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Abstract18

The Southern California Bight (SCB), an eastern boundary upwelling system, is impacted19

by global warming, acidification and oxygen loss, and receives anthropogenic nutrients from20

a coastal population of 20 million people. We describe the configuration, forcing, and vali-21

dation of a realistic, submesoscale resolving ocean model as a tool to investigate coastal eu-22

trophication. This modeling system represents an important achievement because it strikes23

a balance of capturing the forcing by U.S. Pacific Coast-wide phenomena, while representing24

the bathymetric features and submesoscale circulation that affect the transport of nutrients25

from natural and human sources. Moreover, the model allows simulations at timescales that26

approach the interannual frequencies of ocean variability. The model simulation is evaluated27

against a broad suite of observational data throughout the SCB, showing realistic depiction28

of the mean state and its variability with satellite and in situ measurements of state variables29

and biogeochemical rates. The simulation reproduces the main structure of the seasonal up-30

welling front, the mean current patterns, the dispersion of wastewater plumes, as well as31

their seasonal variability. Furthermore, it reproduces the mean distributions of key biogeo-32

chemical and ecosystem properties and their variability. Biogeochemical rates reproduced33

by the model, such as primary production and nitrification, are also consistent with mea-34

sured rates. This validation exercise demonstrates the utility of using fine-scale resolution35

modeling and local observations to identify, investigate, and communicate uncertainty to36

stakeholders to support management decisions on local anthropogenic nutrient discharges37

to coastal zones.38

Plain Language Summary39

We applied and validated an ocean numerical model to investigate the effects of land-40

based and atmospheric nutrient loading on coastal eutrophication and its effects on carbon,41

nitrogen and oxygen cycles of the Southern California Bight, an upwelling-dominated marine42

embayment on the U.S. West Coast. The model is capable of high resolution, multi-year43

hindcast simulations, which enable investigations to disentangle natural variability, climate44

change, and local human pressures that accelerate land-based and atmospheric nutrient45

loads. The model performance assessment illustrates that it faithfully reproduces monitored46

ocean properties related to algal blooms, oxygen and water acidity, among others, that47

can be traced to land-based and atmospheric inputs of nutrients and carbon from human48

activities. The model performance assessment helps to constrain uncertainties in predictions49

to support ongoing conversations on approaches to reduce the effects of climate change,50

including considerations of management of local nutrient and carbon inputs.51

1 Introduction52

Human-driven eutrophication has resulted in profound impacts to coastal ecosystems53

around the world. These impacts are arguably the best studied in estuaries and enclosed54

bays (e.g. Chesapeake Bay; Cerco and Cole (1993); Boesch et al. (2001)) and semi-enclosed55

seas such as the Baltic Sea (Savchuk & Wulff, 2007; Cederwall & Elmgren, 1990), the56

Mediterranean Sea (Arhonditsis et al., 2000), and the Gulf of Mexico (Justić et al., 2005;57

Laurent et al., 2018). To date, few investigations of coastal eutrophication have occurred in58

Eastern Boundary Upwelling systems (EBUS). While strong upwelling and vigorous surface59

currents would generally limit the extent to which coastal eutrophication could occur (Fennel60

& Testa, 2019), such investigations have also been limited by coupled physical biogeochem-61

ical numerical modeling approaches that can adequately resolve fine-resolution bathymetry62

and the complexities of submesoscale circulation (McWilliams, 2016; Dauhajre et al., 2019),63

while simulating a sufficient duration (several years) to distinguish oceanic versus terrestrial64

forcing. These submesoscale circulation features, including fine scale eddies and filaments65

< 5 km in horizontal resolution, strongly control the magnitude and variability of nearshore66

upwelling and associated nutrient transport. Thus, high resolution, submesoscale-resolving67
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numerical models are a necessary prerequisite for mechanistic modeling studies and source68

attribution of oceanic versus terrestrial drivers of coastal eutrophication in EBUS. Inad-69

equate modeling system and lack of numerical model validation have been identified as70

significant barriers to effective, evidence-based solutions to coastal eutrophication (Boesch,71

2019).72

All the necessary ingredients are present to motivate a numerical modeling investigation73

of the role of coastal eutrophication in driving ocean acidification and oxygen loss in the74

Southern California Bight (SCB), a large marine open embayment found in the California75

Current System (CCS) on the U.S. Pacific Coast. First, the SCB is a biologically-productive76

region, and thus of high economic and ecological importance. Seasonal upwelling of nutrient-77

rich deep water maintains high rates of biological productivity over broad scales. At the78

same time, upwelling draws water masses that are naturally low in dissolved oxygen, pH,79

and carbonate saturation state (ΩAr) onto the shelf and into the photic zone (Sutton et al.,80

2017). Second, the SCB has one of the most spatially comprehensive and longest-running81

coastal observational systems in the world. Several physical and biogeochemical variables82

are sampled regularly and extensively, creating an ideal setting for model-data comparisons.83

Third, the SCB is home to one of the most densely populated coastal regions in North Amer-84

ica, where the discharges of primary or secondary treated wastewater from a population of85

20 million people are released to the coastal zone via ocean outfalls, along with the urban86

and agricultural runoff from 75 rivers. These nutrient sources rival natural upwelling in87

magnitude (Howard et al., 2014), roughly doubling available nitrogen to nearshore coastal88

waters. Intensifying ocean acidification, oxygen loss and harmful algal blooms have moti-89

vated California policy makers to consider reducing anthropogenic nutrients as a climate90

change mitigation strategy (Ocean Protection Council, 2018), but wastewater treatment91

plant upgrades and methods to increase control or reduce non-point sources would cost92

billions. A numerical modeling approach is needed to disentangle the effects of natural93

upwelling and climate change from anthropogenic nutrient loading from land-based and94

atmospheric sources.95

To support such investigations, the regional oceanic model system (ROMS, Shchepetkin96

and McWilliams (2005)) coupled to the biogeochemical elemental cycling model (BEC,97

Moore et al. (2004)) has been recently adapted for the CCS (Renault et al., 2021; Deutsch98

et al., 2021). A downscaled model domain was established, scaling from a 4 km horizon-99

tal resolution configuration spanning the entire CCS, to a 1 km resolution grid covering100

the much of the California coast (latitude < 40.25◦N), to a 0.3 km grid in the Southern101

California Bight (SCB), where investigations of local anthropogenic inputs were focused.102

Modeling experiments investigating submesoscale transport (captured at model resolutions103

≤ 1 km) have demonstrated an up to ten-fold increase in the magnitude of instantaneous104

vertical N fluxes (Kessouri, Bianchi, et al., 2020) relative to mesoscale transport represented105

by a 4 km model (Section 2.2). Furthermore, a finer horizontal resolution of bathymetry106

improves the representation of coastal currents, submesoscale circulation, and coast-offshore107

connectivity (Dauhajre et al., 2019). For this reason, investigations of coastal eutrophica-108

tion are simulated here at 0.3 km horizontal resolution. Simulations conducted with the 4109

km ROMS-BEC model domain have been validated for regional-scale atmospheric forcing,110

physics, and biogeochemistry, including O2, carbonate saturation state, primary productiv-111

ity, and hydrographic parameters, demonstrating that the model captures broad patterns112

of critical properties in the CCS (Renault et al., 2021; Deutsch et al., 2021). However, ad-113

ditional focused validation of nearshore, anthropogenically-enhanced gradients in nutrients,114

primary production, oxygen and pH in model simulations conducted at 0.3 km resolution115

are needed to gauge model utility to investigate the impacts of coastal eutrophication on116

ocean acidification and oxygen loss.117

We employed this downscaled, submesoscale-resolving physical-biogeochemical model118

to investigate the effects of land-based and atmospheric nutrient inputs in driving coastal119

eutrophication and ocean acidification and oxygen loss (Kessouri et al., 2021). The aim of120
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this manuscript is to: 1) document the SCB ROMS-BEC model configuration, including the121

effects of land-based and atmospheric inputs of nutrients and organic carbon, intended to122

support investigations of coastal eutrophication, and 2) present a validation of SCB ROMS-123

BEC simulations against available observations, focusing on anthropogenically-enhanced124

gradients in nutrients, primary production, oxygen, and pH.125

2 SCB coupled physical and biogeochemical model description, configu-126

ration and forcing127

2.1 Model description128

2.1.1 Ocean hydrodynamics129

Ocean hydrodynamics is modeled with the Regional Oceanic Modeling System (ROMS)130

(Shchepetkin & McWilliams, 2005), a free-surface, terrain-following coordinate model with131

3-D curvilinear coordinates that solves the primitive equations with split-explicit time steps.132

It contains state-of-art numerical algorithms that provide an accurate and stable representa-133

tion of physical processes down to scales of tens of meters, and allows for offline downscaling134

of high-resolution sub-domains within larger domains. The offline downscaling is based135

on the Orlanski scheme for the baroclinic mode (Marchesiello et al., 2001) and a modified136

Flather scheme for the barotropic mode (Mason et al., 2010). Vertical mixing in the bound-137

ary layers is represented by a K-profile parameterization (W. G. Large et al., 1994). The138

U.S. West Coast hindcast model has been successfully run over two decades (between 1997139

and 2017) at 1 and 4 km horizontal resolution using high-resolution spatial and temporal140

atmospheric forcing that represent the effects of wind drop-off, the current feedback on the141

surface stress, and high-frequency wind fluctuations (Renault, Hall, & McWilliams, 2016a;142

Renault, Molemaker, McWilliams, et al., 2016). For this study, we further downscale to143

0.3-km resolution to capture submesoscale processes.144

2.1.2 Biogeochemistry145

Ocean biogeochemical modeling approaches can have a broad range of complexities,146

ranging from few functional groups (e.g. NPZD models, Fasham (1993)), to multiple biogeo-147

chemical cycles (e.g. C, N, O) and plankton functional groups. To provide a representation148

of biogeochemical cycles, ROMS is dynamically coupled to the Biogeochenical Elemental149

Cycling (BEC) model (Moore et al., 2004; Gruber, 2004; Gruber et al., 2011; Deutsch et150

al., 2021). A schematic of BEC is shown in Fig. 1(b). BEC is a multi-element (C, N, P,151

O, Fe, Si) and multiplankton model that includes three explicit phytoplankton functional152

groups (picoplankton, silicifying diatoms, N-fixing diazotrophs), one zooplankton group,153

and dissolved and sinking organic detritus. The impacts of calcifying phytoplankton (coc-154

colithophores) on the carbon system is represented implicitly. Remineralization of sinking155

organic material follows the multi-phase mineral ballast parameterization of Armstrong et156

al. (2001).âĂİ and âĂĲSedimentary processes have also been expanded. Particulate organic157

matter reaching the sediment is accumulated and slowly remineralized with a timescale of158

330 days, to provide a buffer between particle deposition and nutrient release. Nitrogen loss159

to the sediment is parameterized according to the empirical diagenetic model for sediment160

denitrification of Middelburg et al. (1996). Water column denitrification is only active when161

oxygen concentrations fall below 5 mmol m−3. Sedimentary release of Fe is based on the162

benthic chamber measurements of (Severmann et al., 2010) for the California-Oregon coast,163

and increases as bottom water oxygen concentrations decrease. Atmospheric dust deposition164

follows the parameterization by Mahowald et al. (2006) and provides an additional source165

of iron at the surface, although of minor importance compared to sedimentary iron release166

in the region (Deutsch et al., 2021). The ecosystem is linked to a carbon system module167

that tracks dissolved inorganic carbon (DIC) and alkalinity, and an air-sea gas exchange168

module that allows realistic representation of dissolved gases (e.g. O2, CO2 and nitrous169

oxide), based on the formulation of Wanninkhof (1992).170
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Figure 1: a) ROMS-BEC model configurations. dx = 4 km is the black box, dx = 1
km is the blue box, dx = 0.3 km is the red box. Background color shading show the
topography from dx = 4 km. b) Schematic of the biogeochemical elemental cycling model.
The schematic shows state variables (boxes) and biogeochemical rates and feedback (arrows).

2.1.3 SCB Model configuration171

The SCB model domain extends along a 450 km stretch of the coast, from Tijuana to172

Pismo Beach, and about 200 km offshore. This grid, shown in Fig. 1a), is composed of 1400173

x 600 grid-points, with a nominal resolution of dx = 0.3 km. The grid has 60 σ-coordinate174

vertical levels using the stretching function described in Shchepetkin and McWilliams (2009),175

with the following stretching parameters: θs = 6, θb = 3, and hc = 250-m. The model is176

run with a time step of 30 seconds, and outputs are saved as 1-day averages.177

The oceanic forcing of the 0.3 km domain originates from multi-level offline downscaling.178

A 4-km simulation is initialized and forced at the open boundaries by a preexisting North-179

east Pacific-wide ROMS solution at 12-km resolution (Renault et al., 2021), initialized and180

forced on the boundaries by the global model Mercator Glorys2V3 (http://www.myocean.eu)181

for the physics, and with reconstruction of biogeochemical fields using world ocean database.182

We used climatological fields for organic material, and relationships with density for nutri-183

ents. Full description of the boundary conditions and initialization of the parent configura-184

tion at 12-km can be found in Deutsch et al., 2021. The 4-km configuration is run for the185

period 1995-2017, after a spin-up of 2 years. A 1 km simulation is initialized and forced186

from the 4-km model, including initial conditions and open boundary conditions, starting187

in October 1996 and ending in December 2007. The 0.3-km simulation is initialized and188

forced at its boundaries by the 1-km simulation starting from January 1997 and ending in189

December 2000. The bathymetry used in this configuration comes from the Southern Cali-190

fornia Coastal Oceanic Observation System (SCCOOS) 3 Arc-Second Coastal Relief Model191

Development (90-m horizontal resolution).192

The oceanic model is forced by hourly outputs from the atmospheric uncoupled Weather193

Research and Forecast model (WRF06; Skamarock and Klemp (2008)). Using bulk for-194

mulae (W. B. Large, 2006), WRF06 provides heat, surface evaporation, momentum and195

atmospheric data and is run at 6 km resolution over a domain similar to the 4-km (Fig. 1196

and used for Renault, Hall, and McWilliams (2016b)), and includes a wind-current coupling197

parameterization necessary to attain more realistic simulations of the oceanic eddy kinetic198

energy (EKE) and circulation (Renault, Molemaker, McWilliams, et al., 2016; Renault et199

al., 2020).200
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Model simulations were conducted from 1997-2000, a period chosen to capture the ef-201

fects of all three phases of the El NiÃśoâĂŞSouthern Oscillation (ENSO); it also captures202

the beginning of the "modern" state of point source management in the SCB, where sev-203

eral large Publicly Owned Treatment Plants (POTW) were in transition from primary to204

secondary treatment. (We will refer to submarine point sources outfalls from the treatment205

plants as "POTW" hereafter.)206

2.2 Importance of submesoscale circulation207

Figure 2: (Upper panel) Timeseries (1997-2001) of the vertical eddy flux of nitrate at 40-m
depth calculated as follow: wN = wN + w′N ′, where the overbar represents a monthly
average, and the prime the deviation from this average, for region covering the entire South-
ern California Bight (31.4-35.3N and 116.5-121.8W). The minimum and maximum values
(i.e. the envelope) of the flux are shown in blue for the 4-km solution, in red for the 1-km
solution and in green for the 1/3 km. (Lower panel) Snapshot of the vertical flux of nitrate
in spring at 40-m off the coast of Palos Verdes that shows higher magnitudes and enhanced
variability as resolution increases.

Downscaling to dx = 0.3-km allows the model to represent ocean circulation that208

includes baroclinic and barotrophic eddies and turbulence generated at the submesoscale209

(Capet, Campos, & Paiva, 2008). Submesoscale dynamics energizes frontogenesis by mesoscale210

straining and mixed layer instabilities (Capet, Klein, et al., 2008; Capet, Campos, & Paiva,211

2008; Capet, McWilliams, et al., 2008). Oceanic fronts are a driver of significant nutrient212

supply to the upper ocean. They have also been recognised as areas of enhanced biomass213

in many regions of the global ocean (Woodson & Litvin, 2015), as well as important loca-214

tions for fisheries (e.g. (Galarza et al., 2009)). Resolving submesoscale eddies dramatically215

increases the variability of vertical fluxes of biogeochemical tracers and other material prop-216

erties, eventually allowing a more accurate representation of chemical and biological con-217

stituents. Fig. 2 (upper panel) shows the temporal variability and horizontal distribution218

of vertical eddy fluxes of nitrate at 40-m from 3 different resolutions with the ROMS-BEC219

model (see section 2.1.3). Submesoscale dynamics increase instantaneous fluxes by more220

than one order of magnitude, with more frequent and vigorous fine-scale structures (Fig. 2,221
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bottom panels) when increasing the resolution from 4-km to 1-km, and similarly another222

order of magnitude when increasing resolution from 1 km to 0.3-km. Intensification of ver-223

tical flux of nitrate at the euphotic depth has previously been shown in idealized models224

(Mahadevan, 2016; Lévy et al., 2012) and in realistic simulations in the central California225

upwelling system (Kessouri, Bianchi, et al., 2020), but has never been modeled in the SCB226

at this resolution. The impact of the submesoscale on nutrients fluxes is more apparent227

during winter, when the mixed layer is deeper, wind forcing more intense, and submesoscale228

circulation more energetic. During this period, nutrients are transported from the nutri-229

cline by transient fronts that can last only few days, and are only properly resolved in the230

0.3km configuration. Submesoscale eddies have been associated with increased productivity231

in the oligotrophic ocean (Mahadevan, 2016) and decreased productivity in the upwelling232

region (Kessouri, Bianchi, et al., 2020). Our submesoscale-resolving simulation at dx =233

0.3-km is an opportunity to quantify the balances of nitrogen, dissolved oxygen, carbon and234

productivity using a more realistic representation of the physical circulation, as well as a235

representation of urban anthropogenic inputs to the ocean.236

Our simulations show that the increased number of fronts and submesoscale instabili-237

ties promote intense variability of nitrate transport, as shown in Fig. 2, as well as increased238

heterogeneity at the subsurface chlorophyll a maximum. However, surface phytoplankton239

biomass is only intensified if the timescale of the enrichment is sufficiently long and main-240

tained in these small scale features. We argue that modeling at this scale allows for a more241

accurate simulation of biogeochemical tracers and rates, as described in subsequent sections.242

However, we also note that comparing the model and observations to highlight the realism of243

submesoscale processes is challenging, mostly because of the lack of observations of biogeo-244

chemical variables at high enough spatial and temporal resolution. Furthermore, changes245

in the distribution of biogeochemical tracers as the model resolution increases are relatively246

subtle (Kessouri, Bianchi, et al., 2020), and in general within the range of variability of247

observations and simulations. By construction, the submesoscale-resolving model better248

represents scales relevant to coastal circulation and anthropogenic nutrient emission and249

dispersal, and the underlying dynamics (Capet, Campos, & Paiva, 2008). Showing that this250

configuration indeed compares realistically with observations, in an average and statistical251

sense, strongly supports the validity of the model for coastal biogeochemical applications,252

even though aspects of the simulations such as submesoscale processes remain challenging253

to directly assess.254

2.3 Terrestrial and atmospheric forcing of freshwater, nutrients and carbon255

Model simulations were forced with a monthly time series of spatially-explicit inputs256

(Fig. 3, upper), including freshwater flow, nitrogen, phosphorus, silica, iron, and organic257

carbon representing natural and anthropogenic sources (Sutula et al., 2021b). These data258

include POTW ocean outfalls and riverine discharges (1997-2017) and spatially-explicit259

modeled estimates of atmospheric deposition. POTW effluent data were compiled from per-260

mit monitoring databases and communication with sanitary agencies. Monthly time series261

of surface water runoff from 75 rivers are derived from model simulations and monitoring262

data (Sutula et al., 2021b). Direct atmospheric deposition is derived from the Community263

Multi-scale Air Quality (CMAQ) model (Byun et al., 2006), and follows the implementation264

of Deutsch et al. (2021). In this paper, we discuss in detail the formulation of the river and265

wastewater outfall inputs.266

2.4 Configuration of river and wastewater outfall forcing in the model267

Ocean outfalls and coastal rivers are modeled as mass sources into the ocean (Fig. 3,
upper). To accomplish this, we add explicit volume fluxes to the otherwise divergence-free
flow in the ocean. The inclusion of these fluxes makes it possible to account for associated
sources of tracers, while satisfying conservation laws. Specifically, our approach allows for
the proper influx of fresh water in the ocean, without resorting to a ‘virtual salt’ flux,
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Figure 3: (Upper panel) Location of rivers and POTW outfalls along the SCB. (Lower
panel) Location of monitoring stations used for the validation, including POTW quarterly
monitoring surveys, CalCOFI seasonal observations, showing the line numbers, Santa Mon-
ica Bay Observatory (SMBO), and San Pedro Oceanographic Timeseries (SPOT), mooring.
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which is a common approach in larger scale ocean models (Kang et al., 2017). Since we
explicitly include known volume fluxes for both rivers and outfall pipes, specification of
tracer concentration is sufficient to correctly model the source terms. The tracer evolution
equations that are used in ROMS are implemented by using control volumes (Shchepetkin
& McWilliams, 2005) where for each tracer concentration C = C(x, y, z, t),

∂
t

C dV

∂t
=

x
unC dA. (1)

where V = V (x, y, z, t) is the volume of the entire domain, un is the normal velocity into the
volume and A = A(x, y) is the total area of grid cells source is being input. Additionally,
we enforce mass conservation which implies;

∂V

∂t
=

x
un dA. (2)

In absence of rivers and outfalls, the flow is volume conservative, and the integral on the268

right hand side of Equation 2 is zero. Using Equations 1 and 2, it is easy to see that the mean269

concentration of a tracer can be lowered if the average concentration of the flux entering the270

control volume is less than the mean concentration in that volume. In this manner, fresh271

water rivers will lower the salinity of the water in which they enter. All 75 rivers and 23272

POTW pipes that are considered in this study are implemented in this manner.273

Each individual source is based on the following equation:

S(x, y, z, t) =
W (x, y, z)Qs(t)Cs(t)

Vs
(3)

With:274

S(x, y, z, t): volume source of contaminant (mmol m−3 s−1).275

W (x, y, z): non-dimensional shape function (with values between 0 and 1).276

Qs(t): water volume flux from the source (m3 s−1).277

Cs(t): concentration of the tracer C in the source water (mmol m−3).278

Vs: effective volume of the source (m3).279

280

For each source, Qs(t) and Cs(t) are prescribed as time series. The shape function
W (x, y, z) distributes the tracer spatially and in the water column, representing non-resolved
mixing and dilution effects. Its values represent the relative intensity of the in situ tracer
injection, with values between 0 and 1. Tracer concentration C is distributed in the water
column as C(x, y, z, t) = W (x, y, z)Cs(t) The effective 3D volume of the source is calculated
from the shape function W (x, y, z) as:

Vs =
y

W (x, y, z) dV (4)

where the integral is over the model domain. For convenience, we assume that W (x, y, z)
can be separated into a horizontal shape function A(x, y), multiplied by a vertical shape
function H(z) (both non-dimensional and with values between 0 and 1), such that:

Vs =
x

A(x, y) dx dy

∫
H(z)dz = AsHs (5)

Here, As represents the effective source surface area (m2), and Hs the effective source281

thickness (m). The functions A(x, y) and H(z) are defined differently for POTW and rivers.282

They are assumed to be fixed in time; a time-dependent generalization (for example to283

mimic variations in the depth of the POTW buoyant plume) is straightforward. For POTW284

inputs, at each main diffuser, the horizontal distribution A(x, y) of the source is shown in285

Fig. S1. This method of weighting the plume in different cells allows the effluent to be286
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properly diluted vertically and horizontally at this resolution and prevents the model from287

developing numerical instabilities.288

Each large treatment plant has specialized outfall configurations that are taken into
account for representation in the model (Fig. S1). The flow is divided in two at Hyperion
Treatment Plant (HTP) located 6km off Marina Del Rey (Santa Monica Bay) (Fig. S1A)
and Point Loma Wastewater Treatment Plant (PLWTP) in San Diego coast (Fig. S1D) to
account for their Y-shaped diffuser, partitioning 50% of the flow to each diffuser. Orange
County Sanitation District (OCSD) located 6km off Huntington Beach (Fig. S1C) has one
flow through its L-shaped diffuser. Joint Water Pollution Control Plant (JWPCP) in Palos
Verdes shelf (Los Angeles) (Fig. S1B) has three diffusers, the Y-shape northern typically
discharges 17.5% of the flow for each leg of the Y-diffuser, and the southern L-shape diffuser
discharges 65% of the flow. The vertical profile of the POTW sources is defined by a
Gaussian function centered at a height z above the bottom (hb), to mimic a buoyant plume,
so that H(z) is given by:

H(z) = e−z
2/d2

s (6)

Where z = −hb + hs, with289

hb: bottom depth (m).290

hs: depth of the buoyant plume above the bottom (m).291

ds: vertical scale of the POTW plume (m).292

We further assume hs = 20 m and ds = 10 m, as in Uchiyama et al. (2014).293

We distribute the SCB rivers on one horizontal grid point (0.3 km wide), where we294

assume A(x, y) = 1, and similarly distribute the source vertically, with the Gaussian function295

centered at the surface. hs here is simply the water column depth to put the maximum input296

at the surface. Because in ROMS the thickness of vertical grid cells varies in time, to ensure297

tracer conservation the calculation of the input source volume Vs must be done at each time298

step, even in the case of a time-independent source shape function W (x, y, z). Effectively,299

only Hs = H(z) needs to be recalculated at each time step.300

3 Model performance assessment approach301

The conceptual approach for model performance assessment is comprised of three com-302

ponents, addressing different aspects of skill assessment: 1) statistical comparison of model303

output to observational data for state variables by region and season; 2) comparison of model304

output to observational data for biogeochemical rates; 3) evaluation of model behavior com-305

pared to expected biogeochemical dynamics for coastal zones. Comparison of model output306

to observational data by region and season is designed to document model skill at reproduc-307

ing the statistics (e.g., mean values and variability) of ocean physical and biogeochemical308

parameters at the spatio-temporal scales more relevant for evaluating human impacts on the309

coastal environment. Comparison of model output to observational data for biogeochemi-310

cal rates assures that model is capturing the appropriate transformations in nutrients and311

carbon that structure the ecosystem response to eutrophication. Finally, the evaluation of312

model behavior compared to the expected physical and biogeochemical dynamics for coastal313

zones is a more qualitative evaluation of model performance to document that the model314

broadly reproduces oceanographic phenomena in a way that reflects our understanding of315

nearshore ocean environments.316

3.1 Description of Observational Datasets317

3.1.1 Ship-Based Ocean Monitoring318

The SCB is home to a suite of long-running monitoring programs that make it one of319

the best observed coastal ecosystems in the world (3, lower). Among them, the Califor-320

nia Cooperative Oceanic Fisheries Investigations (CalCOFI) program (McClatchie, 2016),321

initiated in the 1950s, samples the SCB quarterly each year, collecting hydrographic and322
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biogeochemical measurements in coordination with the Southern California Coastal Ocean323

Observing System (SCCOOS). These observations are augmented nearshore by quarterly324

surveys of nearshore water column and benthic parameters conducted collaboratively since325

1990 by POTW agencies as a part of their regulatory monitoring requirements (Howard326

et al., 2014; McLaughlin et al., 2018; Booth et al., 2014; Nezlin et al., 2018). These pro-327

grams provide good temporal and geographical coverage of both the offshore (CalCOFI)328

and nearshore (POTW) areas, coinciding with the model period, and include publicly avail-329

able water quality data for targeted sites measured quarterly. We validated model output330

against observed temperature, dissolved oxygen, nitrate, ammonium, chlorophyll, carbon331

system parameters (pH and aragonite saturation state), primary production, and nitrifica-332

tion.333

In situ measurements have inherent uncertainty, due to a combination of measurement334

sensitivity and sampling frequency and intensity, making them an imperfect âĂĲtruthâĂİ335

with which to compare to model output. However, this uncertainty is not the same for336

all parameters. Both temperature and dissolved oxygen are collected using high resolution337

probes, though the two programs used in this study incorporate slightly different calibra-338

tion protocols for dissolved oxygen, lending greater confidence to data-model comparisons339

for these datasets. Chlorophyll is measured on discrete bottle samples in the CalCOFI pro-340

gram, a high quality measurement, but inferred from in situ fluorescence measurements in341

the POTW monitoring program, adding uncertainty to these measurements. Nitrate and342

ammonium concentrations are measured on discrete bottle samples for both programs, but343

the detection limits are more sensitive in the CalCOFI program. Furthermore, nutrients are344

not measured with the same sampling density in POTWmonitoring programs as sensor data.345

Similarly, primary production is measured at a subset of locations in the CalCOFI program346

and as a short-term special study in Southern California Bight Regional Marine Monitoring347

Program (Bight Program). Details on measurements and sample collection protocols for the348

CalCOFI program can be found on their website (https://calcofi.org ; McClatchie (2016))349

and for the POTW monitoring programs in Howard et al. (2014). We also use selected350

nutrient observations from the Santa Monica Bay Observatory (SMBO) mooring located351

in the Santa Monica Bay (Leinweber et al., 2009). Fig. 3 shows a map of all monitoring352

stations used in this study. The repository of data can be found in Kessouri, McLaughlin,353

et al. (2020).354

3.1.2 High Frequency Radar and Acoustic Doppler Current Profilers355

High Frequency Radar (HF) data from the database of the University of California, San356

Diego (https://hfrnet-tds.ucsd.edu/thredds/catalog.html) provide surface currents along the357

west coast of the United States, including the SCB. Seasonally averaged data from 2012-2020358

were used to analyze trends of surface currents in the Bight compared to the model. Acous-359

tic Doppler Current Profilers (ADCP) provide current data in the water column. ADCP360

measurement data from Orange County Sanitation District (OCSD) for the period June361

1999 to June 2000 and Los Angeles County Sanitation District (LACSD) during November362

2000 to June 2007 were used to validate vertical profiles of currents.363

3.1.3 Remote sensing observations364

Satellite ocean color measurements for chlorophyll were used to characterize horizontal365

gradients at finer scales and higher density than possible with the ship-based monitoring.366

We use monthly averaged surface chlorophyll concentration from the period 1997 to 2000367

derived from the SeaWiFS sensor at 4 km spatial resolution. Large gaps in the dataset368

can occur because of dense cloud cover that occurs in late spring and early summer. The369

products of the Vertically Generalized Production Model (VGPM) net primary production370

algorithm (Behrenfeld & Falkowski, 1997) were also considered for this validation. Despite371

limitations, satellite data provide a valuable representation of the spatial distribution of372

chlorophyll, temperature, and primary production at seasonal scales over the region.373
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3.2 Performance Statistics374

Our approach to a statistical assessment of agreement between model predictions versus375

observations reflect the fact that the hydrodynamic model, under the influence of realistic376

forcings (e.g. wind fields) and without data assimilation, develops its own intrinsic vari-377

ability in circulation, e.g. submesoscale eddies (McWilliams, 2007). The resulting modeled378

state variables would not necessarily overlap with observations on a point-by-point basis,379

but would be comparable to observations when averaged over appropriate spatio-temporal380

scales. We assessed a suite of statistics and metrics, following the methodology of Allen et381

al. (2007), to assess how well the model reproduces the magnitude and gradients of selected382

state variables, whether the model agreement has an apparent bias, and how well the model383

reproduces natural variability. We calculated six metrics, defined in the following, where N384

is the total number of appropriate observational data, D represents each individual observa-385

tional datum, D is the mean of the observational data,M is the model estimate representing386

an observation, and M is the mean of the model estimate. The metrics considered include:387

The Pearson correlation coefficient, reflecting the degree of linear correlation between
the observed and model variable, and the statistical significance (p-value) of this correlation:

rxy =

∑N
n=1(Dn −D)(Mn −M)√∑N

n=1(Dn −D)2
√∑N

n=1(Mn −M)2
; (7)

The Cost Function (CF), which gives a non-dimensional value indicative of the âĂĲgoodness
of fitâĂİ between two sets of data, quantifying the difference between model results and
measurement data:

CF =
1

N

N∑
n=1

|Dn −Mn|
σD

(8)

where σD is the standard deviation of the observations;388

The Bias (B) (the sum of model error normalized by the data):

B =

∑
(D −M)∑

D
; (9)

The Ratio of the Standard Deviations (RSD):

RSD =
σD
σM

(10)

where σM is the standard deviation of model outputs;389

The Nash-Sutcliffe Model Efficiency (ME) (Nash & Sutcliffe, 1970), a measure of the
ratio of the model error to the variability of the data:

ME = 1−
∑

(Dn −Mn)2∑
(D −D)

; (11)

And the two-sample t-test, or Welch’s t-test (Welch, 1947; Derrick et al., 2016):

H = (D −M)/

√
σ2
D

N
+
σ2
M

N
. (12)

We score the model performance following Table 1 per the methodology of Allen et al.390

(2007).391
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4 Model performance assessment findings392

4.1 Ocean circulation393

The SCB is situated at the confluence of water masses from the subarctic Pacific via the394

California Current, and from the eastern tropical North Pacific via the California Undercur-395

rent, which all interact with the local topography, the coast, and the atmosphere to sustain396

variability in circulation on inter-annual, seasonal, and intraseasonal time scales (Dong et397

al., 2009; Bograd et al., 2015). The effects of this variability in circulation has profound398

consequences for coastal ocean biogeochemistry (Gruber et al., 2011; Bograd et al., 2015;399

Nagai et al., 2015; Nezlin et al., 2018), and is therefore critical that the model accurately400

simulates spatial and temporal variability in circulation patterns.401

Fig. 4 shows the hydrodynamic characteristics of the SCB in the model compared to402

data. In the northern SCB, the model shows similar qualitative and quantitative patterns403

for the horizontal circulation compared to HF data (Fig. 4(a)-(b)) and as seen in Dong et404

al. (2009). The circulation in the SCB is characterized by northward currents in the first 20405

km of the coast and cyclonic circulation in the middle of the SCB that is stronger in summer406

and weaker in winter. The model successfully reproduces observed current patterns, with407

similar current magnitudes. The intensity of the northward coastal branch of the current is408

on average about 0.15-0.3 m s−1 in summer versus 0.05-0.15 m s−1 in winter. The offshore409

southward branch is generally about 0.3 m s−1 all year round (Fig. 4(a)-(b)). The dominant410

current in the coastal band (15 km from coast) of the SCB flows northward, and follows the411

topography along isobaths on the shelf (Fig. 4(g)-(h)).412

The simulated June 1999-June 2000 variability of the current in depth is shown in413

the vertical profiles extracted off the coast of Palos Verdes and Orange county compared414

to the ADCP data at the same locations (Fig. 4(c)-(f)). The location of both of these415

profiles are a few kilometers from the contintental slope and therefore capture a suite of416

physical processes, including mesoscale and submesoscale eddies, fronts, jets, and internal417

tides (Capet, McWilliams, et al., 2008; Kim et al., 2011; Dong et al., 2009). The model418

generally reproduces the means and range of the variability shown in these close to shore419

horizontal currents, which demonstrates that ROMS at dx = 0.3 km resolution captures the420

submesoscale variability described in Section 2.2.421

In the northern SCB, cyclonic vortices are generated inside the Santa Barbara Chan-422

nel (Fig. 4(i)) when the northward current that flows along the Ventura coast meets the423

eastern side of the Channel Islands, with higher intensity in summer (Fig. 4(a) versus (b))424

(Winant et al., 2003). Submesoscale eddies are particularly prominent in this region, in425

particular persistent cyclonic eddies that drive an upward doming of isopycnals (Fig. 4(j))426

(McGillicuddy Jr, 2016), which supplies nutrients to the euphotic layer. The model correctly427

reproduces this vertical transport, described in Brzezinski and Washburn (2011), and the428

high concentrations of nitrate and other nutrients in the upper layers of the Santa Barbara429

Channel, as further detailed in Section 4.3.1.430

In the central and southern SCB (latitude < 34.7◦N), the model successfully captures431

flow regimes around the large POTW outfalls, indicating that it can appropriately represent432

the dispersal of wastewater plumes in these regions. In the Santa Monica and San Pedro433

Bays, topography drives the circulation of currents inside the Bays, converging back to434

the main current offshore (Fig. 4(g)-(h)). On top of the Hyperion and JWPCP outfalls435

(in the Santa Monica Bay and offshore of the Palos Verdes peninsula, respectively), the436

current is mostly south-eastward. Near the OCSD outfall, the current direction varies in437

winter between south-eastward and north-westward, but is primarily southward in summer438

(Fig. 4(a)-(b), (e)-(f)). At the PLWTP outfall, the current is narrow, with a dominant439

south-eastern direction, parallel to the coast, demonstrated by both model and HF radar440

data.441
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Figure 4: a) Mean surface currents in the Southern California Bight from HF data during
2012-2020 (thick red arrows) and model during 1999-2000 (black arrows) in summer and
b) winter. c)-f) Vertical profiles of horizontal velocity components from ADCP instruments
(thick red lines) and model (thinner black lines). The two dashed lines indicate the 5th
and 95th percentile current values. c)-d) ADCP data come from the LACSD mooring A3
stationed at the teal ‘X’ in a)-b) and e)-f) come from the OCSD mooring OC-T-1 located
at the teal ‘O’. g) Mean model current direction and speed (colored) at 40 m depth with
bathymetry contoured in summer and h) winter. i) Surface model vorticity normalized by f
in spring in Santa Barbara Channel showing cyclonic eddies. j) Cross-section of temperature
and density isopycnals as drawn by the dashed line in (i) from model to show eddy-driven
uplifting of the isopycnals in the center of Santa Barbara Channel.
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4.2 Vertical gradients and seasonal variability of temperature and mixed442

layer depth443

Figure 5: (a) Average seasonal profiles of temperature in the Santa Monica Bay. The
red lines and red bars show the spatio-temporal mean and the variability from the model
respectively. The black dots and the gray shading show the spatio-temporal mean and the
variability from in situ data (City of LA stations), respectively. (b) Hovmöller diagram of
temperature at the location of the Hyperion POTW outfall (HTP) in the Santa Monica
Bay issued from the model. The black line shows the simulated time-series of mixed layer
depth. The deepest mixing occurs during El NiÃśo 1998 (>40 m). Colored dots are average
concentrations from in situ measurements.

The model successfully reproduces the three-dimensional and seasonal variability of444

physical tracers, here exemplified by temperature. Temperature is the parameter in which we445

have the highest confidence in the observational record, because observations are abundant,446

and sensors are accurate and precise, regularly calibrated, and with negligible drifts. The447

greatest source of observational uncertainty is temporal under-sampling, but some sources448

of model bias may also be important (e.g., from atmospheric forcing, wind, or shortwave449

detailed in Renault et al. (2021)). Quantitative statistical analysis indicates that model450

performance is excellent or good for nearly all metrics for all regions and seasons (see Table451

2). The lowest performance of the model is characterized as reasonable for certain sub-452

regions (Palos Verdes, Orange County, and San Diego) in spring and fall (Palos Verdes453

only) (see Supporting Information Table S2). As noted above, this may be due to under-454

sampling during these months, which can be highly variable because the region is shifting455

between a well-mixed to a more stratified ocean regime. Detailed information on the other456

sub-regions and their statistical comparison can be found in the Supporting Information,457

Tables S1 to S4.458

Following common practices (de Boyer Montégut et al., 2004), we define the mixed layer459

depth (MLD) as the depth at which temperature decreases from its surface value by more460

than 0.2◦C. On average, the MLD deepens from the coast to offshore, and varies with season461
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Statistic Excellent Good Reasonable Poor

Cost Function (Moll & Radach, 2003) <1 1-2 2-3 >3
Nash-Sutcliff Model Efficiency (Nash & Sutcliffe, 1970) >0.65 0.65-0.5 0.5-0.2 <0.2
Bias (Maréchal, 2004) <|0.1| |0.1-0.2| |0.2-0.4| >|0.4|
H (Welch, 1947) 0 1
Correlation Coefficient 1-0.9 0.9-0.8 0.8-0.6 <0.6
p-value <0.05 >0.05
Ratio of Standard Deviations 1-0.9, 1-1.1 0.9-0.8, 1.1-1.2 0.8-0.6, 1.2-1.4 <0.6, >1.4

Table 1: Summary of statistical tests of model performance and their interpretation used in
this paper.

Santa Monica: Temperature

H Correlation
Coefficient

p-value Cost
Function

Bias Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.96 E 7E-06 E 0.05 E -0.04 E 1.10 G 0.81 E 716
Spring 0 E 0.98 E 8E-07 E 0.10 E -0.10 G 0.78 R 0.51 G 716
Summer 0 E 0.97 E 9E-06 E 0.04 E -0.02 E 1.07 E 0.93 E 712
Fall 0 E 0.89 G 3E-06 E 0.09 E -0.08 E 0.98 E 0.51 G 718
All Seasons 0 E 0.95 E 3E-05 E 0.08 E -0.07 E 1.02 E 0.73 E 2862

Table 2: Statistical comparison between in situ data and model outputs for temperature
profile in Santa Monica Bay (City of LA stations). Letters next to numbers indicate model
performance: E = Excellent, G = good, R = reasonable, P = Poor.
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(e.g. in Santa Monica Bay in Fig. 5b). The model successfully simulates the seasonal cycle462

of MLD along the coast. For example, the model recreates the observed seasonal deepening463

of the mixed layer in the Santa Monica Bay to depths greater than 16-20 m (the typical464

depth of the upper signature of the POTW plumes, see Section 4.3.2) nearly every winter465

(black line in the Fig. 5b).466

Regular winter shows a homogeneous upper layer of < 14◦C temperature, and a mixed467

layer located at 18-20 m in the coastal region and 40-60 m offshore. The surface ocean is468

colder around the Channel Islands (SST<12◦C) (see Fig. 19). In the open ocean, the model469

reproduces the de-stratification with deepening of the thermocline to about 70m and a MLD470

at about 40m (Fig. 6c and d). In summer, stratification is the strongest, reflecting an intense471

vertical temperature gradient, and the MLD (both in the model and in the observations) is472

found few meters below the surface (approximately 10 m). Temperature varies rapidly from473

more than 20◦C at the surface in the southern domain (16-17◦C in the northern domain)474

to less than 12◦C at 50m depth over the entire SCB (see also Fig. 19). In the open ocean,475

the model succeeds in reproducing the stratification that brings the seasonal thermocline to476

50m and the MLD to 15m (Fig. 6c) and e)).477

The model reproduces interannual variability in MLD under the influence of El NiÃśo-478

Southern Oscillation (ENSO, hereafter referred to as El NiÃśo, i.e., the period from fall 1997479

to spring 1998 in Fig. 5b), when the MLD reached 40 m. We show that during winter of480

El NiÃśo year, the entire water column of the SCB is warmer than on average, and surface481

temperature is more homogeneous, varying between 15.5 and 17◦C (Fig. 6a). In the open482

ocean, during El NiÃśo, with warmer upper layer than regular winters, the model shows483

good performance in reproducing the deepening of the seasonal thermocline (>120 m) and484

of the MLD (>50 m) (e.g. offshore Santa Monica Bay in Fig. 6a and b). These patterns of485

variability in temperature are consistent with regional observations of El NiÃśo in the SCB486

(Todd et al., 2011).487

4.3 Dissolved Inorganic Nitrogen488

4.3.1 Spatial patterns and seasonality of nitrate489

Nitrate observations are only broadly available in the offshore CalCOFI dataset, so490

only large-scale regional patterns in nitrate concentration can be validated. There is a clear491

seasonality of nitrate, where surface concentrations are higher in spring and summer, and492

decrease in fall and winter (Fig. 7). The model reproduces the average seasonal patterns493

observed in the in situ nitrate data across multiple regions. The model also captures along-494

shore variability in coastal nitrate concentrations, reproducing values greater than 25 mmol495

N m−3 off Santa Barbara, 20 mmol N m−3 off Los Angeles, and 15 mmol N m−3 off San496

Diego.497

The model also reproduces observed patterns in the depth of the nitracline (Mantyla498

et al., 2008; Nezlin et al., 2018), which tends to follow sloping density surfaces in the499

region. These patterns include: the high values at the euphotic depth limit (∼50m below500

the surface) along the Santa Barbara coast in spring; the doming of the nitracline in the501

center of the Santa Barbara Channel (Fig. 7b); the 20 to 30 m deep nitracline along the502

Los Angeles coast; and the deepening of the nitracline from about 30 m at the coast to503

more than 60 m offshore in San Diego. In the offshore region of the SCB, the model is504

consistent with observations showing high nitrate (>20 mmol N m−3) around the Channel505

Islands (not shown) as compared to less than 5 mmol N m−3 farther offshore. This pattern506

is strongest in winter and summer, when the offshore regions are particularly oligotrophic507

(surface NO−3 < 1 mmol m−3) throughout the SCB.508
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Figure 6: (a) Cross section of average temperature following line 86.7 from CalCOFI
monitoring stations during an El NiÃśo winter (12/1997 to February 1998). (b) Profile
at station P2. Black dots are CalCOFI in situ data, red line is the simulated profile.
The horizontal line is the MLD (black is CalCOFI, red is simulated). Diamonds (black is
CalCOFI, red is simulated) is the depth of the maximum gradient to estimate the depth of
the seasonal thermocline at 12◦C. (c-d) are similar to (a-b) for average winter, and (e-f) are
for average summer.
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Figure 7: (a-c) Time series of nitrate concentration at 50 m depth in three different locations
of the SCB: (a) is near the center of Santa Barbara Channel, (b) is offshore the Santa
Monica Bay, and (c) is offshore San Diego. Model outputs are represented by the lines
for three different years, with the dots showing mean values from in situ measurement
from CalCOFI, and gray bars the standard deviation from the mean. The time-series show
prominent interannual variability in addition to seasonal variability. While the years 1997
and 1999 show similar nitrate distributions, the El NiÃśo period between the end of 1997
to 1998 is significantly different, showing nearly uniform concentrations between November
1997 through May 1998. This is caused by the deepening of the thermocline during El
NiÃśo, which depresses the nutricline. (d-f) Cross sections showing the average springtime
nitrate concentration in (d) the Santa Barbara region (e) the SM region, and (f) the SD
region. Background are model outputs and dots are CalCOFI in situ measurements. Model
and in situ data agree on the vertical and seasonal patterns in the three regions. They
highlight the main differences in these three regimes, consisting of a shallower nitracline in
the Santa Barbara Channel, and a deeper nitracline in southern waters. (g-h) Comparison
of nitrate concentrations during (g) winter El NiÃśo (January-March 1998) and (h) during
an upwelling event (the first week of May 1999) to illustrate the ability of the model (vs.
in situ CalCOFI data) to simulate the vertical displacement of the nitracline during these
specific events.
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Figure 8: As for Fig. 5, but for ammonium concentration. These profiles are showing
agreement on intensity, seasonality and shape of the vertical profile with exceptionally high
concentrations at mid-depth.

Santa Monica: Ammonium

H Correlation
Coefficient

p-value Cost
Function

Bias Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.94 E 0.06 P 0.54 E 0.24 R 1.86 P 0.68 E 20
Spring 0 E 0.85 G 0.14 P 0.58 E -0.57 P 0.69 R -0.61 P 21
Summer 0 E 0.58 P 0.42 P 0.72 E 0.19 G 1.76 P 0.29 R 21
Fall 0 E 0.91 E 0.09 P 0.42 E 0.07 E 1.47 P 0.80 E 21
All Seasons 0 E 0.81 G 0.10 P 0.36 E -0.03 E 1.23 R 0.60 G 83

Table 3: Statistical comparison between in situ data and model outputs for ammonium
profile in Santa Monica Bay.
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4.3.2 Vertical gradients and seasonal variability of ammonium509

Ammonium concentrations above a natural background concentration of 1 mmol N510

m−3 are indicative of POTW wastewater plumes. The model reproduces the observed511

average vertical profile of ammonium in the Santa Monica Bay, falling within the range of512

observed variability (Fig. S8a). Similar figures for other regions are shown in the Supporting513

Information (Fig. S6-Fig. S9). All regions show a similar maximum concentration between514

30 to 45 m below the surface, in all seasons. The highest concentrations are seen in summer,515

when stratification is stronger, while lower concentrations in winter likely reflect increased516

dilution by seasonal mixing from the deepening of the mixed layer (Fig. 8b). Near ocean517

outfalls, both model and observations show mid-depth peaks of ammonium concentration,518

occasionally exceeding 10 mmol m−3, which considerably overshadow values observed away519

from outfalls. In the model, these high ammonium concentrations are caused by wastewater520

plumes.521

The main source of uncertainty in data-model comparisons is the limited spatial and522

temporal coverage of measurements. Ammonium is typically measured near ocean outfalls523

and is therefore biased towards high concentrations, but the dataset is highly variable.524

Methodological difficulties exist with the measurement of ammonium in seawater, and as525

such, we excluded non-detectable ammonium values in our analyses. Near the submarine526

outfalls, ammonium concentrations are likely extremely heterogeneous due to buoyant plume527

filaments, as observed in DiGiacomo et al. (2004) and in Warrick et al. (2007) in the Santa528

Monica Bay, as well as in other regions (e.g. Florida, in Marmorino et al. (2010)) and in529

idealized case studies (e.g. Ho et al. (2021)). These plume filaments are caused by horizontal530

advection and straining of the discharged effluent by currents. As a result, the under-531

sampling of ammonium may have led to poor statistical agreement between observations and532

model output. The model shows high to moderate agreement for the shape of the profile and533

the mean concentration (Table 3). However, p-values for the correlations were not always534

significant. Similarly, there were often biases and low performance regarding variability535

statistics. This low model performance can be explained by the following two reasons: (1)536

spatial sampling is likely missing plume filaments, for example observational data points537

with high ammonium values that are capturing the plume are recorded next to very low538

or non-detectable values; and (2) the resolution of the model (0.3 km), as well as model539

averaging over the day, season, and depth range causes plume filaments to appear more540

uniformly spread near the outfalls. Because plume filaments are lost in this averaging, the541

model represents plumes as cloud-like distributions around outfalls; nevertheless, the average542

ammonium concentration of wastewater plumes is reasonably well represented. Detailed543

information on the other sub-regions and their statistical comparison can be found in the544

Supporting Information Tables S1 to S4.545

4.3.3 Horizontal gradients of ammonium546

Both in situ observations (dots in Fig. 9, Fig. 8a) and model output (background547

colours in Fig. 9 and red line in Fig. 8a) show high concentrations of ammonium in the548

subsurface layer below the thermocline (Fig. 9c), which we refer to as "high-ammonium549

plume". This high-ammonium plume can extend from Huntington Beach to South Ventura,550

encompassing three of the four major wastewater treatment plant outfalls in the SCB (See551

Section 2.4). Both model and observations show that the width and strength of the high-552

ammonium plume are greatest in summer compared to other seasons. The Santa Monica553

Bay Observatory mooring (SMBO, Leinweber et al. (2009)) located 17 km north-west of the554

submarine pipe Hyperion in Santa Monica Bay (Fig. 9g) frequently recorded concentrations555

higher than 2 mmol m−3, and up to 4 mmol m−3 at mid-depth (Fig. 9e), consistent with the556

model (Fig. 9f). The depth of the maximum variability is at 40 m in the model, and slightly557

shallower in the SMBO data, possibly because of a mismatch in the time period (1997-2000558

for the model, and 2004-2010 for the SMBO). During winter, the model indicates vertical559

mixing and dilution of the plume at the surface. Accordingly, ammonium concentrations560
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Figure 9: (a-d) seasonal average ammonium concentration between 30 and 45 m depth from
the model, and dots from observations. High values highlight the movement and dispersion
of subsurface wastewater plumes along the Orange and Los Angeles counties. The highest
concentrations are located within a narrow coastal band of about 10 - 15 km width, and are
carried along the topography by the mean currents. (e-f) show a statistical comparison of the
vertical profiles of ammonium at the SMBO mooring and the same location in the model.
The anthropogenic ammonium plume signature is apparent, albeit intermittently, 17 km
away from the Hyperion outfall. (g) shows the simulated vertical maximum concentration
of NH+

4 averaged during a representative day to illustrate the dispersal of the effluent toward
SMBO originating from the 2 diffusers of Hyperion Treatment Plant (HTP).
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decrease slightly at depth (Fig. 9a) and increase at the surface, reaching values up to 2-6561

mmol m−3, also consistent with observations around the outfall pipes (Fig. 8a).562

4.3.4 Spatial patterns in rates of nitrogen transformation563

Although we had no in situ nitrogen transformation rates with which to compare model564

output during the simulation period, several datasets exist for the region that can serve565

as a test for whether the model is simulating reasonable patterns in rates via the right566

mechanisms. We found that modeled rates do agree with observed nitrogen transformation567

rates. Nitrification rates, the sequential oxidation of NH+
4 to NO−3 via NO−2 , have been568

observed to be higher within wastewater plumes in the SCB (McLaughlin et al., 2021), a569

pattern driven by high ammonium concentrations in the discharges (McLaughlin, Nezlin, et570

al., 2017). In both observations and the model, nitrification predominately occurs below the571

euphotic layer. Modeled vertically-integrated nitrification rates vary between 0.15 and 1.5572

mmol N m−2d−1, consistent with observations within the SCB and in the California Current573

(Table 5). The model also reproduces higher nitrification rates within wastewater plumes574

(See Supporting Information Fig. S22). There is also good agreement between observed and575

modeled rates of nitrate and ammonium uptake by phytoplankton communities (McLaughlin576

et al., 2021) and (Kudela et al., 2017). Modeled nitrate uptake rates vary between 2 and 11577

mmol N m−2d−1 and ammonium uptake rates vary between 6 and 51 mmol N m−2d−1 in578

the Los Angeles and Orange County coasts, consistent with observations in the SCB (Table579

5).580

4.4 Chlorophyll concentrations581

In general, the model was found to reproduce vertical and horizontal gradients in chloro-582

phyll concentration in different subregions (Fig. 12). The timing of blooms was consistent583

with changes in mixing and nutrient delivery in the SCB. We present three different subre-584

gions characterized by distinct hydrodynamic regimes: the Santa Barbara Channel, the Los585

Angeles coast, and San Diego coast.586

There are several sources of uncertainty in the chlorophyll, primary production, phyto-587

plankton growth, and grazing rates observational records. For chlorophyll, bottle measure-588

ments are accurate and precise, but measure a limited portion of the water column. Sensors589

are accurate and precise in their measurement of fluorescence and have a rapid response590

time, providing vertically resolved profiles; however, the algorithm to convert fluorescence591

to chlorophyll concentration is inaccurate for the SCB. As a result, a correction factor has592

been applied to Bight data which adds uncertainty to the observational dataset (Nezlin et593

al., 2018). Satellite measurements of chlorophyll are inferred from ocean color (Kahru et594

al., 2009). This method works well offshore, but breaks down nearshore where terrestrially-595

derived colored dissolved organic matter creates uncertainty in reported satellite chlorophyll596

estimates on the order of 100% or greater (Zheng & DiGiacomo, 2017). For primary pro-597

duction, the incubation method to derive the rates is sensitive and precise (Cullen, 2001),598

though measured rates are subject to bottle effects and there is some ambiguity as to whether599

the experiments measure net primary production or gross primary production (Regaudie-de600

Gioux et al., 2014). Phytoplankton growth and zooplankton grazing are also determined601

experimentally, and duplicate measurements indicate that these methods are not very pre-602

cise, with differences between duplicates ranging from 80% to 200% (Landry et al., 2009; Li603

et al., 2011). For all three measurements, spatial and temporal under-sampling, particularly604

during seasons with high variability, adds uncertainty to the data-model comparison.605

4.4.1 Horizontal gradients in chlorophyll606

Despite the uncertainties outlined above, the model successfully simulates horizontal607

gradients in chlorophyll in the three subregions (Santa Barbara, Los Angeles and San Diego).608

The model captures the early, wide-spread spring bloom in the Santa Barbara Channel,609
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which occurs as a combination of a coastal bloom driven by spring upwelling, followed by a610

bloom in the central and southwestern regions of the Channel (near the islands) in spring611

and summer (Fig. 10). The latter is driven by the strengthening of the cyclonic circulation612

in the Channel, which transports nutrients to the upper layers, and is regularly observed in613

the region (Brzezinski & Washburn, 2011). The model captures the strong seasonality in614

chlorophyll, wherein concentrations change from near zero in winter to up to 8 mg Chl m−3 in615

spring. Of the three regions, the blooms off Santa Barbara extends further into late summer616

and fall, where the average concentration is approximately 1-2 mg Chl m−3, a pattern617

replicated in both model and observations . Spatially, the model correctly reproduces the618

main patterns observed in satellite-based reconstructions, with spatial correlation coefficient619

varying between 0.5 and 0.9, and a cost-function demonstrating excellent scores. The bias is620

also excellent (<0.05) in all seasons except winter, when it is reasonable, potentially because621

of weaker spatial gradients than observed.622

In the Los Angeles subregion, the model predicts broad patterns in chlorophyll concen-623

trations with good spatial correlation coefficients across the seasons (0.75 to 0.89), including624

a persistent bloom in the San Pedro Bay, consistent with in situ observations (Nezlin et al.,625

2012), and remote sensing (Fig. 11). Spatially, the cost-function shows excellent scores626

across all seasons, and the bias is good to reasonable. Both satellite-derived and modeled627

chlorophyll show concentrations in the San Pedro Bay consistently higher than 3 mg Chl628

m−3 year-round, often extending into the Santa Monica Bay. The model also reproduces629

the strong offshore gradients in chlorophyll, where across less than 15 km offshore surface630

concentrations are reduced 3 to 4 fold (<1 mg Chl m−3) further decreasing towards the open631

ocean. The model also reproduces the timing and magnitude of the blooms in the Santa632

Monica and San Pedro Bays. The difference in timing of maximum chlorophyll concentra-633

tions between the Santa Monica and San Pedro Bays likely reflects differences in nutrient634

supply. Nutrients, in particular ammonium, are available near the surface during winter635

(see Section 4.3.2), reflecting more vigorous mixing of the wastewater plume and land-based636

nutrient supply by rivers (in particular in the San Pedro Bay) during winter storms (Lyon637

& Stein, 2009). Storms and winter mixing events have been connected to phytoplankton638

blooms in the region (Nezlin et al., 2012; Mantyla et al., 2008). Further offshore in the Los639

Angeles region, the model recreates the weak seasonality of surface chlorophyll, with higher640

concentrations during winter and spring, and lower concentrations in summer and fall. In641

the offshore region of the Santa Monica Bay, the seasonal cycle is marked by the increase642

of surface phytoplankton between March and May as shown in Fig. 12b. Mean chlorophyll643

values reach up to 3 to 4 mg Chl m−3 in April and May, although concentrations below 2644

mg Chl m−3 are more common, consistent with observations over the same period.645

Offshore of the San Diego coast, the model recreates a slight increase in surface chloro-646

phyll in March; however, concentrations are generally below 1 mg Chl m−3 year-round (Fig647

12(c)). The oligotrophic conditions of the southern Bight (Nezlin et al., 2012; Mantyla648

et al., 2008) have been attributed to a deeper nitracline, which in turns supports a deep649

chlorophyll maximum layer (Mantyla et al., 2008). This feature is well represented in the650

model, which reproduces relatively high concentrations of chlorophyll in subsurface layers651

(generally between 20 and 90 m depth in the region).652

4.4.2 Vertical gradients and seasonal variability of chlorophyll653

The goodness-of-fit statistical metrics (correlation coefficient and cost function) for654

chlorophyll are generally excellent or good for most seasons for all sub-regions (Table 4).655

We were most concerned with performance for these metrics because the remaining statistics656

may be affected by the aforementioned uncertainties due to the fluorometry calibration. The657

observational measurements should be internally consistent (if not accurate), so the shapes658

of profiles should be âĂĲcorrectâĂİ even if the magnitude is off due to poor calibration, and659

the model was able to replicate these shapes accurately. Despite calibration issues, the model660

reproduced chlorophyll reasonably well for the northern Bight sub-regions of Santa Monica661
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Figure 10: Comparison of seasonally-averaged surface chlorophyll between SeaWiFS remote
sensing data (left panels) and the model (right panels) in the Santa Barbara Channel, where
an important seasonal bloom is observed. The 3 numbers numbers for each season represent
statistics of spatial comparison between the observed and simulated chlorophyll: Pearson’s
correlation (R), cost function (C) and bias (B).
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Figure 11: Comparison of seasonally-averaged surface chlorophyll between SeaWiFS remote
sensing data (left panels) and the model (right panels) for years 1998-2000 in the Santa
Monica and San Pedro Bays, where major POTW outfalls are found. The figure highlights
the persistent coastal phytoplankton bloom, and the sharp inshore-offshore gradients. The
3 numbers numbers for each season represent statistics of spatial comparison between the
observed and simulated chlorophyll: Pearson’s correlation (R), cost function (C) and bias
(B).

Santa Monica: chlorophyll

H Correlation
Coefficient

p-value Cost
Function

Bias Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.99 E 9E-06 E 0.48 E 0.09 E 0.91 E 0.94 E 714
Spring 0 E 0.93 E 9E-05 E 0.90 E -0.42 P 0.52 P -0.49 P 716
Summer 0 E 0.99 E 1E-08 E 0.58 E -0.07 E 0.60 R 0.47 R 712
Fall 0 E 0.99 E 8E-08 E 0.48 E 0.16 G 0.75 R 0.76 E 718
All Seasons 0 E 0.99 E 4E-08 E 0.50 E -0.01 E 0.73 R 0.80 E 2860

Table 4: Statistical comparison between in situ data and model outputs for chlorophyll
profile in Santa Monica Bay.
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Figure 12: Comparison of surface chlorophyll concentration between different years of
model output, and a climatology from CalCOFI in situ data. (a) is near the center of Santa
Barbara Channel, (b) is offshore the Santa Monica Bay, and (c) is offshore San Diego. The
model reproduces different productivity regimes across the Southern California Bight, with
highly productive waters in the northern region, where average concentrations greater than
3 mg m−3 are observed for more than half of the year, and oligotrophic southern regions,
where average surface concentrations rarely exceed 1 mg m−3.

Figure 13: As for Fig. 5, but for chlorophyll concentration. Vertical profiles show a good
agreement between simulated and in situ data, and display the formation of a subsurface
chlorophyll maximum in summer, and a surface maximum in winter and spring. Concentra-
tions in winter vary up to +5 mg Chl m−3. Note the very low concentrations during 1998
El Niño in the entire water column.
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Bay (Fig. 13) and Ventura/Oxnard (Supporting Information Fig. S11). Similar figures for662

other regions are shown in the Supporting Information (Fig. S10 - Fig. S13). All show that663

the model is reproducing the magnitude and general shape of observed profiles. However, the664

model did not capture the variability for most regions (except for Palos Verdes), generally665

scoring reasonable or poor in the ratio of standard deviations for most seasons, particularly666

spring. This is likely a result of the spatial and temporal averaging. Chlorophyll is highly667

variable in space and time and under-sampling in either of these dimensions will adversely668

affect variability estimates for a region and season. Therefore, reasonable performance for669

these metrics was not unexpected. This suggests that the model may provide a conservative670

estimate of phytoplankton biomass in the southern Bight, while reproducing accurate spatial671

and temporal patterns in that biomass.672

In addition to transporting nutrients from depth, upwelling ’seeds’ surface waters with673

subsurface water masses dominated by selected phytoplankton species, stimulating surface674

blooms near the coast (Seegers et al., 2015). The model successfully reproduces this process,675

wherein the subsurface chlorophyll maximum shoals and intensifies in spring, forced by the676

vertical movement of the thermocline driven by upwelling. This seasonal dynamics occurs677

across the domain in the model.678

Offshore, in the more oligotrophic portion of the SCB, the model predicts that more679

than 60% of the maximum concentration of phytoplankton biomass remains below the sur-680

face year-round, constantly fed by subsurface nutrients injections. This is consistent with681

observations of a deep chlorophyll maximum throughout the region (Nezlin et al., 2018;682

Mantyla et al., 2008; Seegers et al., 2015), and with observations at the San Pedro Oceanic683

Time-Series (SPOT) located between the Palos Verdes Peninsula and Catalina Island (Fig.684

3, lower panel). At SPOT, a region weakly influenced by anthropogenic nutrients inputs685

at the surface, the model realistically simulates the seasonal cycle of chlorophyll. While686

ammonium does not exceed typical "natural" values of ∼1 mmol m−3 below the surface,687

chlorophyll concentrations regularly reach more than 2 mg m−3 between 20 and 40 m in688

summer, in agreement with in situ measurement (Teel et al., 2018; Beman et al., 2011).689

(Additional figures to support the analysis are reported in the Supporting Information, Fig.690

S23.)691

However, in regions more heavily influenced by anthropogenic nutrients, such as the692

Santa Monica Bay, the chlorophyll maximum progressively deepens from the surface in693

winter to about 25 to 30 m depth in spring and summer, with chlorophyll concentrations694

exceeding 5 mg Chl m−3 (Fig. 13a). This subsurface chlorophyll maximum is maintained695

for four to five months (Fig. 13b) before the stratification is weakened by winter mixing.696

4.4.3 Primary production697

Validation of the rates of primary production, phytoplankton growth and zooplankton698

grazing (Table 5) provides an independent check on mechanisms responsible for chloro-699

phyll as a state variable. The spatial and temporal frequency of these data, garnered from700

CalCOFI observations and literature values, is low. The most data as well as the most701

standardized methodologies are available for primary production. However, many of the702

primary production measurements used in this validation do not temporally coincide with703

the model period. Despite these uncertainties, the model generally reproduces expected704

large-scale patterns and seasonal variability in primary production.705

This large scale variability was also mentioned in Deutsch et al. (2021). Model and data706

both show lower productivity in winter (Fig. 14a,c) and higher in spring (Fig. 14b,d), when707

the primary production is high along the coastal band, in the northern Bight around the708

Channel Islands (Fig. 14d), consistent with observations (Fig. 14b). This is also consistent709

with the so-called "green ribbon" of high-chlorophyll observed along the coast throughout710

the SCB (Lucas et al., 2011). The model reasonably reproduces the seasonal cycle of primary711

production in each of the subregions.712
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Figure 14: (a)-(b) Maps of vertically integreated Vertically Generalized Production Model
(VGPM) net primary production and CalCOFI in situ measurements plotted as dots for (a)
winter (January and February) and (b) spring (April to June). (c)-(d) Maps of vertically
integrated primary production from the model, in (c) winter and (d) spring. Note the higher
values for CalCOFI in situ measurements as compared to the satellite estimate, in better
agreement with the model.
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Phytoplankton are generally limited by a combination of nutrients and light, the latter713

of which is only limiting at depth in the SCB (Deutsch et al., 2021).714

In winter, nitrogen is high at the surface in the northern SCB, and thus is not limiting.715

In the southern SCB, light and nitrogen are co-limiting due to stronger stratification, leading716

to oligotrophic conditions. In spring and through the summer, nitrogen is limiting nearly717

everywhere except in the Santa Barbara Channel and near the Channel Islands, where718

upwelling and submesoscale eddies maintain high nutrients at the surface.719

The scatter plots in Fig. 14e-f show a comparison of the simulated primary produc-720

tion between the in situ CalCOFI data and that derived from remote sensing (empirically721

adjusting the BehrenfeldâĂŘFalkowski Vertically Generalized Production Model [VGPM]).722

The model shows a correlation coefficient of about 0.6 with CalCOFI, similarly to that723

reported by Kahru et al. (2009) when comparing the VGPM product with CalCOFI. The724

model shows a stronger correlation with VGPM data, with a correlation coefficient of the725

order of 0.8.726

Finally, while slightly outside our model domain and simulation period, the modeled727

phytoplankton growth and zooplankton grazing rates were within the same order of mag-728

nitude as the measured rates from the California Current Long Term Ecological Research729

project (CC-LTER, see Landry et al. (2009), and Table 5) in the northern portion of the730

Bight.731

Bight 13 Literature Model

Primary production (g C m−2 y−1) 47.4, 1037.4 250, 1660
Nitrification (mmol m−3 d−1) 0, 0.225 0.02, 0.08 0.001, 0.27
NO−3 Uptake Rate (mmol N mg Chl−1 d−1) 0.005, 2.16 0.03, 0.15
NH+

4 Uptake Rate (mmol N mg Chl−1 d−1) 0.10, 8.30 0.08, 0.15
Total Phytoplankton Growth µ (d−1) 0.05, 0.8 0.3, 0.4
Grazing (d−1) 0.02, 0.5 0.3, 1.5

Table 5: Comparison of biogeochemical rates between published literature and model. Val-
ues are minimum and maximum. Literature values come from Landry et al. (2009); Li et
al. (2011). Bight 13 is extracted from (McLaughlin et al., 2021) study.

4.5 Carbonate system and oxygen parameters732

The model predicts changes in dissolved oxygen and carbon system parameters related733

to photosynthesis and respiration, as well as horizontal transport and vertical mixing. As734

described in section 4.4.1, the coasts of Los Angeles and Santa Barbara are hot-spots of735

intensified plankton activity, and both systems are impacted by high variability and small-736

scale eddy circulation. In the upper layers, photosynthesis increases both dissolved oxygen737

and pH (Figs. 16, ??, and 18), consistent with observations in these regions. The Santa738

Monica Bay shows the highest oxygen production rates (60 mmol m−2 d−1), followed by739

the Santa Barbara coast (57 mmol m−2 d−1), while rates in the Orange County and San740

Diego coasts are nearly two times lower. Oxygen and carbon are further replenished at the741

surface by air-sea gas exchange with the atmosphere. Export of newly-fixed organic carbon742

leads in both regions to high remineralization rates that consume oxygen and release carbon743

dioxide at depth. We simulate similar high organic matter export (around 30 mmol m−2744

d−1) in the Santa Barbara and Los Angeles coasts (see Supporting Information: Fig. S24).745
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The reliability of these predictions can be tested by validation of dissolved oxygen and746

carbonate system parameters. There are several sources of uncertainty in the dissolved747

oxygen, pH, and aragonite saturation state observational records, which affect data-model748

comparisons. For dissolved oxygen, sensors are relatively accurate and precise and have a749

rapid response time (< 1s) when generating vertically resolved profiles. Repeated field mea-750

surement accuracy for CTD dissolved oxygen sensors was reported to be approximately 8751

mmol m−3 (Coppola et al., 2013). The pH observational record is particularly fraught with752

uncertainty. An evaluation of pH sensor data in the SCB indicated that, while sensor pH753

measurements were well correlated with discrete bottle samples collected at the same depth,754

there was a clear bias in pH, with sensor measurements under-predicting bottle measure-755

ments and high variability in the differences between paired bottle and sensor measurements756

(∆pH ranging from +/- 0.5) (McLaughlin, Dickson, et al., 2017). The aragonite saturation757

state is estimated using an algorithm developed for the region (Alin et al., 2012) for both758

in situ observations and model output, because complete measurements of carbon system759

parameters required to calculate ΩAr are missing. For all three variables, spatial and tem-760

poral under-sampling, particularly during seasons with high variability, adds uncertainty to761

the data-model comparison.762

4.5.1 Vertical gradients and seasonal variability of dissolved oxygen763

The model reproduces observed seasonal and spatial patterns in dissolved oxygen con-764

centration (Fig. 15), accurately simulating magnitude, vertical and horizontal gradients,765

and variability. Quantitative statistical analysis (see Table 6) indicated that the model per-766

formance was excellent or ′good ′ for nearly all metrics for all regions and seasons. The lowest767

performance of the model was characterized as poor for two sub-regions for the Nash-Sutcliff768

Model Efficiency during Spring, and ′reasonable ′ for some metrics in some sub-regions, which769

may be related to under-sampling during seasons with high variability, as described above.770

Similar to temperature, we tested whether the variability in spring may be impacting the771

performance statistics by extracting random profiles for the region (not shown, expressed772

with large error-bars in the spring season plots in Fig. 16), which show how dissolved oxy-773

gen on a single arbitrary day can more closely align with the observations. This supports774

the hypothesis that observational uncertainty is behind the lack of observational agreement775

with the model. Model performance was lowest in the Orange County and San Diego subre-776

gions, where model predictions tended to overestimate dissolved oxygen, consistent with the777

chlorophyll under-prediction, a likely consequence of the lack of cross-border inputs from778

Mexican waters.779

The model also reproduces the seasonality in dissolved oxygen in all subregions (Fig.780

16), characterized by large meridional and vertical variability. Near the Channel Islands,781

dissolved oxygen varies at 50 m by up to 140 mmol O2 m−3 between the highest winter782

values and the lowest summer values, reflecting the dynamics of upwelling, productivity, and783

air-sea gas-exchange. Offshore the coasts of Santa Monica and San Diego, the variability784

between winter and summer is of the order of 80-90 mmol O2 m−3. Surface concentrations785

are everywhere above 240 mmol O2 m−3 year-round, consistent with observations. The786

highest summer concentrations are observed at the depth of the deep chlorophyll maximum,787

reflecting photosynthesis, while decreasing at depth to below 150 mmol O2 m−3. These788

patterns are generally consistent with observations in the same regions.789

During the 1998 El NiÃśo event, the model shows a net decrease of dissolved oxygen790

near the surface, and a net increase below it. During this period, the entire upper layer (0-80791

m) is characterized by a homogeneous oxygen concentration of about 240 mmol O2 m−3792

over almost the entire SCB (not shown). Only the San Pedro and Santa Monica Bays show793

higher concentrations, which we attribute to the local anthropogenic nutrient enrichment794

and subsequent blooms (see Fig. 19). This is consistent with observations of the 1998 El795

NiÃśo event in California coastal waters (Chavez et al., 2002; Booth et al., 2014).796
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Figure 15: As for Fig. 5, but for oxygen concentration.

Santa Monica

Oxygen
H Correlation

Coefficient
p-value Cost

Function
Bias Ratio of Standard

Deviations
Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.97 E 9E-07 E 0.14 E -0.09 E 1.20 G 0.77 E 716
Spring 0 E 0.91 E 3E-04 E 0.26 E -0.23 R 1.03 E 0.37 R 702
Summer 0 E 0.99 E 2E-10 E 0.07 E 0.07 E 0.99 E 0.86 E 712
Fall 0 E 0.97 E 2E-06 E 0.19 E -0.14 G 1.49 P 0.42 R 718
All Seasons 0 E 0.97 E 3E-06 E 0.14 E -0.11 G 1.18 G 0.69 E 2848

pH
H Correlation

Coefficient
p-value Cost

Function
Bias Ratio of Standard

Deviations
Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.99 E 2E-08 E 0.01 E 0.01 E 0.59 P 0.57 G 632
Spring 0 E 0.97 E 2E-06 E 0.02 E -0.02 E 1.45 P 0.15 P 702
Summer 0 E 0.96 E 9E-06 E 0.01 E 0.01 E 1.01 E 0.85 E 712
Fall 0 E 0.97 E 3E-06 E 0.01 E 0.01 E 1.49 P 0.78 E 715
All Seasons 0 E 0.97 E 5E-06 E 0.01 E -0.01 E 1.12 G 0.84 E 2761

Table 6: Statistical comparison between in situ data and model outputs for dissolved oxygen
and pH profile in Santa Monica Bay.
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Figure 16: Comparison of dissolved oxygen concentration between different years of model
output, and a climatology from CalCOFI in situ data. SB is near the center of Santa
Barbara Channel, SM is offshore the Santa Monica Bay, and SD is offshore San Diego. Left
panels show surface concentrations, right panels concentrations at 50 m depth.

–33–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Journal of Advances in Modeling Earth Systems

4.5.2 Vertical gradients and seasonal variability of carbon system parame-797

ters798

Figure 17: As for Fig. 5 but for seawater pH.

Together with pH, the saturation state of aragonite (ΩAr) is often used as a metric799

to identify the potential impact of Ocean Acidification on marine calcifiers, because it is a800

measure of the availability of carbonate ions for calcium carbonate precipitation (Bednarsek801

et al., 2019). ΩAr shows similar vertical variability as dissolved oxygen (Juranek et al.,802

2009; Alin et al., 2012). Similar to oxygen loss, reduction in pH and ΩAr in the upper803

layers can be caused by coastal upwelling and local physical processes (Feely et al., 2018);804

over longer timescales it also reflects oceanic uptake of anthropogenic carbon from the805

atmosphere. We utilize sensor pH data sets to evaluate vertical profiles in the carbonate806

system. Because of the known uncertainty in pH measurements, we are most concerned with807

how well the model reproduced the shape of the profiles (i.e., goodness of fit estimates, as808

with chlorophyll). Sensor-derived pH profile measurements should be internally consistent809

within a data set (if the sensor is working properly and if pressure issues are minimal),810

providing some value to goodness of fit assessments. Given these constraints, the data-811

model comparisons for pH sensor data were generally excellent or good for all sub-regions812
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and all seasons 17. Unsurprisingly, the model performance reproducing observational means813

and variability was generally reasonable or poor for most sub-regions and seasons, with some,814

if not most, of this disagreement due to difficulties in conducting a validation of the model815

with large uncertainties in sensor-derived pH profiles. Recently, the CalCOFI program has816

incorporated ΩAr into its sampling design. Although the data do not line up with the817

model period, they are useful for evaluating seasonal variability in the model . Generally,818

the model reproduces seasonal and vertical variability in ΩAr, with higher saturation states819

in the summer and fall, when waters are generally more stratified, and lower values in820

winter and spring, when upwelling brings undersaturated waters closer to the surface. ΩAr821

is also much lower and more highly variable at depth . These patterns are consistent with822

observations throughout the SCB (McLaughlin et al., 2018).823

Figure 18: Comparison of the saturation state of aragonite between different years of model
output, and a climatology from CalCOFI in situ data. SB is near the center of Santa Barbara
Channel, SM is offshore the Santa Monica Bay, and SD is offshore San Diego. Left panels
show surface values, right panels values at 50 m depth.
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5 Discussion and conclusions824

In this study, we demonstrated the readiness of a high-resolution, dynamically down-825

scaled, physical-biogeochemical model to mechanistically investigate links between a com-826

prehensive reconstruction of terrestrial and atmospheric nutrient inputs, coastal eutrophi-827

cation, and biogeochemical change in the SCB coastal waters. This modeling platform is an828

important achievement because it strikes a balance of capturing the forcing of coast-wide829

basin mesoscale phenomena, while capturing the combined effects of bathymetry and sub-830

mesoscale eddies that intensify transport of nutrients and biological material. Moreover, this831

model allows hindcast simulations of primary production, ocean acidification and oxygen832

loss at timescales that can approach the multi-annual frequencies of intrinsic ocean variabil-833

ity. Future research using this model will make the grand challenge of disentangling natural834

variability, climate change, and local anthropogenic forcing a tractable task in the near-835

term. The model evaluation developed in this manuscript discusses sources of uncertainties836

for the circulation, nitrogen, carbon and oxygen cycles that serve as a critical element to837

communicate results to regional stakeholders.838

ROMS has a long history of validation and management acceptance through various839

applications in the CCS (e.g. Marchesiello et al. (2003); Capet et al. (2004); Capet, Colas, et840

al. (2008); Capet, Campos, and Paiva (2008); Capet, McWilliams, et al. (2008); Shchepetkin841

and McWilliams (2011); Renault, Molemaker, Gula, et al. (2016)). In contrast, experience842

with BEC within the SCB is more limited. Our validation study of coastal eutrophication843

gradients in the SCB nearshore complements the U.S. West Coast-wide study of (Deutsch844

et al., 2021) and strengthens confidence that the basic CCS BEC model formulation, forcing845

and parameterization is appropriate not only for coastwide analyses, but also for detailed846

local studies of coastal eutrophication in the highly urbanized SCB (Kessouri et al., 2021).847

In Table 1, we summarize a series of statistical tests of model performance, and provide848

guidelines for their interpretation. These tests are helpful for the validation and interpreta-849

tion of the model results, because they quantify in an accessible and succinct way informa-850

tion related to magnitude, variability, gradients, and systematic biases of model variables851

relative to observations. We further apply these tests to the most relevant biogeochemical852

variables (see Tables 2, 3, 4 and 6). In particular, tests that compare variability are essential853

for a model that resolves submesoscale circulation and the environmental heterogeneity it854

produces. These tests are used to build confidence in the use of the model for coastal appli-855

cations, including scenarios and attribution experiments (Kessouri et al., 2021). Likewise,856

they could be helpful metrics for multi-model ensemble comparisons.857

The representation of physical processes such as vertical mixing and horizontal circu-858

lation was consistent across the model and measurements. The model reproduces the main859

structure of the climatological upwelling front and cross-shore isopycnal slopes, and the860

mean current patterns and associated temperature gradients. We also demonstrate good861

agreement between model simulations and the mean distributions and variability of key862

ecosystem metrics, including surface nutrients and productivity, and subsurface O2 and car-863

bonate saturation. The spatial patterns of primary production, phytoplankton growth rates,864

and zooplankton grazing are broadly consistent with measured rates. The distribution of865

primary production is governed by the trade-off between nutrient and light limitation, a bal-866

ance that reproduces and explains the observed spatial variations in the depth of the deep867

chlorophyll maximum. Statistical measures of model agreement on biogeochemical state868

variables was excellent to good and the range of predicted biogeochemical rates on par with869

observations. Under the realistic flow fields produced by ROMS, the conformity of model870

predictions with a rich observational dataset is a strong demonstration of model validity871

for coastal eutrophication applications (Kessouri et al., 2021). We also demonstrated that872

the model responds with confidence to the variability caused by El NiÃśo, modifying the873

vertical distribution of the physical and biogeochemical properties across the upper ocean874

of the entire Bight, as illustrated by the three-dimensional change in key ocean variables875

shown in Fig. 19.876
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While the broad agreement between the model and observations for a range of variables877

is encouraging, some aspects of the model require further investigation and improvement.878

Some of the model biases are shared across multiple variables, reflecting common underlying879

processes, such as stoichiometry of biogeochemical reactions and solubility. We highlighted880

some of these biases, for example: (1) Spring is the season when we see the largest variability,881

in particular between March and June, when we move from vigorous surface mixing to882

a strong stratification; (2) Along the coasts of Orange County and San Diego, missing883

nutrients sources from the southern boundary (i.e., from the Mexican coast) likely drive884

underestimation of phytoplankton concentration, productivity, and carbon export, causing885

an overestimation of oxygen, pH and calcium carbonate saturation in the subsurface; (3)886

Overestimation of temperature in the water column impacts oxygen and carbon solubility887

by decreasing their equilibrium concentrations; this suggests that some biases, such as too888

high oxygen in spring, hide overcompensation by other biogeochemical processes, e.g. high889

productivity or reduced gas exchange; (4) Underestimation or overestimation of pH and890

calcium carbonate saturation state are tightly linked by inorganic carbon chemistry, and891

can in turn reflect biases in circulation, water column structure, temperature, and nutrient892

cycles of the type discussed above.893

The structure of the model is also limited in its representation of ecosystem dynamics.894

For example, phytoplankton diversity is limited in the model, preventing it from properly895

simulating events such as dinoflagellate-driven red tides, which occur over short periods on896

nearshore coastal scales, typically in spring. Despite the good performance of the model897

in reproducing total primary production and grazing rates, the model does not include898

multiple zooplankton functional groups, thus providing little information on the dynamics899

and transfer of energy to higher trophic levels, or the formation of rapidly sinking fecal900

pellets. From a hydrodynamics point of view, with a horizontal resolution of 300m, the model901

does not directly resolve physical processes occurring at sales of tens of meters (Dauhajre et902

al., 2019), for example the dilution and entrainment of buoyant wastewater plumes, which903

are parameterized in the model, or the vertical and horizontal transport of tracers in the904

very nearshore surf zone.905

Quantitative and qualitative results of confidence assessments are essential for informing906

management decisions, evaluating management strategies, and providing a basis for risk907

analyses. The most successful management approaches are those that explicitly incorporate908

uncertainty (e.g. Taylor et al. (2000)). An assessment of model validation must consider909

the complex combination of model and observational uncertainties (Allen et al., 2007),910

including: 1) uncertainty/error in the model, with the inclusion of intrinsic variability; 2)911

uncertainty/error in measured data; 3) uncertainty from the difference in spatial scale of the912

model output relative to the measured data used in the comparison (specifically, comparing913

a 0.3 km grid cell to a discrete sampling station); and 4) uncertainty from the difference in914

temporal averaging of the model output relative to the measured data. For parameters in915

which we have high confidence in the observational record, i.e., temperature and dissolved916

oxygen, model performance statistics show excellent agreement for mean profiles, vertical917

and horizontal gradients, as well as seasonal variability. The model reproduces chlorophyll918

reasonably well, albeit with some biases, which can be in part attributed to a simplified919

representation of plankton diversity, measurement uncertainty, sparseness of in situ data,920

cloud cover and algorithm biases in satellite products. Variables such as pH and ammonium921

show lower agreement, likely due to measurement uncertainty and sampling bias, but general922

spatial and temporal patterns are correctly reproduced in the model.923

Greater clarity is needed in the requirements for model performance and uncertainty to924

support decisions on management of SCB coastal water quality and eutrophication (Boesch,925

2019). These requirements are likely to be driven largely by the approach that will be used926

to interpret a "significant impact" (e.g. existing water quality pH and dissolved oxygen cri-927

teria, or biologically relevant thresholds; (Weisberg et al., 2016)), as these have significant928

implications for required model precision and accuracy on different spatial and and temporal929
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scales. Future efforts to constrain uncertainty could include sensitivity analyses and model930

ensemble comparisons of the BEC biogeochemical component with other biogeochemical931

models that feature increasingly complex representations of planktonic functional groups,932

benthic communities, and sediment-pelagic interactions. Finally, long-term investments are933

needed in coupled chemical-biological observations of phytoplankton and zooplankton di-934

versity and community structure. These observations are critical to provide understanding935

of the evolution of lower trophic ecosystem structure with climate change, and their rela-936

tionship with biogeochemical cycles linked to ocean acidification and oxygen loss (Sailley et937

al., 2013). Ultimately, the need to constrain uncertainty will likely scale with the economic938

import of management decisions under consideration, which could range from increased939

monitoring requirements to multi-billion dollar non-point source controls and wastewater940

treatment plant upgrades.941

Figure 19: Three-dimensional illustration of temperature, DIN (NO−3 + NH+
4 ) and chloro-

phyll in the Southern California Bight. Panels show winter 1999 and 2000 (left panels),
winter 1998 during El NiÃśo period (right panels).
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