SCCWRP #1151

Natural and Anthropogenic Drivers of Acidification in Large Estuaries

Wei-Jun Cai¹, Richard A. Feely², Jeremy M. Testa³, Ming Li⁴, Wiley Evans⁵, Simone R. Alin², Yuan-Yuan Xu^{6,7}, Greg Pelletier⁸, Anise Ahmed⁹, Dana J. Greeley², Jan A. Newton¹⁰, Nina Bednaršek⁸

¹School of Marine Science and Policy, University of Delaware, Newark, Delaware ²Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington ³Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland

⁴Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland

⁵Hakai Institute, Heriot Bay, British Columbia V0P 1H0, Canada

⁶Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

⁷Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida

⁸Department of Biochemistry, Southern California Coastal Water Research Project, Costa Mesa, California

⁹Washington State Department of Ecology, Olympia, Washington

¹⁰Applied Physics Laboratory and Washington Ocean Acidification Center, University of Washington, Seattle, Washington

ABSTRACT

Oceanic uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have effects on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO2-induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid–base buffer capacity. In this article, we review how a variety of processes influence aquatic acid–base properties in estuarine waters, including river–ocean mixing, upwelling, air–water gas exchange, biological production and subsequent respiration, anaerobic respiration, calcium carbonate (CaCO3) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO2 (pCO2), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries —Chesapeake Bay, the Salish Sea, and Prince William Sound—are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers.

Due to distribution restrictions, the full-text version of this article is available by request only. Please contact pubrequest@sccwrp.org to request a copy.