
increased, with this pattern most pronounced in the mixed
and snowmelt stream classes (Figure 9A). For fall pulse
timing, the data indicated sites with much earlier fall flow
pulses than the expected reference condition generally
corresponded with the more altered flow categories for both
ASCI and CSCI (Figure 9B).

FIGURE 4 | Boxplots of delta hydrology for functional flow metrics used in the modeling analysis for paired sites across California. The solid pink line in the
background indicates no difference between the observed 50th percentile and the predicted reference 50th percentile metric value. Values to the left of the line are
reduced or early, and values to the right are inflated or late, relative to the expected reference value. Extreme outliers (>98 percentile) have been removed from the
boxplot.
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4 DISCUSSION

Quantitatively linking flow and bioassessment data across large diverse
regions, such as California, sheds light on which types of relationships
are important to consider when establishing ecological flow needs.
Our results support previous findings that flow seasonality and

alterations to seasonal flow components are closely related to
stream health and are likely important in restructuring biological
communities (Tonkin et al., 2017, 2021). Specifically, we found that
metrics associated with flow timing (including seasonality) were the
most influential in linking functionalflowmetrics with biologic stream
condition. Interestingly, while altered seasonality and timing were the

FIGURE 5 | Relative importance of functional flow metrics in boosted regression tree models assessing flow alteration relative to ASCI and CSCI scores for paired
sites across California. Relative influence values were calculated using a mean-square error (MSE) approach, which determines those variables with the largest average
reduction in MSE. Functional flow metrics are described in Supplementary Appendix S1.

TABLE 1 | Mean relative influence values for functional flow metrics included in four models (with data from all California and three regions based on stream class) that
assessed flow alteration in relation to ASCI and CSCI scores. Bolded values were most influential (>5%).

Flow metric name All CA Rain Mixed Snowmelt

CSCI ASCI CSCI ASCI CSCI ASCI CSCI ASCI

Fall pulse timing 13.6 12.3 20.2 3.6 2.6 35.7 8.6 10.4
Fall pulse magnitude 6.4 6.9 6.3 4.9 2.7 8.1 10 5.9
Wet-season timing 5.1 13.8 2.8 17.6 3.6 6.5 2.1 11.6
Wet-season baseflow 5.8 5 6.6 4.4 1.1 4.6 1.1 5.8
Wet-season duration 4.4 2.7 4.4 3.4 9.7 8.1 5.1 2.5
Wet-season median flow 2.2 3.7 2.7 5.7 3.2 0.7 8.2 1.9
10-year flood magnitude 3.8 3.1 3.5 2.7 5.3 3.3 3.4 16.7
2-year flood magnitude 4.8 2.8 5.2 2.3 3.6 3.1 4.1 2.5
5-year flood magnitude 3 1.4 3.4 1.1 3.3 1.2 3.6 0.9
Spring timing 4.4 4.1 8 6.8 9.1 1.5 1.7 8.4
Spring duration 3.8 4 3.5 2.2 8 7.3 2.7 2.4
Spring recession magnitude 3.8 6.5 2.8 5.8 3 6.7 7.6 1.5
Dry-season high baseflow 2.7 5 3 5.8 9 1 1.2 9.7
Dry-season baseflow 5.9 15.8 6.5 16.4 4.7 3.2 7.4 2.8
Dry-season timing 9.7 1.2 5.1 1.1 11.4 2.7 5 2.6
Dry-season duration 5.2 4 6.2 3.5 5.7 4 8 1.4
Colwell’s M/P 15.5 7.6 9.8 12.7 14.2 2.1 20.3 13
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FIGURE 6 | Influential functional flow metric values (normalized as delta hydrology) versus binned ASCI and CSCI values (based on thresholds from Mazor et al.
(2016) and Theroux et al. (2020) for all paired sites across California. The red zero line delineates departure from expected reference flow metric, where values <0 are
reduced or early, and values >0 are inflated or late, relative to the expected reference value. Notches indicate an approximate 95% confidence interval to compare
medians, where if notches of two boxplots do not overlap, this suggests the medians are significantly different (see McGill et al. (1978).

FIGURE 7 | Colwell’s seasonality versus binned ASCI and CSCI values (based on thresholds from Mazor et al. (2016) and Theroux et al. (2020) for all paired sites
across California. Notches indicate an approximate 95% confidence interval to compare medians, where if notches of two boxplots do not overlap, this suggests the
medians are significantly different (see McGill et al. (1978).
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most influential flow metrics for CSCI, altered dry season baseflow
and timing were most informative for ASCI, indicating at large spatial
scales (e.g., California), there may be differences in how exactly
seasonal flow changes invertebrate and algal communities. In
developing environmental flow recommendations, managers
should look to retaining the natural seasonal timing of higher and
lowermagnitude flows in order to support native aquatic assemblages.

4.1 TimingMetrics had the Strongest Link to
Biological Stream Condition
In both statewide and regional stream class models, timing
metrics were the most important, often comprising three or
more of the top five influential metrics. Of the timing metrics,
fall pulse timing was the most influential in describing biological
differences in the statewide CSCI and ASCI models. The timing of
the fall pulse flow in California typically occurs in November
(Ahearn et al., 2004) but varies widely between 1st October and
15th December (Patterson et al., 2020). It represents the first
precipitation event following the dry season baseflow period, and
thus is important in determining the biological condition of
streams (Yarnell et al., 2015). During the prior dry season low
flow period, filamentous algal mats typically become more
prevalent and are associated with increases in stream
temperature, reduced streamflow velocity, and nutrient
enrichment (McIntire, 1966; Poff et al., 1990; Suren et al.,
2003). Changes in stream velocity associated with the arrival

of the fall pulse flow may scour and effectively remove algal mats,
ultimately flushing organic material downstream. The fall pulse
flow is also known to flush organic matter and nutrient subsidies
from adjacent riparian habitats to streams, enhancing food
resources and detrital carbon for foraging invertebrates
(Ahearn et al., 2004; Blanckaert et al., 2013). During the dry
season low flow period, invertebrates commonly use the
hyporheic zone as a refuge from potentially unsuitable
environmental conditions (e.g., temperature) (Wood et al.,
2010; Stubbington, 2012). Fall pulse flows reconnect streams
with their hyporheic zone and decrease water temperature
(Yarnell et al., 2015) providing a cue for fall or winter
invertebrate emergence (Ward and Stanford, 1982), the timing
of which may help synchronize life history events or behavioral
adaptations that increase reproductive success (Lytle, 2001; Lytle
and Poff, 2004). As a result, fall pulse flows not only increase
invertebrate habitat availability and heterogeneity (Blanckaert
et al., 2013; Naman et al., 2016), but reconnect invertebrate
communities and population gene flow through dispersal
(Townsend and Hildrew, 1976; Mackay, 1992), providing a
vital food resource for resident fishes and other higher order
consumers. Thus, fall pulse flow timing may be a key factor in re-
establishing food web and community connectivity (Elliott, 1973;
Nislow et al., 1998; Romaniszyn et al., 2007).

While timing was highly influential in the statewide ASCI
model, dry season baseflow was the most influential metric, such
that flows both above and below reference condition may impact

FIGURE 8 | Relative importance of functional flow metrics in boosted regression tree models assessing flow alteration relative to ASCI and CSCI scores by stream
classification (Patterson et al., 2020). Relative influence values were calculated using a mean-square error (MSE) approach, which determines those variables with the
largest average reduction in MSE. Functional flow metrics are described in Table 1.
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algal condition (Table 1, Figures 5–6). Dry season baseflow
supports algal growth and primary producers by maintaining
water temperature and dissolved oxygen (Yarnell et al., 2020). As
a result, low flows can increase algal biomass and cover (Biggs,
1985; Biggs et al., 2005; Schneider and Petrin, 2017), and due to
lower velocities and higher water temperature, algal communities

change from a diatom dominated assemblage to a filamentous
algae dominated system (Dewson et al., 2007). However, once the
fall pulse flow begins, the benthic communities shift again in
response to changing flow and temperature conditions, thus
helping to explain the combined influence of dry season
baseflow and fall timing metrics on algal communities.

FIGURE 9 | (A)Colwell’s seasonality versus binned ASCI and CSCI values (based on thresholds fromMazor et al. (2016) and Theroux et al. (2020) for all paired site
by stream class. Notches indicate an approximate 95% confidence interval to compare medians, where if notches of two boxplots do not overlap, this suggests the
medians are significantly different (see McGill et al. (1978). (B) Fall pulse timing values (normalized as delta hydrology) versus binned ASCI and CSCI values (based on
thresholds from Mazor et al. (2016) and Theroux et al. (2020) for all paired site by stream class. The red zero line delineates departure from expected reference flow
metric, where values <0 are reduced or early, and values >0 are inflated or late, relative to the expected reference value.
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4.2 Seasonality and Climate Change
Our results indicated that timing was the most important factor to
consider when linking biological stream condition with flow,
especially for invertebrates that have evolved in river systems
with consistent hydrologic seasonality and predictability. Timing
metrics such as wet season timing, dry season timing, spring timing,
and seasonality were all influential in the statewide and regional
models. While California’s Mediterranean climate integrates a
significant amount of interannual variation (Persad et al., 2020),
flow regulation has altered patterns of hydrologic seasonality and
predictability in many watersheds (Kupferberg et al., 2012; Peek
et al., 2021). Climate change is expected to exacerbate these patterns
such that earlier peak flow and snowmelt timing will occur (Kapnick
and Hall, 2010) and seasonal predictability will decrease as more
extreme wet and dry events take place (Swain et al., 2018; Persad
et al., 2020). Therefore, environmental flow recommendations
should incorporate the ecological flow needs of benthic
invertebrate and algal communities with consideration for both
current and future conditions, particularly if existing
communities are mismatched to current environmental
conditions (Botero et al., 2015).

4.3 Modeling Limitations
There are many potential factors that cannot be accounted for within
modeling frameworks focused solely on the impacts of flow
modification on biologic conditions. Interactions with stream
temperature, ecological dynamics associated with population
density and predation, as well as water chemistry and nutrient
loads can all play important roles in influencing biological stream
condition (Nilsson and Renöfält, 2008; Miller et al., 2009; Lange et al.,
2016; Schneider et al., 2016). However, the benefit of linking biological
indices like CSCI orASCIwith flow is the ability to quantify and assess
stream conditions across broad spatial areas, often with very different
underlying geography, geology, and watersheds. The biologic indices
are designed to be regionally stable and are standardized so they can be
compared across large spatial scales (Mazor et al., 2016). BRTs do not
explicitly account for spatial autocorrelation, thus models may have
under or overestimated the strength of the relationships we identified
based on systematic similarities associated with spatial clumping of
sites. However in the context of our study, we do not believe this is an
issue because the sampling design selected both ASCI and CSCI sites
independently, and by using stream class, we were able to compare
samples across very different geographic space (i.e., “mixed” stream
class can occur in the northern coast of California or in the Sierra
Nevada or in the Southern Coast). Nonetheless, patterns we identified
across stream class and statewide scales showed similarities that are
unlikely to be influenced by spatial autocorrelation. It is also important
to use caution when interpreting regional stream class models for
ecological meaning because CSCI and ASCI produce locally relevant
reference expectations. For example, landscape heterogeneity and
local climate variability could contribute to variation in the data
within models from the same stream class. Future approaches to
assessing flow alteration and biologic stream condition at finer
scales may benefit from more specific models that account for
important local variables or use individual functional feeding
groups or taxa as the biologic response. Nonetheless, identifying

key functional flow metrics that influence stream health, as
shown here, will help inform the development of ecological flow
needs across broad regions, such as California.

5 CONCLUSION

We paired bioassessment sites and hydrologic gaging sites across
the broad diversity of California’s landscape to evaluate links
between flow alteration and stream health conditions. Despite a
significant limitation in the number of available sites with paired
biologic and hydrologic data, we identified relationships between
functional flow metrics and biologic condition indices and found
that alterations in seasonality, fall pulse and wet season timing, and
dry season baseflow were the most influential in shaping stream
communities. These results can help to inform flow management
both in terms of developing ecological flow needs that explicitly
mimic natural seasonal timing and monitoring changing stream
conditions with restoration activities or future climate changes.

Future analyses may leverage this information and approach to
focus on more discrete flow-ecology relationships, with particular
attention to temporal lags associated with drought impacts or the
sensitivity of biological metrics. More specific hydrologically
sensitive biological metrics (e.g., more distinct functional feeding
groups in benthic invertebrate data, hydrologically sensitive
taxonomic groups, etc.) may provide additional detail for
assessment of the impacts of flow alteration on a given stream
reach. Furthermore, this approach provides a method to assess such
metrics and relationships through time, so adaptive approaches to
flow management can be implemented, monitored, and revised.

This analysis highlights that despite the information-rich spatial
datasets that spanmuch of California, there remains a significant gap
in leveraging and layering these datasets in an effective manner.
Pairing biological and flow sites spatiotemporally was challenging,
and sites were limited across all stream classes, but particularly in
snowmelt dominated systems. When data from biological or
hydrological time series are limited, alternative approaches can be
implemented using modeled streamflow or modeled stream
condition indices to predict whether or not flow alteration
deviates from reference expectations (Stein et al., 2017; Mazor
et al., 2018; Irving et al., 2021; Maloney et al., 2021).
Furthermore, ongoing monitoring may benefit from more
discrete and targeted sampling to link biological data more
accurately with surface flow data. Nonetheless, this current
approach provides a novel integration of disparate spatiotemporal
datasets and indicates broad relationships can be identified between
functional flow metrics and indices of biological stream condition.
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