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A B S T R A C T

Predictive biological indices have transformed the bioassessment landscape by allowing universal indices to be
applicable across diverse environments. The successful development of a predictive benthic macroinvertebrate
index for California wadeable streams helped to demonstrate the power of these tools in complex geographic
settings. However, previous efforts to develop predictive algal indices for California were limited by poor per-
formance and were ultimately unsuccessful. For this study, we leveraged a robust statewide dataset to develop
two different types of predictive algal indices for California wadeable streams: an index of observed-to-expected
taxa (O/E) to measure taxonomic completeness and a multimetric index (MMI) to evaluate ecological structure.
We developed multiple versions of each index, including one for diatoms, one for soft-bodied algae, and a hybrid
index using both assemblages. We evaluated index performance using a series of screening criteria for precision,
accuracy, responsiveness, and regional bias. We found that final index performance varied among all assem-
blages: the best performing O/E index was a diatom-only index, whereas the predictive diatom and hybrid MMIs
out-performed all other indices with excellent responsiveness and precision. We found that in comparison to
benthic macroinvertebrates, algal communities were characterized by high beta diversity across reference sites
and low average species richness per site, resulting in disparate algal populations that were challenging to model
with predictive approaches, particularly for soft-bodied algae assemblages. While all O/E indices were con-
sidered to have weak performance, the predictive diatom and hybrid MMIs are accurate, responsive, and precise
indices that will provide a powerful assessment of biological condition for statewide applications.

1. Introduction

The advent of predictive biological indices has allowed for the ex-
pansion of these powerful bioassessment tools to diverse, complex en-
vironments (Hawkins et al., 2010b; Mazor et al., 2016; Vander Laan and
Hawkins, 2014). Predictive indices evaluate the quality of a waterbody
as the degree of alteration of the biological community in comparison
to site-specific, reference-based expectations, also known as the re-
ference condition approach (RCA; Reynoldson et al., 1997). The use of
predictive indices for evaluating benthic macroinvertebrate (BMI)
communities has seen broadscale application, including in the devel-
opment of the River Invertebrate Prediction and Classification System
(RIVPACS) that measures the taxonomic completeness of a sample as
the ratio of observed-to-expected (O/E) taxa (Wright, 2000, 1995). The
extension of predictive modeling techniques to multimetric indices

(MMIs) has allowed for the accounting of geographic variability in the
ecological structure of biological communities. Like predictive O/E
indices, successful predictive MMIs have been shown to improve the
accuracy, precision, and sensitivity of MMIs in diverse environmental
settings (Cao et al., 2007; Hawkins et al., 2010a; Mazor et al., 2016;
Vander Laan and Hawkins, 2014).

While predictive benthic macroinvertebrate indices have become
increasingly popular, efforts to develop predictive algal indices have
had varying success. Mazor et al. (2006) successfully developed a
RIVPACS-type index for periphyton communities in the Fraser River,
although the performance of the predictive algal index was worse than
the benthic macroinvertebrate index. Cao et al. (2007) successfully
developed both an O/E and a predictive MMI index for diatoms of Idaho
streams. Feio et al., (2009) saw comparable performance between a
predictive diatom index and non-predictive multimetric indices, and
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Feio et al., (2012) successfully developed a diatom and macrophyte
predictive model (AQUAFLORA) for Portuguese streams. Recently, a
predictive diatom index was developed for streams and rivers in
Northern Spain (Pardo et al., 2018) that demonstrated responsiveness
to anthropogenic stressors. Additional attempts at a predictive diatom
index have been less successful. A predictive, diatom-only index was
attempted for the Central Coast of California but suffered from low
precision and accuracy (Ritz, 2010), and a predictive diatom genus-
level index for streams in Australia had weaker performance than a
macroinvertebrate index, possibly due to temporal variability in diatom
communities and limitations in predictor variables (Chessman et al.,
1999).

California is home to a number of diverse ecoregions (Ode et al.,
2016; Omernik, 1987) and these distinct environmental settings ne-
cessitate the development of biological indices that can adequately
account for regional impacts on biological community structure. For-
tunately, California also benefits from extensive annual sampling
campaigns in wadeable stream environments (Ode et al., 2011), efforts
that have resulted in rich taxonomic and ecological datasets for both
algae (Fetscher et al., 2013, 2014a) and benthic macroinvertebrates
(Mazor et al., 2016) that can be used to develop robust biological in-
dices. Ode et al. (2016b) developed a definition of reference condition
for California wadeable streams that incorporates a strict set of
screening criteria to measure anthropogenic disturbance at a variety of
spatial scales. Mazor et al. (2016) applied this reference definition to
develop the California Stream Condition Index (CSCI), a predictive
index for benthic macroinvertebrates that incorporates both a measure
of taxonomic completeness (O/E) and a measure of ecological structure
(MMI) for assessing biological condition in wadeable streams. The CSCI
has been increasingly incorporated into statewide and regional mon-
itoring programs and is now the primary way California reports on the
biological condition of its streams to Congress as required by the US
Clean Water Act (State Water Resources Control Board, 2017).

The success of the CSCI served as the motivation to develop a
complementary line of evidence based on algal communities for as-
sessing biological condition in California’s wadeable streams. To ad-
dress this need, we followed the approach used to develop the CSCI and
constructed both a predictive algal O/E index and a predictive MMI. We
developed each index using diatoms alone, soft-bodied algae alone, and
a hybrid approach using both assemblages. We evaluated the perfor-
mance of each index across both environmental and disturbance gra-
dients, with a concerted focus on selecting final indices with high
precision and low regional bias, thereby addressing a primary concern
for using these indices in statewide water quality and management
decisions. This paper reviews the performance of each resulting algal
index and discusses both the biological and technical factors that con-
tribute to index performance in diverse environmental settings.

2. Materials and methods

2.1. Study region

California is a species-rich biogeographic region with a complex
history of geological change, modern-day geographic settings, and cli-
mate fluctuations (Calsbeek et al., 2003; Sork et al., 2016). California’s
North Coast is characterized by temperate rainforests, eastern portions
of the state are dominated by desert, and the coastal regions have
chaparral, oak woodlands, and grasslands with a Mediterranean climate
(Omernik, 1987). Anthropogenic development has transformed the
landscape in the agriculturally dominated Central Valley as well as the
densely urban South Coast and San Francisco Bay Area (Sleeter et al.,
2011). The state can be divided into six ecoregions based on modified
ecoregional (Omernik, 1987) and hydrological boundaries (Ode et al.,
2016), hereafter referred to as Perennial Stream Assessment (PSA)
ecoregions (Mazor et al., 2016): the North Coast (NC), Central Valley
(CV), Chaparral (CH), Desert Modoc (DM), Sierra Nevada (SN), and

South Coast (SC).

2.2. Data compilation

We compiled algae taxonomic data from multiple federal, state, and
regional monitoring programs in California, resulting in a dataset of
1941 sampling sites and 2586 unique sampling events in wadeable
streams. All sampling events followed a standardized periphyton sam-
pling protocol (Fetscher et al., 2009; Ode et al., 2016a). Briefly, a reach
of 150m was subdivided into eleven transects. A “multihabitat method”
was employed to objectively collect subsamples of algal specimens
quantitatively from a known surface area over a representative sample
of stream substrata (Fetscher et al., 2009). An additional qualitative
sample was collected by sampling visible mats of macroalgae (Fetscher
et al., 2009) to help aid in the taxonomic identification of soft-bodied
algae in the quantitative fraction. Algae samples were composited and
proportioned into diatom and soft-bodied algae aliquots for laboratory
analysis. Microscopy-based analyses for taxonomic identification fol-
lowed Stancheva et al. (2015), and relied on statewide, harmonized
master taxa lists for both diatoms and soft-bodied algae (Surface Water
Ambient Monitoring Program, n.d.). For sites with multiple years of
sampling, we selected the most recent sample for index development
and reserved previous sampling events for performance analyses (e.g.
within-site variability). The complete development dataset is provided
at http://www.github.com/stheroux/asci.

2.3. Data curation

Samples with< 200 diatom valves were excluded from diatom and
hybrid analyses but retained for SBA analysis. Only∼ 60% of samples
contained a qualitative soft-bodied algal fraction so due to the incon-
sistent inclusion of this fraction, only quantitative taxonomy data was
included in subsequent analyses. All taxonomy results were converted
from count (diatoms) or biovolume (soft-bodied algae) data to pre-
sence/absence data in anticipation of future assemblage data being
derived from DNA-based methods. Provisional species names and
morphospecies names were subjected to a name-harmonization with
AlgaeBase (algaebase.org) and Biodata species names (http://aquatic.
biodata.usgs.gov) to remove ambiguous identifiers. All indices were
tested using both species-level and genus-level taxonomy. Harmonized
name lists are provided at http://www.github.com/stheroux/asci.

2.4. Classifying reference and high-activity sites

We assessed the influence of anthropogenic activity using measures
of surrounding land use as well as local habitat data after Ode et al.
(2016b). We followed a “least-disturbed” reference concept (Stoddard
et al., 2006) for the identification of “reference” sites and identified
high-activity sites as those that were presumptively stressed with high
levels of human activity in the watershed or riparian zone that could
potentially degrade in-stream biological condition (Mazor et al., 2016;
Table 1). We used reference sites to determine the biological compo-
sition of sites with minimal human disturbance (Hawkins et al., 2010a;
Mazor et al., 2016) and therefore to calibrate our O/E and MMIs
models. Reference site screening thresholds closely followed those used
in the construction of the CSCI (Mazor et al., 2016; Ode et al., 2016),
with the exception that conductivity was not used to eliminate a site
from the reference pool (Table 1). High-activity sites were used in
scoring MMIs as well as in evaluating performance of both O/E and
MMIs. Any sites that did not pass the reference or high-activity
screening thresholds were included in the “intermediate” site pool. We
further divided each dataset into a calibration (80%) and validation
(20%) subset and stratified assignment by ecoregion for equal re-
presentation of different environmental settings.
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2.5. Environmental variables

We assembled environmental data from multiple sources, including
GIS-derived variables from the National Hydrography Dataset Plus
(NHD, http://www.horizon-systems.com/nhdplus), the National
Landcover Data Set (http://www.epa.gov/mrlc/nlcd −2006.html), the
National Inventory of Dams (https://nid.sec.usace.army.mil/), Mineral
Resource Data System (http://tin.er.usgs.gov/mrds), and predicted
specific conductance (background levels predicted for unimpacted
sites) from Olson and Hawkins (Olson and Hawkins, 2012). This en-
vironmental data included measures of climate, elevation, geology,
land cover, land use, road density, hydrologic alteration, and mining
activities. We derived a measure of xeric/montane setting based on PSA
ecoregion wherein the Chaparral, Central Valley, Desert Modoc, and the
South Coast ecoregion were considered xeric and the North Coast and
Sierra Nevada ecoregions were considered montane. We used en-
vironmental variables that characterize immutable natural gradients as
candidate predictors for the O/E and MMI models (Table 2,
Supplemental Table 1), whereas environmental variables influenced by
anthropogenic factors were used for screening reference sites and for
assessing index performance along stressor gradients (Supplemental
Table 3).

2.6. O/E index development

2.6.1. O/E index construction
We constructed our O/E indices using the following steps: 1) cluster

reference calibration sites based on their taxonomic composition; 2)
develop a random forest model to predict site membership within a
taxonomic cluster using candidate predictor variables that are mini-
mally affected by human perturbation; 3) use the random forest model
to predict cluster membership of test sites based on their environmental
setting; 4) calculate the probability of observing a taxon at a test site, or
capture probability (Pc), as the cluster-membership probability-
weighted frequencies of occurrence summed across all clusters (Moss
et al., 1987; Wright, 2000); 5) sum the capture probabilities as the
expected number of taxa (E) in a sample from a site; 6) calculate the
observed (O) and expected (E) number of taxa for each site.

We performed the clustering of reference site algae populations
using a presence/absence transformed data matrix and excluded all
taxa occurring in < 2.5% and > 95% of reference calibration sites
(Hawkins et al., 2000; Van Sickle et al., 2007). The rare species ex-
cluded in the clustering step were retained for subsequent steps in the

O/E development. For each of the O/E indices (diatom, soft-bodied
algae, and hybrid), we determined an optimal number of clusters
through a computational permutation with clusters ranging in size from
3 to 15 and a capture probability of either 0.4 or 0.5. We iterated the
cluster numbers and capture probabilities with k-means clustering
using the k-means function in the stats R package (R Core Team, 2013).
We ensured that each cluster had at least five sites, as fewer sites per
cluster has been shown to potentially omit taxa that are representative
of reference conditions or under-represent stream types (Simpson and
Norris, 2000; Wright et al., 1993). The cluster and capture probability
combination of the best-performing O/E index (details below) were
selected as the final parameters for that assemblage.

We used recursive feature elimination (RFE) as implemented in the
caret package in R (Kuhn, 2008) to select environmental variables that
were the best predictors of reference cluster group membership. In
brief, we used RFE to identify the optimal number of environmental
predictor variables whose model accuracy was within 1% of the best
model. We then used the randomForest package (Liaw and Wiener,
2002) to construct a final 500-tree O/E model using the predictor
variables identified by the RFE analysis. In addition to the statewide
indices, we also generated an additional statewide O/E index for each
algal assemblage that allowed for the inclusion of additional candidate
predictor variables, including those influenced by human activity such
as field-measured total nitrogen, total phosphorus, specific con-
ductivity, and water temperature (Supplemental Table 1).

2.6.2. Evaluating O/E index performance
We evaluated O/E index performance by comparing the standard

deviation (SD) of the predictive O/E index to the SD of the null O/E
index, wherein all sites are in a single cluster and capture probabilities
for each taxon are the same for all sites, to ensure that the predictive
index had a lower SD than the null index. Additionally, we compared
the predictive O/E index SD to the highest attainable precision possible
based on estimates of the standard deviation among replicate samples
(SDRS; (Van Sickle et al., 2005). We evaluated the model’s ability to
differentiate three condition classes (reference, intermediate, high-ac-
tivity) using an ANOVA test as implemented in the R stats packages. We
selected the best performing permutation of each algal O/E index by an
averaged ranking of reference calibration site SD, predictive model
performance improvement over the null model, and the ability of the
model to differentiate reference from high-activity sites. All analyses
were performed using modified scripts written by J. Van Sickle for
evaluating O/E model performance (Van Sickle et al., 2005) in

Table 1
Stressor and human-activity gradients used to identify reference sites and high-activity sites. Sites that did not exceed the listed reference thresholds (ref threshold)
were used as reference sites. Sites that exceeded at least one high-activity threshold (str threshold) were used as high-activity sites. Sources: A=National Landcover
Data Set (http://www.epa.gov/mrlc/nlcd −2006.html), B= custom roads layer, C=National Hydrography Dataset Plus (http://www.horizon-systems.com/
nhdplus), D=National Inventory of Dams (http://geo.usace.army.mil), E=Mineral Resource Data System (http://tin.er.usgs.gov/mrds); F= Field measured
variables. WS=watershed; 5 km=watershed clipped to a 5-km buffer of the sampling point; 1 km=watershed clipped to a 1-km buffer of the sampling point; %
Code 21= land-use category that corresponds to highly managed vegetation, such as roadsides, lawns, cemeteries, and golf courses. W1_HALL=proximity-weighted
human activity index (Kaufmann et al., 1999).

Variable Scale Ref threshold Str threshold Unit Source

% agricultural 1 km, 5 km, WS < 3 > 50 % A
% urban 1 km, 5 km, WS < 3 > 50 % A
% agricultural + % urban 1 km, 5 km, WS < 5 % A
% Code 21 1 km, 5 km < 7 > 50 % A

WS < 10 > 50 % A
Road density 1 km, 5 km, WS < 2 > 5 km/km2 B
Road crossings 1 km < 5 crossings B, C

5 km < 10 crossings B, C
WS < 50 crossings B, C

Dam distance WS > 10 km D
% canals and pipelines WS < 10 % C
Instream gravel mines 5 km < 0.1 mines/km C, E
Producer mines 5 km 0 mines E
W1_HALL Reach < 1.5 > 5 NA F
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combination with custom scripts. All development scripts can be found
at https://github.com/stheroux/asci.

As low numbers of expected taxa have been shown to impact O/E
index performance (Hämäläinen et al., 2018; Mazor et al., 2016), we
evaluated index sensitivity to low E values by calculating precision
(standard deviation of reference calibration site scores for each index),
sensitivity (proportion of high-activity sites not in reference condition),
and accuracy (percent of reference calibration sites above 10th per-
centile of reference) of O/E indices for intervals ranging from 1 to 35
maximum E values. Additionally, we compared E values for diatom,
soft-bodied algae, and hybrid O/E indices to predicted metric values for
metrics that evaluate proportions of sensitive taxa (prop.spp.BCG12)
and tolerant taxa (prop.spp.BCG4) at reference sites. This comparison
allowed us to gauge how the expected proportion of sensitive/tolerant
taxa varied along a range of E values and to test the hypothesis that
greater proportions of sensitive and rare taxa would be predicted at
sites with high E values. Additionally, we compared the E values for the
hybrid O/E model with the combined sum of diatom and soft-algae E
values for all sites. This comparison allowed us to evaluate if and when
the hybrid O/E model resulted in higher E values than the combined E
values for individual diatom and soft-algae O/E models.

2.7. Multi-metric index development

2.7.1. MMI construction
The MMIs were constructed in the following steps: 1) calculate

observed (raw) metric values; 2) develop random forest models to
predict metric values at reference sites and replace raw values with
differences from predicted values, if appropriate; 3) score metrics; 4)
select best-performing metrics and assemble proto-MMIs; 5) assemble
final MMI with most frequent high-performing metrics.

2.7.2. Metric calculation
We assembled a custom dataset of species’ trait attributes for cal-

culating autoecological and phylogenic metrics. We obtained trait at-
tributes from previously published algae attribute lists (Bahls, 1993;
Porter et al., 2008; Potapova and Charles, 2007; Spaulding et al., 2010;
van Dam et al., 1994), empirically-derived traits for southern California
taxa (Fetscher et al., 2014b), recently developed traits related to species
occurrence at reference vs. high-activity sites as derived by a panel of
algal ecologists and taxonomists for the California Biological Condition
Gradient (BCG; Paul et al., 2020). Additionally, we developed empiri-
cally-defined trait attributes by identifying “sensitive” and “tolerant”
California taxa using an Indicator Species Analysis as implemented in
the multipatt function in the indicspecies R package (Cáceres and
Legendre, 2009) and classified sensitive taxa as enriched at reference
sites and tolerant taxa enriched at high-activity sites. We generated
metrics for species richness, Simpson and Shannon’s diversity using the
R package vegan (Oksanen et al., 2017).

We grouped metrics into thematic categories based on their auto-
ecological, morphological, taxonomic, or species tolerance guilds
(Table 3). As in the O/E model development, we performed all metric
calculations on a presence/absence data matrix. For the hybrid MMI,
we used a combined dataset of both diatom and soft-bodied algae taxa
for calculating metric values. All metrics were calculated as both a
proportion of total taxa and total count of taxa that met specific trait
attributes and we assumed that changes in these metric values from
reference expectations indicated degraded biological condition. We
calculated all metrics using a combination of the R language vegan
package (Oksanen et al., 2017) and custom R scripts (https://github.
com/stheroux/asci).

Table 2
Selected candidate predictor variables for inclusion in both the O/E and MMI metric random forest models. When a predictor was selected, its importance is shown:
Gini=mean decrease in Gini index, MSE = % increase in mean squared error for random forest models. Diatom metrics: m1= cnt.spp.most.tol,
m2=EpiRho.richness, m3=prop.spp.IndicatorClass_TN_low, m4=prop.spp.Planktonic, m5=prop.spp.Trophic.E, m6=Salinity.BF.richness. Hybrid metrics:
m1= cnt.spp.IndicatorClass_TP_high, m2= cnt.spp.most.tol, m3=EpiRho.richness, m4=OxyRed.DO_30.richness, m5=prop.spp.Planktonic,
m6=prop.spp.Trophic.E, m7= Salinity.BF.richness. Sources: A=PRISM climate database (http://www.prism.oregonstate.edu/); B=National Atmospheric
Deposition Program National Trends Network (http://nadp.slh.wisc.edu/ntn/); C=Olson and Hawkins (Olson and Hawkins, 2012); D=National Elevation Dataset
(http://ned.usgs.gov/). XerMtn: Xeric/Montane assignment derived from PSA ecoregion (see text for description).

Diatom SBA Hybrid Diatom MMI Hybrid MMI

Variable Description O/E O/E O/E m1 m2 m3 m4 m5 m6 m1 m2 m3 m4 m5 m6 m7 Source

Gini Gini Gini MSE MSE MSE MSE MSE MSE
AREA_SQKM Area 38.9 41.7 46.3 – 33.1 – – – – – – 34.8 – – – –
AtmCa Mean Ca+ concentration – – 36.3 – – – – – – – – – 32.1 – – – B
CondQR50 Median predicted conductivity 31.8 31.2 37.8 – – 38.4 24.0 41.3 19.3 – 27.2 – – 22.6 42.9 – C
DayOfYear Day of year – 35.1 41.7 – – – – – – – – – – – – –
KFCT_AVE Catchment mean soil erodibility (K)

factor
– – – – – – – 29.2 22.6 30.2 – – – – 28.7 25.1 C

LPREM_mean Catchment mean log geometric mean
hydraulic conductivity

33.5 – 38.2 – – – – – – – – – – – – – C

LST32AVE Average of mean 1961–1990 first and
last day of freeze

34.3 33.2 38.3 – – – – – – – – – – – – – B

MAX_ELEV Maximum elevation in catchment 39.9 33.3 37.8 – – 30.7 – – – – – – – – – – D
Month Month – 12.3 – – – – – – – – – – – – – –
New_Lat Latitude 32.6 35.7 36.1 – – – – – – – – – – – – –
New_Long Longitude 31.1 – – – – – – – – – – – – – – –
PPT_00_09 10-y (2000–2009) average annual

precipitation
– – – 25.4 – – – – – 45.6 – – 26.0 – – – A

SITE_ELEV Site elevation 35.1 – 37.4 – – – 25.7 – – – – – – 28.2 – – D
TEMP_00_09 10-y (2000–2009) average monthly

temperature
29.9 33.3 33.8 – – – – – – – – – – – – – A

TMAX_WS Catchment mean of mean 1971–2000
maximum temperature

– – – – 33.1 – – – – – – 36.7 – – – – D

XerMtn Xeric or Montane. PSA ecoregions CH,
CV, DM, SC == 0; NC, SN == 1.

– – – 58.6 – – – – 30.2 – 33.8 – – – – 66.7

XWD_WS Catchment mean of mean 1961–1990
annual number of wet days

31.3 36.1 – – – – – – – – – – – – – – D
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2.7.3. Prediction of metric values at reference sites
To account for environmental variability in reference site popula-

tions, we developed predictive MMIs wherein observed metric values
are compared to expected values derived from models calibrated at
reference sites. We developed random forest models to predict values
for all metrics at reference calibration sites using the same candidate
predictor variables that were used for O/E index development
(Table 2). We again used an RFE approach to select the predictor
variables for each metric and created a final 500-tree random forest
model for each metric based on the predictors used in the model se-
lected by RFE. We then used the final model to predict metric values for
all sites. If the pseudo-R2 of the model (calculated as 1 – mean squared
error [MSE]/variance) was > 0.2 (following Mazor et al., 2016), we
adjusted metric values by subtracting predicted values from observed
values. For all other metrics, we used the observed metric values.

2.7.4. Metric scoring
Metric values were scored to account for differences in scale di-

rection of response to stress among metrics (Blocksom, 2003). This
scoring transformed metrics to a 0 to 1 scale, with lower scores in-
dicative of more high-activity conditions and greater deviation from
reference sites. We scored metrics after Cao et al. (2007). We scored
metrics that decrease with human activity as:

(Observed Min)/(Max Min)

where Min is the 5th percentile of high-activity calibration sites and
Max is the 95th percentile of reference calibration sites. We scored
metrics that increase with human activity as:

(Observed Max)/(Min Max)

where Min is the 5th percentile of reference calibration sites, and Max is
the 95th percentile of high-activity sites. We trimmed all scores outside
the range of 0 to 1 by either rounding up to 0 or down to 1, respectively.

2.7.5. Metric selection
We selected metrics for possible inclusion in an MMI based on a

series of performance screening criteria (Table 4). First, metrics were
eliminated if they had inadequate range, which we defined as con-
taining > 1/3 zero or one values (Stoddard et al., 2008) and median
values at reference and high-activity sites > 0 (Stevenson et al., 2013).
We evaluated the metric signal-to-noise (S:N) ratio as the ratio of the
variance among all sites (signal) to the variance of repeated visits to the
same site (noise) (Kaufmann et al., 1999). Metrics passed with a S:N
ratio > 2 (Stoddard et al., 2008). Additionally, we eliminated metrics
with a ratio of between-site to within-site variance < 3 (Mazor et al.,
2016; Stoddard et al., 2008). We evaluated metric responsiveness by t-
test of the metric scores in reference and high-activity sites. We assessed
bias by determining whether metric values at reference sites varied
among PSA ecoregions, using a threshold of an ANOVA F-statistic > 3.

2.7.6. Assembling the MMI
All metrics that met screening criteria for each algal assemblage

were assembled into all possible combinations of proto-MMIs. We se-
lected the top-performing proto-MMIs using screening criteria of re-
gional bias (ANOVA F statistic < 3), precision (standard deviation of
reference calibration scores < 0.2), and responsiveness in dis-
criminating reference from high-activity sites (ANOVA F statistic >
100). We then calculated the most frequent metrics in these top per-
forming proto-MMIs and grouped these metrics into thematic types,
ensuring a distribution of final metrics across thematic categories
(Table 3). The winning metrics from this step were again combined into
all possible combinations, and the best performing final MMI was se-
lected based on an averaged ranking of the regional bias, precision, and
responsiveness screening criteria. We calculated scores for the final
MMI by averaging metrics scores and rescaling by the mean of reference
calibration site scores. This process resulted in an index that, like the O/
E (null) index, has a mean of 1 at reference calibration sites.

2.8. Index performance evaluation

Index performance was evaluated using the following measures: a)
accuracy, or the performance of the index as unbiased against en-
vironmental setting or time of sampling; b) precision, or the low
variability of the index score within reference sites and among samples
from repeated visits within sites; c) responsiveness, or the ability to
show large responses to human activities and d) sensitivity, or the
ability to score a non-reference site below the impairment threshold.
We compared predictive index performance to its null counterpart and
also compared performance scores for all indices with both calibration
and validation datasets. Accuracy was assessed by comparing mean
scores at reference sites. Additionally, we assessed regional bias by
calculating the ANOVA F statistic for all reference site scores across
ecoregions. To further assess regional bias and the influence of natural
gradients, we created random forest models using all available en-
vironmental variables (Supplemental Table 1) to predict reference site
scores, with a lower variance score indicative of a smaller influence of
environmental variables on index scores at reference sites. For preci-
sion, we evaluated the standard deviation of index scores at reference
sites and between sites with repeat sampling events. For responsiveness,

Table 3
Metric classes for multimetric index. BCG taxa= taxa identified as indicative of
a Biological Condition Gradient (BCG) Level indicators from the California BCG
effort (Paul et al., 2020).

Category Example metrics

Tolerance/sensitivity Association with specific water-quality constituents
(nitrogen, phosphorus, organic carbon, metals)
Low/High oxygen preference
Salinity tolerance

Autecological guild Nitrogen-fixers
Saprobic/heterotrophic taxa

Morphological guild Sedimentation indicators
Relationship to reference Taxa associated with reference vs. non-reference sites

BCG taxa level
Taxonomic groups Chlorophyta, Rhodophyta, Zygnemataceae,

heterocystous cyanobacteria, Suriella, Cyclotella
Diversity Richness

Table 4
Metric screening criteria for evaluating inclusion in the MMI. Description of criteria, statistical test, and threshold for passing.

Description Test Threshold Reference

Regional bias ANOVA of metric values at reference sites by ecoregion (PSA) F statistic < 3 Mazor et al., 2016
Responsiveness t-test comparing reference/high-activity site scores t statistic > 10 Mazor et al., 2016
Frequency of Zero Frequency of score= 0 < 33% of scores Stoddard et al., 2008
Frequency of One Frequency of score= 1 < 33% of scores Stoddard et al., 2008
Range of Ref scores Median score at reference sites > 0 Stevenson et al., 2013
Range of Stress scores Median score at high-activity sites > 0 Stevenson et al., 2013
Signal to Noise Variance across all sites / variance at repeat site visits > 2 Stoddard et al., 2008
Repeat visit variation ANOVA on repeat samplings of station codes F statistic < 3 Mazor et al., 2016
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we compared absolute t-statistic values for t-test analyses comparing
reference and high-activity site scores. Additionally, we created random
forest models using all available stressor gradient variables
(Supplemental Table 3) to predict scores at all sites, with a higher
variance score indicative of a larger response to stressor gradients. We
calculated a series of Spearman’s correlations between index scores and
key natural and stressor gradients to assess sensitivity. Lastly, we re-
viewed all index performance in consultation with an expert science
advisory panel.

3. Reference-based thresholds and application to a statewide
assessment

We identified a series of reference-based thresholds to convert
scores into condition classes following the approach used in Mazor et al.
(2016). For each index, we calculated the 1st, 10th, and 30th percentile
of reference calibration scores for all indices using the qnorm function
as implemented in the stats package in R (R Core Team, 2013). We
calculated the number of sites in each class for each PSA ecoregion:
likely to be intact (≥30th percentile of reference sites), possibly altered
(30th–10th percentile of reference sites), likely to be altered (1st–10th
percentile of reference sites, 0.69), very likely to be altered (< 1st
percentile of reference sites).

3.1. Comparison to benthic macroinvertebrate index performance

We compared the performance of the algal indices from this work to
the benthic macroinvertebrate CSCI index (Mazor et al., 2016) by
aligning samples from the same sampling station and sampling dates,
resulting in a combined dataset of 1600 observations. The CSCI scores
have a reference calibration mean of 1 as do the algal index scores and
therefore could be compared directly. We used a reference condition
threshold of the tenth percentile of reference site scores (0.79) for
evaluating performance of the CSCI (Mazor et al., 2016). To compare
CSCI and algal index responsiveness to stressor and natural gradients,
we regressed the response of the indices using generalized additive
models as implemented in the R package mgcv (Wood, 2017). To
compare algal and benthic macroinvertebrate assemblage structure, we
calculated Bray-Curtis distances among all reference calibration sites
using “vegdist” as implemented in the R package vegan (Oksanen et al.,
2017) on a presence/absence transformed species matrix for both the
BMI and algae taxonomy datasets. We sourced benthic macro-
invertebrate taxonomy data from the Stormwater Monitoring Coalition
dataset (http://smc.sccwrp.org/) and calculated CSCI scores according
to Mazor et al. (2016).

4. Results

4.1. Development dataset description

Of 1951 sampling locations, we classified 27% of sites as
“Reference”, 32% as “Intermediate”, and 35% of sites as “High-activity”
(Supplemental Fig. 1). The greatest number of Reference sites was
found in the high elevation Sierra Nevada region (n= 199), and fewest
in the Central Valley region (n=2).

4.2. O/E index development

Genus-level taxonomy data resulted in stronger O/E indices than
species-level data, and all final O/E indices were developed using
genus-level taxonomy data. For diatoms, soft-bodied algae, and hybrid
assemblages, the strongest performing O/E indices were comprised of
biological clusters with 15, 4, and 15 clusters, respectively, and capture
probabilities (Pc) of 0.5, 0.4, and 0.4, respectively. (Supplemental
Fig. 2, Supplemental Table 2). Catchment area, predicted conductivity
(i.e. background reference conductivity), average first/last day of

freeze, maximum elevation in catchment, latitude, and average
monthly temperature were selected as predictor variables for all three
O/E indices (Table 2). The diatom, soft-bodied algae, and hybrid
models explained 72, 54, and 65% of the variation in O, respectively,
and had regression slopes (0.88, 0.80, 0.93) and y-intercepts (0.82,
0.08, −0.28) that were similar to those expected from unbiased pre-
dictions (slope= 1 and y-intercept= 0; Mazor et al., 2016).

We additionally generated statewide O/E indices with an expanded
list of predictor variables, including those variables that can be influ-
enced by human activity. With the expanded list of predictor variables,
each assemblage saw modest improvements in index precision, with
reference calibration SD values of 0.19 (SD null 0.21), 0.32 (SD null
0.36), 0.17 (SD null 0.18) for diatoms, soft-bodied algae, and hybrid,
respectively. These O/E models selected predictor variables atmo-
spheric SO4, and field-measured water temperature and phosphorus
concentrations (Supplemental Table 1).

4.3. MMI development

Species-level taxonomy data resulted in stronger metric perfor-
mance than genus-level data, and all final indices were developed using
species-level data. Of all metrics considered for inclusion in the MMIs,
∼20% (29/142) of diatom metrics and∼ 18% (29/158) of hybrid
metrics were selected as modeled metrics (random forest pseudo-R2

value > 0.2). All remaining metrics, including all soft-bodied algae
metrics, were therefore not adjusted to account for natural variability
(Supplemental Table 4). Metrics were assessed for regional bias, pre-
cision, and accuracy, resulting in 17, 4, and 21 metrics considered for
inclusion in the proto-MMIs for diatoms, soft-bodied algae, and hybrid
MMIs, respectively. After all subsets of these proto-MMIs were com-
pared, the final diatom, soft-bodied algae, and hybrid MMIs were
comprised of 6, 4, and 8 metrics, respectively (Table 5), with the diatom
and hybrid MMIs each containing 6 and 7 predictive metrics, respec-
tively, and the soft-bodied algae MMI with no predictive metrics. Pre-
dicted conductivity (CondQR50) and soil erodibility (KFCT_AVE) were
the most frequently selected predictor variables for all predictive me-
trics included in the final diatom and hybrid MMIs, followed by clas-
sification as xeric or montane (XerMtn) and mean annual precipitation
(PPT_00_09) (Table 2).

The composition of each MMI varied with each assemblage
(Table 5), although high performing metrics were shared across as-
semblages. The diatom MMI final metrics included two decreaser me-
trics for Epithemia and Rhopalodia species richness and low nitrogen
indicator taxa, and four other increaser metrics for most tolerant in-
dicator species, planktonic species, eutrophic species, and brackish/
freshwater taxa. All diatom MMI metrics were predictive. The hybrid
MMI consisted of two decreaser metrics as well, the same Epithemia and
Rhopalodia metric as the diatom MMI in addition to a non-predictive
metric for Zygnemataceae, heterocystous cyanobacteria and Rhodo-
phyta (ZHR) taxa. The hybrid MMI also included metrics for high
phosphorus indicators, low oxygen tolerant taxa, and four other metrics
shared with the diatom MMI for tolerant taxa, planktonic species, eu-
trophic species, and brackish/freshwater taxa. Of these hybrid MMI
metrics, two use both diatom and soft-bodied algae taxa (tolerant taxa
and high phosphorous indicators), and one (ZHR) uses solely soft-
bodied algae taxa. The soft-bodied algae MMI consisted of only non-
predictive metrics, including three indicator taxa metrics for high dis-
solved organic carbon (DOC), high phosphorus, and non-reference
condition, in addition to a metric for ZHR taxa (Table 5).

Multiple metrics across assemblages showed reduced regional bias
when these metrics were modeled compared to unmodeled metrics. For
example, the diatom metric for the proportion brackish-freshwater taxa
(prop.spp.Salinity.BF) saw a large decrease in regional bias when cor-
rected for natural gradients (ANOVA F statistic 41 to 0.39). This de-
crease in regional bias was at times accompanied by a decrease in re-
sponsiveness, i.e. the ability to discriminate reference versus high-
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activity sites. For example, this same diatom metric
(prop.spp.Salinity.BF) saw a decrease in responsiveness (t-statistic 29 to
25) with modeling. However, this was not true across all metrics as the
hybrid MMI metric for oxygen preference (OxyRed.DO_30.richness) had
both a decrease in regional bias (ANOVA F statistic 25 to 2.5) and an
increase in sensitivity (t-statistic 21 to 26) with modeling
(Supplemental Table 4). For the modeled metrics in the diatom and
hybrid MMIs, the regional bias was decreased for all metrics with
modeling, whereas sensitivity increased in four of the six diatom me-
trics and three of the six hybrid metrics with modeling (Supplemental
Table 4).

4.4. Performance evaluation of the indices

We assessed all final indices for accuracy, precision, responsiveness,
and sensitivity (Table 6). All final O/E and MMI indices were able to
discriminate reference, intermediate, and high-activity sites (Fig. 1),
although with varying degrees of accuracy and precision. All O/E and
MMI indices had comparable regional bias performance, assessed as the

distribution of reference site scores across PSA regions (Supplemental
Fig. 3; Table 6). Similarly, all final predictive indices had low variance
scores and substantial improvement over null model variance scores,
indicating that predictive modeling had adequately accounted for the
influence of natural gradients (Table 6; Fig. 2). MMI indices for each
assemblage had better precision than their O/E counterparts, while all
three O/E indices and the soft-bodied algae MMI had among-site pre-
cision scores above our target range (SD < 0.18), as well as higher
within-site precision scores (Table 6). The three MMIs also had better
responsiveness than the O/E indices, although the soft-bodied algae
MMI had the weakest responsiveness of the three MMIs (Table 6;
Fig. 3). The predictive diatom and hybrid MMIs had comparable
among-site precision and responsiveness and were both able to accu-
rately discriminate reference versus high-activity sites as well as var-
iance in index scores that could be explained by human-activity gra-
dients (Table 6).

All O/E and MMI indices classified between 89 and 95% of re-
ference calibration sites correctly (> 10th percentile of reference).
However, the predictive diatom and hybrid MMIs had much higher

Table 5
Metrics selected in final diatom, soft-bodied algae, and hybrid MMIs. Type indicates predictive (P) or non-predictive (N). Response to stress indicated as increaser
(inc) or decreaser (dec) metrics. Hybrid metric descriptions indicate whether they use diatom (d) or soft-bodied algae (s) taxonomy.
ZHR=Zygnemataceae+heterocystous cyanobacteria+Rhodophyta. References: A = Fetscher et al., 2014; B = van Dam et al., 1994), C = Bahls, 1993), D =
Stancheva and Sheath, 2016.

Metric name Description Diatom SBA Hybrid Type Stress Ref.

cnt.spp.most.tol Count of most tolerant indicator species x P Inc this work
EpiRho.richness Epithemia and Rhopalodia richness x P Dec –
prop.spp.IndicatorClass_TN_low Proportion of low total N indicator species x P Dec A
prop.spp.Planktonic Proportion of planktonic species x P Inc C
prop.spp.Trophic.E Proportion of eutrophic species x P Inc B
Salinity.BF.richness Brackish/freshwater species richness (d) x P Inc B
cnt.spp.IndicatorClass_TP_high Proportion of high total P indicator species (d,s) x P Inc A
cnt.spp.most.tol Count of most tolerant indicator species (d,s) x P Inc this work
EpiRho.richness Epithemia and Rhopalodia richness (d) x P Dec –
OxyRed.DO_30.richness Richness of species requiring 30% oxygen (d) x P Inc B
prop.spp.Planktonic Proportion of planktonic species (d) x P Inc C
prop.spp.Trophic.E Proportion of eutrophic species (d) x P Inc B
prop.spp.ZHR Proportion of species ZHR (s) x N Dec D
Salinity.BF.richness Brackish/freshwater species richness (d) x P Inc B
prop.spp.IndicatorClass_DOC_high Proportion of high DOC indicator species x N Inc A
prop.spp.IndicatorClass_NonRef Proportion of non-reference indicator species x N Inc A
prop.spp.IndicatorClass_TP_high Proportion of high total P indicator species x N Inc A
prop.spp.ZHR Proportion of ZHR species x N Dec D

Table 6
Performance measures to evaluate all final O/E and MMI indices at calibration (Cal) and validation (Val) sites. Type= null or predictive indices. Accuracy: mean
score=mean score of reference sites (* indicates value is mathematically fixed at 1); F= F-statistic for differences in scores at reference calibration sites among five
PSA regions (Central Valley excluded); Var= variance in index scores explained by natural gradients at reference sites. Precision: Among SD= standard deviation of
scores at reference calibration and validation sites; Within SD= standard deviation of within-site scores for reference calibration and validation sites with multiple
samples. Responsiveness: t= t-statistic for difference between mean scores at reference and high-activity (stressed) sites; Var= variance in index scores explained by
human-activity gradients at all sites. Spearman’s correlation Rho values for key stressor gradients total nitrogen (TN), total phosphorus (TP), specific conductivity
(SC).

Accuracy Precision Responsiveness Spearman's Rho

Mean score F (PSA) Var Among SD Within SD t Var TN TP SC

Index Type Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val

Diatoms MMI pred 1.00 1.00 0.42 0.73 −0.13 0.01 0.11 0.14 0.09 0.06 34.4 15.4 0.57 0.51 −0.56 −0.54 −0.51
Diatoms MMI null 1.00 1.01 13.48 4.88 0.15 0.17 0.19 0.16 0.09 0.07 33.8 18.2 0.61 0.59 −0.64 −0.60 −0.61
Hybrid MMI pred 1.00 1.00 0.07 0.87 −0.15 −0.01 0.11 0.13 0.09 0.06 34.9 16.7 0.54 0.48 −0.55 −0.53 −0.47
Hybrid MMI null 1.00 1.02 14.23 4.02 0.13 0.19 0.18 0.16 0.09 0.07 32.2 18.3 0.58 0.57 −0.63 −0.57 −0.57
SBA MMI null 1.00 0.97 1.00 0.98 0.02 0.00 0.27 0.29 0.10 0.13 16.2 6.0 0.28 0.25 −0.44 −0.42 −0.34
Diatoms O/E pred 1.01 0.99 0.50 0.74 −0.22 −0.08 0.18 0.19 0.10 0.07 9.1 3.8 0.20 0.22 −0.33 −0.19 −0.29
Diatoms O/E null 1.00 0.99 5.17 2.30 0.16 0.20 0.20 0.23 0.08 0.08 7.5 3.1 0.18 0.19 −0.28 −0.18 −0.25
Hybrid O/E pred 1.01 1.00 1.00 1.34 −0.10 0.00 0.20 0.21 0.14 0.13 16.4 6.8 0.26 0.25 −0.40 −0.33 −0.32
Hybrid O/E null 1.00 0.98 2.73 1.70 0.19 0.16 0.22 0.24 0.10 0.12 15.9 5.9 0.25 0.24 −0.39 −0.35 −0.31
SBA O/E pred 1.01 0.97 0.84 2.23 −0.12 0.05 0.37 0.42 0.27 0.15 13.5 4.8 0.19 0.17 −0.28 −0.33 −0.19
SBA O/E null 1.00 0.96 1.77 1.59 0.13 0.17 0.44 0.48 0.21 0.17 13.9 4.8 0.21 0.19 −0.28 −0.37 −0.20
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proportions (85% and 84%, respectively) of high-activity sites that were
classified correctly (< 10th percentile of reference) in comparison to
the O/E indices only classified between 26 and 41% of high-activity
sites correctly (Table 7). Based on criteria developed with the expert
science advisory panel, none of the three algal O/E indices are con-
sidered to have adequate performance, due to poor responsiveness,
precision, and sensitivity, and are not recommended for future use.
Likewise, the soft-bodied algae MMI is not recommended due to poor
precision.

4.5. Effect of E on index performance

All three O/E indices saw improvements in performance with in-
creasing E values. Accuracy and sensitivity of the O/E indices increased
steadily with increasing E values (Fig. 4A), while precision was largely
unaffected. Reference site expectations for proportions of sensitive
(prop.spp.BCG12) and tolerant (prop.BCG4.taxa) taxa reflect a similar
pattern, wherein at lower levels of E, a smaller proportion of sensitive

taxa and a larger proportion of tolerant taxa are expected to occur
(Fig. 4B). Additionally, we saw on average higher E values for hybrid
O/E models than a combined sum of diatom and soft-algae E values for
the same sites (Fig. 4C).

4.6. Comparison to benthic macroinvertebrate index and assemblage
structure

The CSCI is now a widely accepted biological index for California
wadeable streams, and thus we used CSCI performance as a benchmark
against which to compare algal index performance criteria. Precision
and accuracy of the diatom O/E was comparable to the benthic mac-
roinvertebrate CSCI O/E index (Mazor et al., 2016), with standard de-
viation of reference site scores of 0.18 and 0.19, respectively, and lower
within-site variability in the diatom O/E versus the CSCI O/E (0.10 and
0.16, respectively). In contrast, the diatom O/E from this study was less
responsive in its ability to discriminate reference versus high-activity
sites, although correlations to stressor gradients were comparable

Fig. 1. Diatom, soft-bodied algae (SBA), and hybrid index scores by reference, intermediate, and high-activity sites for the O/E and MMI. Dashed line represents the
10th percentile of reference calibration site scores.
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(Mazor et al., 2016). In contrast, the diatom and hybrid MMIs had
comparable precision to the CSCI MMI and the combined CSCI (O/
E+MMI), both for standard deviation of reference scores and within
site variability. The diatom and hybrid MMIs also had equivalent ac-
curacy and responsiveness to the CSCI MMI and combined CSCI (Mazor
et al., 2016), whereas the soft-bodied algae MMI had worse perfor-
mance than the CSCI for responsiveness.

Across all sites, the performance of the diatom and hybrid algal
MMIs was correlated to the performance of the CSCI (Supplemental
Fig. 4) with R2 values of 0.26 and 0.30, respectively. The diatom and
hybrid predictive MMIs, and the CSCI, all exhibited similar

responsiveness to key stressor gradients, whereas the non-predictive
soft-bodied algae MMI was not as responsive (Supplemental Fig. 5). In
response to nutrient and physical habitat gradients, the algal MMIs and
the CSCI had similar responses to nutrient (nitrogen and phosphorus)
gradients, with the diatom and hybrid predictive MMI exhibiting
slightly greater sensitivity to nitrogen and percent sands and fines
gradients. In contrast, the CSCI exhibited a more sensitive response to
physical habitat alteration as measured by California Rapid Assessment
Method (CRAM) scores (Supplemental Fig. 5). In comparing CSCI and
hybrid MMI scores, the two indices both ranked a site as “very likely
intact” (> 10th percentile of reference calibration scores for both CSCI

Fig. 2. Diatom, soft-bodied algae (SBA), and hybrid MMI scores across environmental gradients for reference sites. Linear regression lines included for calibration
(black) and validation (grey) sites. R2 values for linear regression of relationship with reference calibration scores as shown (for relationships p < 0.05). Dashed line
indicates 10th percentile of reference calibration site scores for each index.
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and hybrid MMI) 41% of the time. When the two indices did not agree,
the CSCI ranked a site below the 10th percentile of reference 18% of the
time, while the hybrid MMI did 9% of the time (Supplemental Fig. 6).
The Sierra Nevada and North Coast regions had the greatest proportion
of sites in agreement (> 80%), with both indices assessing a majority of
sites as likely intact. The other four eco regions had roughly equivalent
proportions of sites with CSCI and hybrid MMI scores in disagreement
(∼30%), with the hybrid MMI ranking a site lower more often in the
highly urbanized South Coast region and the CSCI more likely to rank a
site lower in the heavily agricultural Central Valley (Supplemental
Fig. 6).

Across the same subset of reference sites, benthic macroinvertebrate
and algal populations exhibited different alpha and beta diversity
characteristics. We found that on average, pairwise Bray-Curtis dis-
similarity between reference sites for algae assemblages averaged 0.75,

whereas dissimilarities based on BMI assemblages averaged 0.70
(Fig. 5), indicating that BMI taxa had greater overlap in species as-
semblages within the reference pool than did algal populations. We
identified similar numbers of species richness at reference sites, 691 for
BMI taxa, 702 for diatoms, and 569 species for soft-bodied algae.
However, we found that BMI taxa had an average per site species
richness of 56 (SD 14), while diatoms and soft-bodied algae had average
per site species richness values of 26 (SD 12) and 14 (SD 10), respec-
tively. Even when compared with a combined diatom and soft-bodied
algae assemblage, the average algal species richness per site was 41 (SD
18), still ∼ 27% lower than the BMI species richness per site.

4.7. Distribution of biological condition classes across state

We established four biological condition classes based on the

Fig. 3. Diatom, soft-bodied algae (SBA), and hybrid MMI scores across (log transformed) stressor gradients of percent urban development at the watershed scale (%
urban WS), riparian activity (W1 Hall), percent sands and fines, total nitrogen, and total phosphorus. R2 values for linear regression of relationship as shown
(p < 0.001). Dashed line indicates 10th percentile of reference site scores for each index.

Table 7
O/E and MMI condition classes based on percentile of reference calibration site scores and percentage of sites correctly classified in corresponding condition classes.

Diatom O/E SBA O/E Hybrid O/E Diatom MMI SBA MMI Hybrid MMI

1st percentile of reference 0.60 0.14 0.54 0.75 0.37 0.75
10th percentile of reference 0.78 0.53 0.75 0.86 0.65 0.86
30th percentile of reference 0.92 0.81 0.91 0.94 0.86 0.94
% reference calibration above 10th percentile of reference 89 89 89 91 95 91
% reference validation above 10th percentile of reference 88 83 89 87 90 87
% high-activity below 10th percentile of reference 26 41 41 85 36 84
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distribution of algal index scores at reference calibration sites using the
hybrid MMI (Table 8). Statewide, 37% of stream sites were likely to be
intact (hybrid MMI≥ 0.94 [30th percentile of reference calibration
sites]). Another 13% were possibly altered (hybrid MMI≥ 0.86 [10th
percentile]), 16% were likely to be altered (hybrid MMI≥ 0.75 [1st
percentile]), and 34% were very likely to be altered (< 1st percentile;
Table 8). Although 69% of high-activity sites were very likely to be
altered, this number varied considerably by region. The South Coast
and the Chaparral had the highest percent of high-activity sites that
were considered very likely to be altered (76 and 69%, respectively),
while 26% of the Desert/Modoc and 8% of the Sierra Nevada high-
activity sites were classified as likely altered. Statewide, about 71% of
reference sites were classified as likely to be intact, with the highest
percentages (74%) in the Sierra Nevada and North Coast regions, and
lowest in the Central Valley where there were only two reference sites
and they were considered likely or possibly altered (Fig. 6).

5. Discussion

Algal indicators provide a powerful line of evidence on biological
condition. However, an algal index that is applicable across diverse
natural landscapes, such as those found in California, relies on the
ability to account for the influence of natural factors that vary among
regions, such as climate. Predictive biological indices provide the ne-
cessary adjustments to account for environmental effects on biological
assemblages. This study highlights the comparative strengths and
weaknesses of two different types of predictive algal indices, an O/E
and an MMI, and has implications for future development of both
predictive and multi- assemblage algal indices in diverse landscapes.

5.1. Limitations in O/E index performance

All three algal assemblages yielded O/E indices with moderate to
weak performance. Two key factors may contribute to the difficulty of

Fig. 4. Effects of expected taxa on index performance. A) Effect of the expected number of taxa (E) on the accuracy, sensitivity, and precision for null (grey) and
predictive (black) O/E indices. Locally-weighted regression line and standard error as shown. Accuracy= proportion of reference calibration sites in reference
condition (> 10th percentile of reference calibration scores) for each index. Sensitivity= proportion of high-activity sites not in reference condition (< 10th
percentile of reference calibration scores). Precision= standard deviation of reference calibration sites for each index. B) Comparison between expected number of
taxa (E) from O/E models versus expected proportions of sensitive (BCG12) or tolerant (BCG4) taxa from MMI development. Black line represents locally-weighted
regression line. C) Comparison of hybrid O/E index expected taxa (E) versus the sum of diatom and soft-algae O/E index expected taxa (E). Black line represents best
fit linear model, dashed line represents 1:1 relationship.
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predicting algal species distributions, as is necessary in the develop-
ment of O/E models: a) geographic parameters used as candidate pre-
dictor variables are largely not responsible for shaping algal species
distribution patterns; b) high beta diversity between reference sites
pose a challenge to modeling efforts. These factors are discussed below.

The inclusion of additional candidate predictor variables, including
those influenced by human activity such as atmospheric SO4, total
phosphorus, and in-field temperature, resulted in modest improvements
in O/E index precision for all three assemblages. While these im-
provements in performance were small, this finding demonstrates that
additional predictor variables were able to help explain residual species
distributions effects that were not accounted for with our initial can-
didate predictor list. Previous studies have likewise found that locally
measured environmental variables, such as light availability and velo-
city, may improve species distribution model performance (Aguiar
et al., 2011; Feio et al., 2012; Lamb and Lowe, 1987; Sabater, 2006;

Soininen, 2005; Veraart et al., 2008). However, such models are less
useful for bioassessment index development as they may be unable to
separate the influence of natural variation in these factors from an-
thropogenic disturbance (Hawkins et al., 2010a; Mendes et al., 2014;
Reynoldson et al., 1997), a key requirement of successful predictive
indices for bioassessment applications. The expansive suite of candidate
predictor variables used in this study included modeled background
levels of conductivity (CondQR50, Table 2) a variable that allows for
the accounting of a variable (conductivity) that can otherwise be sub-
ject to human influence. The continued development of candidate
predictor variables that account for natural background levels, such as
water temperature or phosphorus concentrations, will likewise benefit
future predictive models.

High beta diversity of algae population at reference sites may be
responsible for the poor performance of the predictive O/E indices. Our
results found that in comparison to BMI populations, diatoms and soft-

Fig. 5. Comparison of algae and benthic macroinvertebrate (BMI) Bray-Curtis distances and species richness at reference sites. Graphs show distribution of Bray-
Curtis distances for comparison of all site× site comparisons (left panels) as well as distribution of species richness (right panels) across 216 reference sites with both
algae and BMI data. Vertical dashed line represents the mean.
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bodied algae have comparable species richness across all reference
sites, but< 50% of average species richness at individual reference
sites (Fig. 5). This results in higher average algal Bray-Curtis (beta di-
versity) distances among all reference sites, and therefore greater
average dissimilarity between two reference sites. Taken together, these
results suggest that algal populations at two sites of comparable eco-
logical status and similar geographic setting may have only minimal
overlap in species composition. Increased beta diversity has been shown
to occur with decreased connectivity and dispersal between habitats
(Forbes and Chase, 2002; Matthiessen et al., 2010; Vander Laan and
Hawkins, 2014), and may be explained by the presence of intermittent
streams subject to frequent drying events (Vander Laan and Hawkins,
2014) and the absence of overland dispersal seen in invertebrate
communities (Cauvy-Fraunié et al., 2015). However, it is less clear why
soft-bodied algae and diatoms would experience different responses to
habitat fragmentation, but may be the result of differences in species
resiliency and turnover rates, with previous studies finding that diatoms
may have greater dispersal rates than soft-bodied algae (Schneider
et al., 2012) and would therefore be expected to have greater similarity
across sites than soft-bodied algae populations, as we observed.

Additionally, these dissimilar algal assemblages at reference sites
may help explain the low E values that were common across the algal
O/E models: with a greater number of taxa spread across reference
sites, and few taxa shared among sites, the O/E models were only able
to confidently predict a handful of taxa at each site. Likewise, this helps
explain why genus-level taxonomy data resulted in higher-performing
O/E indices, as aggregating to a higher taxonomic level helped to in-
crease the common taxa shared between sites. For algal populations, E
values averaged 10 for diatoms and 5 for soft-bodied algae, whereas for
BMI populations, E values as low as 5 were rarely observed (Mazor
et al., 2016). These low E values for algae taxa resulted in poor accuracy
and sensitivity in each of the three algal O/E indices (Fig. 4A), con-
sistent with previous observations that low E values limited benthic
macroinvertebrate index performance (Mazor et al., 2016). Low E sites
are those with fewer common taxa, a reflection of either a more

disconnected reference site pool (Vander Laan and Hawkins, 2014)
and/or lower species diversity at individual sites within the reference
site pool. Additionally, low E sites have been found to be associated
with more stressful environments, including those subject to drying
events (Mazor et al., 2016; Vander Laan and Hawkins, 2014), and
therefore may be dominated by more tolerant, resilient taxa, as sug-
gested by the greater proportion of tolerant algae taxa that were pre-
dicted to occur at low E sites (Fig. 4C).

5.2. Performance of MMIs varied across algal assemblages

All three assemblages yielded MMIs that were responsive to stressor
gradients, although the soft-bodied algae MMI was far less precise than
either the diatom or hybrid MMIs. For diatom and hybrid assemblages,
predictive modeling improved MMI index performance and resulted in
indices with greater responsiveness and less regional bias, consistent
with previous studies that have seen improvements in index perfor-
mance with modeling for natural variability (Cao et al., 2007; Hawkins
et al., 2010a; Mazor et al., 2016; Vander Laan and Hawkins, 2014).

The absence of predictive metrics in the soft-bodied algae MMI
highlights the difficulties in building predictive models for soft-bodied
algal assemblages. As highlighted above, the soft-bodied algae com-
munities exhibited the lowest species richness and the greatest beta
diversity across reference sites, therefore posing inherent challenges for
identifying geographic parameters that were responsible for trait dis-
tributions. The poor precision of the soft-bodied algae MMI could be in
part be attributed to the fact that 11% of the reference site pool had
species richness values of≤ 3 (Fig. 5), well below the average of 14
species for soft-bodied algae at reference sites, and a third of these low-
richness reference sites earned a soft-bodied algae MMI score of zero
(Fig. 1). Additionally, the qualitative soft-bodied algae fraction was
omitted in the creation of the MMIs due to its absence in> 40% of all
samples; however, previous index development in Southern California
has shown that the qualitative fraction helps improve the diagnostic
signal of soft-bodied algae assemblages by increasing the observed

Table 8
Percentage of sites in different condition classes by region and site status based on hybrid MMI scores. Percentiles refer to the distribution of scores at reference
calibration sites.

Total sites Likely to be intact≥ 30th
percentile (MMI≥0.94)

Possibly altered 30th– 10th
percentile (MMI≥ 0.86)

Likely to be altered 1st–10th
percentile (MMI≥ 0.75)

Very likely to be altered < 1st
percentile (MMI < 0.75)

North Coast Reference 100 74 16 7 3
Intermediate 105 44 20 25 11
High-activity 46 24 20 17 39
Total 251 52 18 16 13

Desert/Modoc Reference 49 63 20 16 0
Intermediate 58 40 21 31 9
High-activity 8 25 0 50 25
Total 115 49 19 26 6

Chaparral Reference 169 70 17 10 3
Intermediate 192 38 17 24 21
High-activity 214 7 6 18 69
Total 575 36 13 18 34

Central Valley Reference 2 0 50 50 0
Intermediate 14 43 7 7 43
High-activity 80 11 16 14 59
Total 96 16 16 14 55

South Coast Reference 216 68 14 11 7
Intermediate 366 27 12 19 42
High-activity 481 6 6 12 76
Total 1063 26 10 14 50

Sierra Nevada Reference 199 74 20 5 1
Intermediate 115 50 19 23 8
High-activity 12 58 8 25 8
Total 326 65 19 12 4

Statewide Reference 737 71 17 9 3
Intermediate 850 36 16 22 26
High-activity 841 9 7 15 69
Total 2428 37 13 16 34
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species richness across sites (Fetscher et al., 2014a). Eliminating the
qualitative sample from our analyses may have exacerbated the low
species richness of the soft-bodied algae populations and further de-
pressed the biological signal available for model development. Lastly,
the paucity of available trait attribute information for soft-bodied algae
(Fetscher et al., 2014a) effectively reduced the number of metrics for
proto-MMI testing. Future efforts to expand the coverage of auto-
ecological traits for California taxa are warranted, including the further
development of trait attributes through empirical testing, targeted
mesocosm studies, nonparametric techniques such as Threshold In-
dicator Taxa Analyses (TITAN, Baker and King, 2010) and machine-
learning approaches (Cordier et al., 2018; Feio et al., 2020).

The diatom and hybrid MMIs had very comparable performance,
although using a hybrid index that incorporates two distinct assem-
blages presents certain advantages and disadvantages. Previous studies
have found that diatom and soft-bodied algae communities respond
differently to nutrient conditions, with diatom richness generally in-
creasing with nutrient availability in contrast to decreasing soft-bodied
algae richness (Schneider et al., 2012; Stancheva and Sheath, 2016).

Diatoms are credited with faster response times (Lavoie et al., 2008)
and soft-bodied algae provide a more integrative response over longer
time scales (Whitton, 2012). Although only three of the seven hybrid
metrics include soft-bodied algae taxonomy (Table 5), by incorporating
both assemblages the hybrid index may provide a more integrative
assessment of biological condition than a single assemblage index.
However, environmental managers must also consider the increased
financial and technical burden of analyzing two algal assemblages. Soft-
bodied algae can present unique challenges for identification with light
microscopy (Stancheva and Sheath, 2016), and bioassessment programs
such as the National Rivers and Streams Assessment (U.S.
Environmental Protection Agency, 2016) and many countries within
the EU Water Framework Directive (Almeida and Feio, 2012) have
elected to focus solely on diatom communities. Likewise, California
bioassessment program managers will have to determine if cost or
technical limitations may necessitate the use of the diatom-only index
for certain applications. A transition to a molecular, or DNA-based,
approach may help alleviate both the financial and technical challenges
as DNA-based analyses have the potential to offer considerable cost

Fig. 6. Hybrid MMI results across California. Inset: detail view of hybrid MMI scores for the Bay Area (top) and Los Angeles (bottom).
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savings and may help circumvent technical barriers to implementation
(Darling and Mahon, 2011; Valentini et al., 2016).

5.3. Implications for bioassessment applications

A primary motivation in developing algal indices for California was
to create a complementary line of evidence of biological condition for
streams to use alongside the benthic macroinvertebrate CSCI (Almeida
and Feio, 2012). BMI and algae have been shown to have different
sensitivities to environmental stressors (Carlisle et al., 2008; Johnson
and Hering, 2009; Sonneman et al., 2001), with BMI communities in
general responding more sensitively to physical habitat structure (Voss
et al., 2012) and hydromorphological pressures (Pardo et al., 2014) and
algal communities to nutrients and water chemistry (Hering et al.,
2006; Johnson and Hering, 2009; Pardo et al., 2018; Rehn, 2016;
Sonneman et al., 2001). In agreement with these previous studies, we
see a stronger response to physical habitat alterations by the CSCI,
while the algal indices had a stronger response to nutrient gradients
(Supplemental Fig. 5). Across the state, the majority of CSCI- and the
hybrid MMI-derived assessment endpoints were in agreement
(Supplemental Fig. 6), but the instances when these two indices dis-
agreed helps to highlight the situations wherein the BMI and algal in-
dices are responding differently to environmental conditions. Given
that both the CSCI and the predictive diatom and hybrid MMI indices
presented here demonstrated consistent performance in assessing re-
ference conditions across diverse ecoregions, both are appropriate for
statewide application. Combining multiple lines of evidence from both
algal and benthic macroinvertebrate indices will provide a more in-
tegrated perspective on biological condition across a broader spectrum
of environmental stressors.

This study developed both diatom and a hybrid predictive multi-
metric indices whose performance achieved high precision, accuracy,
responsiveness, and low regional bias, therefore qualifying them as
suitable tools for statewide management applications. The development
and application of multimetric indices for evaluating biological condi-
tion has grown increasingly popular in the past four decades (Ruaro
et al., 2020), including in the creation of the Indice de Polluosensibilité
Spécifique (IPS, Cemagref, 1982) and the Diatom Biological Index (IBD,
Coste et al., 2009). MMIs incorporate multifaceted biological attributes
(Chen et al., 2019; Stoddard et al., 2008), provide integrative assess-
ments of biological assemblages that are understandable for a broad
audience (Karr and Chu, 2000), and can help identify causal stressors
on aquatic ecosystems (Hering et al., 2006; Lunde and Resh, 2012;
Martins et al., 2020). Accurate, sensitive, and precise predictive mul-
timetric indices, like those presented here, are calibrated on a site-
specific, reference-based expectations. This approach is able to provide
a robust assessment of deviation from reference condition as a means to
evaluate impacts to biological communities and serve as a powerful
indicator of ecological condition.

6. Conclusions

The 1972 Clean Water Act explicitly mentions the use of biological
integrity as an ecological endpoint, and with this study, we endeavored
to create a powerful bioassessment tool that could be used for assessing
biological condition throughout California’s complex ecoregions. In this
effort, we found that the inclusion of predictive modeling greatly im-
proved algal index performance by reducing regional bias and in-
creasing index precision and sensitivity, yielding both a diatom and a
hybrid predictive multimetric index that are suitable for statewide ap-
plication. The limitations of predictive modeling of taxonomic com-
pleteness for the O/E indices could be credited to the disparate and
diverse algal communities that severely limited numbers of expected
taxa and therefore resulted in poor precision and accuracy. In contrast,
by modeling ecological structure, we were able to capitalize on ag-
gregated trait attribute information and therefore generated stronger

predictive models and better-performing indices. This study adds to the
growing body of evidence that predictive modeling improves index
performance in complex environments and also helps demonstrate the
biological and technical challenges that remain for predicting diverse
species assemblages in disconnected environments. Future studies will
benefit from a continued investment in the generation of both robust
taxonomic datasets and environmental predictor portfolios that will
help ensure the success of algal biological indices.
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