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A B S T R A C T

Assessment of stream health is a function of the physical, chemical, and biological integrity of the water body.
While monitoring of all three indicator types is common, combining them into a unified assessment of stream
quality is rare. In this study, a unified index was developed that compares biological response to physical and
chemical stressors for southern California wadeable streams using a scientifically rigorous, easy-to-understand
tool intended to facilitate stream management. The Stream Quality Index (SQI) is based on a stressor-response
empirical model that quantifies the expected likelihood that chemical and physical stressors will impact multi-
ple components of biological condition. While the individual stressor and response components are quantitative
and have similar meaning across a variety of environmental settings, the final SQI narrative assessment is cate-
gorical and designed to be directly actionable within a management context. The four narrative assessment
categories are: (1) “healthy and unstressed” (i.e., unimpacted biology, no stressors); (2) “healthy and resilient”
(i.e., stressed, but biological communities are healthy); (3) “impacted and stressed” (i.e., impacted biology from
observed stressors); and (4) “impacted by unknown stress” (i.e., biology is impacted, but stressors are low). To
facilitate adoption by managers, a web-based application was developed that not only maps overall SQI results,
but also enables users to readily access underlying quantitative information for stressors and biological responses.
This transparent design was intended; high-level output and foundational components of the SQI are relevant for
different audiences and details are not sacrificed for accessibility.
1. Introduction1

Assessments of stream health are a function of monitoring the water
body’s physical, chemical, and biological integrity (33 USC xx 1251,
1972). Monitoring physical habitat integrity facilitates determination of
whether all necessary environmental niches (e.g., hydrology, riparian
structure, in-stream substrate) are present to support a diverse aquatic
community (Maddock, 1999). Monitoring chemical integrity facilitates
determination of whether toxic compounds are present, as well as
whether minerals are sufficiently balanced to support aquatic life (Wang
et al., 2007; Maruya et al., 2016). Monitoring biological integrity, which
is closest to the actual assessment of stream health, facilitates determi-
nation of whether unmeasured physical or chemical parameters are
impacting otherwise balanced ecosystems (Stoddard et al., 2006; Ode
et al., 2016), including any synergistic effects of measured and
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unmeasured parameters (Bowman et al., 2006).
Tremendous effort is expended to monitor all three types of stream

integrity indicators. Despite varying spatial scales and complexities, all
monitoring programs share the challenge of how to effectively commu-
nicate physical, chemical, and biological data in a scientifically rigorous,
repeatable, and readily understandable way to non-scientists (National
Research Council, 1990). Because most environmental managers are not
scientists, and similarly, scientists may not understand the applied
context for technical products, the communication of ecological data for
decision-making can be challenging. Furthermore, ecological data are
rarely black and white, leading to many management decisions made in
the “grey zone” (Paulsen et al., 2008). This is particularly true when
physical, chemical, and biological indicators are not in complete agree-
ment with one another.

Multiple well-known tools exist for effectively assessing and
Mazor), susannat@sccwrp.org (S. Theroux), kens@sccwrp.org (K.C. Schiff).
AM: California Rapid Assessment Methods, CSCI: California Stream Condition
Index of Physical Habitat Integrity, PHAB: Physical Habitat, SMC: Stormwater

ust 2019

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:marcusb@sccwrp.org
mailto:raphaelm@sccwrp.org
mailto:susannat@sccwrp.org
mailto:kens@sccwrp.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.indic.2019.100004&domain=pdf
www.sciencedirect.com/science/journal/26659727
www.journals.elsevier.com/environmental-and-sustainability-indicators/
https://doi.org/10.1016/j.indic.2019.100004
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.indic.2019.100004


Fig. 1. Flowchart representation of the Stream Quality Index (SQI). The overall
SQI is a function of the likelihood of observing degraded biological condition
given the stressors at a site. Biological condition is assessed using macro-
invertebrate (California Stream Condition Index, CSCI) and algal (Algal Stream
Condition Index, ASCI) indices and stressors are evaluated based on water
quality measures (total nitrogen, total phosphorus, conductivity) and physical
habitat (California Rapid Assessment Method, CRAM; Index of Physical Integ-
rity, IPI). Stress condition is empirically linked to biological condition by
separate probability functions for chemistry (pCHem) and physical
habitat (pHab).
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evaluating different components of stream condition. Bioassessment
tools include the Index of Biological Integrity (Karr, 1981; Karr and Chu,
1999), Observed to Expected ratios (Hawkins et al., 2000; Joy and Death,
2002), and hybrids of the IBI and O/E (Mazor et al., 2016). Chemical
assessment tools include the Canadian Council of Ministers of the Envi-
ronment (CCME) Water Quality Index (CCME, 2001; Hurley et al., 2012).
Physical habitat assessment tools (Rankin et al., 1995), which are less
common, include the California Rapid Assessment Method (Collins et al.,
2007; Solek et al., 2011) and the more recently developed Index of
Physical Integrity (Rehn et al., 2018). These established tools are typi-
cally used to separately address chemical, physical, and biological com-
ponents of the United States CWA and under the Porter-Cologne Act in
the state of California.

An assessment tool that combines physical, chemical, and biological
indicators into a single unified assessment is exceedingly rare (Bay and
Weisberg, 2012). Much more commonplace are instances where multiple
indicators are individually simplified and presented as a group, leaving
managers to decide which is most important (Paulsen et al., 2008).
However, a single unified assessment is preferable when communicating
stream health to non-technical managers. A single scale provides
straightforward context for comparing one site to another, for ranking
sites for management actions, and for monitoring improvements at a site
following implementation of management actions (or monitoring po-
tential degradation where management actions are not implemented).

While such a unified assessment tool is possible to develop for use in a
single environmental setting, it has long been a challenge to design a
technically robust tool that produces assessments that have similar
meanings in different environmental settings, that provides clues as to
which stressor(s) is/are impacting biological indicator(s), and that can be
replicated elsewhere. The goal of this study was to develop a tool that
meets all three criteria. Because biological indicators provide direct
measures of aquatic life, while physical and chemical measures provide
supporting information about the stressors that may affect aquatic life,
this study sought to develop a method for combining the three indicators
in a way that would preserve the types of information provided by each.
Our approach will contribute to the current literature by presenting a
proof of concept for synthesizing multiple condition assessments in an
easily communicated format, while retaining the individual components
for follow-up analysis. This is a likely improvement over treating in-
dicators as equivalent and simply “averaging” results to assess overall
condition.

2. Methods

2.1. General approach

The conceptual approach used in this study is based on a stressor-
response relationship between biology and the stream environment
(Fig. 1). Specifically, the underlying stressor-response relationships that
define the final narrative categories for overall stream condition are
based on empirical models that quantify an expected likelihood of
chemical or physical stressors impacting the separate components of
biological condition. Southern California wadeable streams were
selected as the focus of this effort because of the extensive and varied
levels of stress and biological impacts. Moreover, southern California is
home to many environmental managers with a variety of backgrounds
and experience in technical and policy issues.

Biological response components were selected based on bio-
assessment indices developed for California wadeable streams (i.e.,
benthic macroinvertebrates, algae). Water chemistry stressors were
selected that are strongly associated with biological condition in peren-
nial streams (i.e., nutrients, conductivity). Physical habitat indices were
selected that quantify flow, channel, and riparian condition observed at a
site. Specific justification for the chosen stressors and their relationship
to biology is described below. In short, the conceptual stressor-response
model reflected by our choice of indicators is generally described as the
2

habitat requirements for biological organisms and the alteration (i.e.,
response) in the structure and function of these communities along
stressor gradients as habitat quality declines. These relationships estab-
lish the foundation of many bioassessment methods (Stoddard et al.,
2006; Karr, 1981; Karr and Chu, 1999) and our stressor-response model
reflects these principles.

The four narrative assessment categories were defined in a way that
would align with management processes by indicating biological condi-
tion and suggesting which stressor categories are associated with the
condition. These categories provide a first indication of how biology at a
site responds to stressors, which could then be used to prioritize follow-
up actions, such as causal assessment. The SQI web-based application was
designed in a way that would give users easy access to descriptions of the
biological, chemical, and physical components that underlie the unified
assessment, depending on the desired level of information within the
stressor-response paradigm.

2.2. Biological response components of the SQI

2.2.1. Characterizing biological condition
To characterize biological condition, a pair of quantitative bio-

assessment indices – for benthic macroinvertebrates (BMI) and algal
communities, respectively – were used that have been developed for
California streams (Mazor et al., 2016; Theroux et al., 2019); the indices
were treated as complementary assessment tools in the SQI.

The California Stream Condition Index (CSCI (Mazor et al., 2016),) is
a predictive index that compares observed benthic macroinvertebrate
taxa and metrics at a site to those expected under least disturbed refer-
ence conditions (sensu (Stoddard et al., 2006)). Expected values at a site
are based on models that estimate the likely macroinvertebrate com-
munity relative to factors that naturally influence biology (Moss et al.,
1987; Cao et al., 2007).

The Algal Stream Condition Index (ASCI (Theroux et al., 2019),) was
similarly developed as a biological response endpoint for primary pro-
duction, with implications for ecosystem function; the ASCI is a
non-predictive multi-metric index (i.e., it uses a uniform, statewide
reference expectation) that incorporates both diatoms and soft-bodied
algae. Scores for both the CSCI and ASCI can range from 0 to ~1.4,
with a score of 1 at sites in reference condition and lower values indi-
cating biological degradation. Both communities are used as standard
assessment measures for perennial wadeable streams in California.

Index scores were compared to the distribution of scores at reference
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sites statewide to identify biological condition classes that described the
likelihood of biological alteration. For both the CSCI and ASCI, the 1st,
10th, and 30th percentiles of scores at reference sites with minimal
human disturbance (Stoddard et al., 2006; Ode et al., 2016) were used to
categorize all sites as very likely to have altered biological condition
(scores less than the 1st percentile), likely altered (scores between the 1st
and 10th percentile), possibly altered (scores between the 10th and 30th
percentiles), and likely intact (scores greater than the 30th percentile)
(Table 1). This produced four classes for each index, such that each site
had two categories describing separate measures of the likelihood of
biological alteration in the benthic macroinvertebrate and algal com-
munities. Both response endpoints were jointly considered in the calcu-
lation of the SQI for evaluating overall biological condition, described
below. Analysis of multiple assemblages provides a more comprehensive
assessment of biological condition that can confirm overall stream
health, and may also provide additional diagnostic information about
stressors (as different communities may respond to different character-
istics of stream habitat).

2.2.2. Integrating multiple measures of biological condition
The assigned biological condition categories for each index were

combined using a ranking system to create a single numeric value that
represented an overall condition reflected by both biological indices. A
technical advisory committee with representatives from local manage-
ment institutions provided guidance on assigning these values in accor-
dance with two principles. First, the two indices should be independently
applicable, so that a measure of good health in one index cannot negate
measures of poor health in the other. Second, the numeric values should
be sensitive to differences between sites in marginal or extreme condi-
tions. For example, the numeric value for a sample where both indices
suggest likely intact biological communities will be higher than for a
sample where one index suggests likely intact and the other suggests
possibly altered. This sensitivity improves detection of small changes in
condition. The final numeric values ranged from �6 to þ5 (Table 1). All
negative values suggest impacted conditions for one or both biological
indices.

2.3. Stressor components

2.3.1. Characterizing stress
Water chemistry and physical habitat measurements, which were

used to describe stressors associated with low CSCI and ASCI scores
(Theroux et al., 2019; Mazor, 2015), are strongly linked to the structure
and function of both invertebrate and algal assemblages (Wang et al.,
2007; Richards et al., 1997; Pan et al., 2002). Depending on the context,
stream health or condition can be reflected by physical habitat as a
response to external drivers. However, physical habitat herein is
considered a stressor that can affect biological condition at different
taxonomic levels within the stressor-response model.

The water chemistry indicators consisted of nutrients - specifically,
total nitrogen (mg/L) and total phosphorus (mg/L) - and specific con-
Table 1
Combined biological condition categories for the benthic macroinvertebrate (BMI) a
biological alteration given observed physical and chemical habitat stressors. Sites wit
healthy and those less than zero (in bold) were considered biologically impacted (i.e., r
BMI and algal indices were based on percentile distributions of scores at reference sit
(10th - 30th), likely altered (1st - 10th), and very likely altered (<10th). The scores

Algae likely intact:
(ASCI> 0.93)

Algae possibly altered
0.83–0.93)

BMI likely intact: (CSCI> 0.92) 5 3
BMI possibly altered: (CSCI
0.79–0.92)

3 2

BMI likely altered: (CSCI
0.63–0.79)

¡1 ¡2

BMI very likely altered:
(CSCI< 0.63)

¡2 ¡4

3

ductivity (μS/cm). Nitrogen, phosphorus, and conductivity are widely
measured in many regional and statewide monitoring programs. These
variables are commonly associated with development gradients present
in the study region (e.g., urbanization (Dodds et al., 2002; Walsh et al.,
2005),). Additionally, these variables can act as surrogates for unmea-
sured or alternative water quality pollutants at a site related to eutro-
phication (Dodds and Smith, 2016). Although other contaminants that
can affect aquatic organisms are sometimes measured (e.g., metals,
pesticides, pharmaceuticals), observations can be sparsely distributed in
the study region (Mazor, 2015). Eutrophication is a more ubiquitous
issue in the study region, although we acknowledge that other stressors
not captured by the SQI may affect biological condition.

Physical habitat conditions at a site were quantified using two indices
of habitat condition developed for California water bodies: the Index of
Physical Integrity (IPI (Rehn et al., 2018),) and the California Rapid
Assessment Method (CRAM) for riverine wetlands (Collins et al., 2007;
Solek et al., 2011). Although IPI and CRAM scores can be correlated, the
individual metrics that establish each index provide unique information
about specific components of the physical habitat. Moreover, IPI scores
specifically describe instream condition, whereas CRAM scores describe
riparian condition.

The IPI is an O/E index (Hawkins et al., 2000) based on physical
habitat metrics (PHAB (Rehn et al., 2018),) that collectively characterize
five components of in-stream habitat quality: percent sands, fines, or
concrete, Shannon diversity of aquatic habitat types, Shannon diversity
of natural substrate types, evenness of flow habitat types, and riparian
vegetation cover. All five metrics are positively associated with physical
habitat integrity, such that an increase in each was generally considered
an improvement in site condition (percent sands, fines, or concrete is
inversely scored). All physical data used to calculate these metrics were
collected using standard field protocols described in (Ode, 2007), which
are derived from protocols used in national assessments (A (Environ-
mental P, 2016). As with the CSCI, the IPI is a predictive index, and
values for most metrics are compared to site-specific expectations
appropriate for the stream’s environmental setting. Detailed descriptions
of each metric, including how they are measured, are included in (Rehn
et al., 2018).

In contrast to the IPI, CRAM is based on qualitative assessments of
four attributes of riparian wetland function: buffer and landscape con-
dition, hydrologic condition, physical structure, and biotic structure.
Whereas the data for the IPI is derived from numerous quantitative
measurements of physical habitat components collected along several
transects, CRAM attributes are assessed on a whole-reach scale through
visual observation. In general, CRAM characterizes larger-scale processes
affecting stream condition both within and adjacent to the stream
corridor, whereas the IPI focuses more narrowly on in-stream conditions.
The CRAM component for buffer and landscape condition was not
included further because it describes stress at scales much larger than the
riparian corridor, i.e., it is a direct measure of land use and not as directly
relevant for describing proximate stressors affecting or associated with
biology.
nd algal indices. The combined categories were used to model the likelihood of
h combined categories greater than or equal to zero were considered biologically
esponse variable in equations (1) and (2)). Individual biological categories for the
es (i.e., 1st, 10th, and 30th percentiles) as likely intact (>30th), possibly altered
associated with the percentiles for each index (CSCI, ASCI) are in parentheses.

: (ASCI Algae likely altered: (ASCI
0.70–0.83)

Algae very likely altered:
(ASCI< 0.70)

¡1 ¡2
¡2 ¡4

¡3 ¡5

¡5 ¡6



M.W. Beck et al. Environmental and Sustainability Indicators 1-2 (2019) 100004
2.3.2. Integrating multiple measures of stress
The combined impact of habitat or chemistry stressors on biological

condition was evaluated by developing stress-response models that
calculate the probability of observing poor biological conditions given
observed levels of chemical or habitat stress. This approach eliminates
the need to identify potential thresholds for identifying high levels of
stress while also accounting for their combined impacts.

For both types of stress, a generalized linear model (Fox and Weis-
berg, 2011) was fit to calibration data for Southern California streams to
quantify associations for each separate water quality or physical habitat
measure with binomial categories for altered or unaltered biology (i.e.,
negative or positive values in Table 1). Two models were developed:

pChem : pðbioÞe β0 þ β1TNþ β2TPþ β3cond (1)

pHab : pðbioÞe β0 þ β1CRAMhy þ β2IPIPCT SAFN þ β3IPIXCMG (2)

where pðbioÞ is the probability of biological alteration in equations (1)
and (2) given the indicators for each chemistry or physical habitat vari-
able. The probability of alteration is modelled using a logit link function
for binomial variables, as logðp =ð1 � pÞÞ, where p defines the presence or
absence of altered biology described above. Both models were created by
screening collinear predictors by removing those with variance inflation
factors (VIF) greater than three (Zuur et al., 2007). The most parsimo-
nious model was then identified using backward and forward selection to
minimize Akaike Information Criterion (Akaike et al., 1973; Venables
and Ripley, 2002). The selected variables for each model are shown
above (equation (1), TN: total nitrogen, TP: total phosphorus, cond:
specific conductivity; equation (2), CRAMhy : CRAM hydrologic structure,
IPIPCT SAFN : IPI % sands and fines, IPIXCMG: IPI riparian cover).

An overall likelihood of biological alteration from both chemistry and
physical habitat stressors was also estimated as a multiplicative function
for pChem and pHab:

pOverall : pðbioÞ e 1� ðð1� pChemÞ� ð1� pHabÞÞ (3)

The inverse of the likelihoods was used to represent an additive effect
of both chemistry and physical habitat stressors. Equations (1)–(3)
Fig. 2. Categorical site descriptions that are possible from the Stream Quality Index
stress conditions. The biological conditions are described by the possible outcomes
outcomes from the chemistry and habitat stressors. A fifth stress category is possible

4

provided the empirical estimates of biological alteration that were used
to define the categorical outputs of the SQI, defined below.
2.4. Combining stress and response measures into the final SQI assessment

The empirical framework for the binomial models and combined
biological condition categories established a basis for the categorical
descriptions from the SQI output. These descriptions linked the quanti-
tative data to management actions, such that the results were easily
interpreted with a measure of biological condition and the relevant
stressors which may or may not be related to condition. For the com-
ponents in Fig. 1, categorical outputs are provided by the index for the
overall SQI, the biological condition, and the stress condition (Fig. 2).
The categorical outputs were created from a matrix combination of the
respective inputs.

The overall SQI assessment categories describe four possible combi-
nations of biology and stressors at a site from the binary categories of
altered/unaltered biology and stressed/unstressed conditions: (1)
healthy and unstressed, (2) healthy and resilient, (3) impacted by un-
known stress, and (4) impacted and stressed. A healthy/impacted con-
dition could result from one or both biological indices and a stressed/
unstressed condition could result from one or both stressor types. The
first SQI category is typically assigned to pristine sites (healthy biology,
low stress), whereas the fourth category is typically assigned to degraded
sites (impacted biology, high stress). The second and third categories are
assigned when biology and stressors provide different information. A
healthy and resilient site has unaltered biology, but stressors are present
(i.e., the biota are resilient to stress). A site that is impacted by an un-
known stress has altered biology, but neither water chemistry nor
physical habitat stress is observed (i.e., biology is likely impacted by
other stressors not included in the SQI).

Separate categorical outputs were also created for the biological
condition and stressor condition categories. The four possible outputs for
the biological categories were based on the four outcomes from the
combinations of high/low CSCI and high/low ASCI: (1) healthy, (2)
impacted for CSCI, (3) impacted for ASCI, and (4) impacted for both. An
overall healthy condition for the SQI only occurs if both the CSCI and
(SQI). The overall SQI is described as the possible outcomes from biological and
from the CSCI and ASCI. The stress conditions are described by the possible
because stress from both chemistry and habitat was additive.
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ASCI indicate healthy conditions, whereas an impacted biological con-
dition is assigned to the overall SQI if one or both biological indices is/are
impacted. The possible stressor condition categories for a site were based
on the four outcomes of the combinations of high/low chemistry stress
and high/low physical habitat stress: (1) low stress, (2) stressed by
chemistry, (3) stressed by habitat, (4) stressed by both, and (5) stressed
by low levels of chemistry and physical stress. The fifth stress category
was possible based on the additive effects of chemical and physical
stressors when both were low (i.e., if pOverall exceeded the threshold
even though pChem and pHab did not). An overall unstressed condition
for the SQI occurs if both chemistry and physical habitat stress are low,
whereas a stressed condition is assigned to the overall SQI if one or both
of the stressor types is/are high or the additive effects of both exceed the
threshold.

Thresholds for biological indices that defined altered/unaltered
condition for the SQI categories were based on the tenth percentile dis-
tribution of scores at reference sites for each index (those in Table 1).
Thresholds for high/low stress categories were based on a 90% likeli-
hood of observing a biological impact from the empirical models. The
stress threshold was identified by a technical advisory group and was
chosen to provide a relatively even distribution of sites in the high/low
stress categories. The threshold is reflective of the distribution of ob-
servations in the calibration dataset that had many sites in poor biolog-
ical condition and was chosen strictly to create a more useful distribution
of stress categories (i.e., as opposed to categorizing all sites as stressed if
using a lower threshold). The final stress categories are therefore
reflective of the observed stressor gradients that occur in the study re-
gion. Alternative thresholds should be used when applying the model in
regions with different or diminished stressor gradients.

Finally, the use of a predictive model to identify healthy/impacted
biology and the use of biology as a component of the index (i.e., the
categorical outputs) may seem circular. However, we note that the
empirical models in equations (1)–(3) define the likelihood of alteration
that relates stress to biology to define the overall SQI output (e.g., healthy
and impacted). The biological categories as a component of the index are
the modelled response endpoints in the models, but also serve as stand-
alone endpoints that describe biological condition in the absence of the
stressor-response model.
Fig. 3. Land cover and elevation gradients in th

5

2.5. Calibration and validation of the SQI

All data used to calibrate and validate the SQI were from the Southern
California Stormwater Monitoring Coalition (SMC) regional watershed
monitoring program in coastal southern California ((Mazor, 2015),
Fig. 3). The SMC dataset represents the most comprehensive source of
wadeable stream data in southern California. Most streams in the region
are non-perennial, but available data suggests the CSCI and ASCI can
provide meaningful measures of stream health if sites are visited during
normal sample periods when baseflow is sufficient. Because the SQI re-
quires synoptic biological, chemistry, and physical habitat data, the final
dataset used for model calibration represents only the subset of the SMC
dataset where all three components were simultaneously collected. Made
up of 266 sites – 75% of which were used for model calibration – this
subset includes sampling dates ranging from 2009 to 2016, with rela-
tively even distribution of samples between years. These dates were
selected solely on the requisite data for calculating the SQI, i.e., the
subsample of all sites monitored by the SMC that included all data needed
for the SQI within each year from 2009 to 2016. Most sample events
occurred between May and June following standard protocols for
perennial stream surveys (Ode, 2007). Only one sample event for each
site was considered. Further, although the existing bioassessment
methods (i.e., ASCI, CSCI) were recently developed, existing data pre-
dating the development of each index were used to estimate scores for
previous years. These data were collected following sampling protocols
that were sufficient for calculating each index.

The SQI was evaluated for precision (i.e., how well the underlying
empirical model described the likelihood of biological alteration) and
sensitivity (i.e., how sensitive the model output is to changing thresholds
that define the categorical conditions). The first analysis evaluated pre-
cision in the validation dataset to determine agreement between the
model and actual stress and biological conditions. For the second anal-
ysis, two critical decision points that affected the model output and
categorical results of the SQI were varied to evaluate changes on overall
site counts in each final SQI category. In Table 1, all sites with combined
values greater than or equal to zero were considered healthy and those
less than zero were considered impacted. The effect of varying the cutoff
point for healthy and impacted biology was analyzed by comparing
e study region in southern California, USA.
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changes in the SQI assessment categories at different levels from �6 (all
healthy) to 6 (all unhealthy). Changes in the stressor thresholds for the
likelihood of observing altered biology that defined the categorical re-
sults were also evaluated.

3. Results

3.1. SQI patterns

Among all sites, the overall SQI categorized a majority of sites as
having altered biology under high stress conditions (impacted and
stressed, 72% of sites, Table 2). Almost 18% of sites were in the opposite
category of unaltered biology in low stress conditions (healthy and un-
stressed). For the remaining two categories of the overall SQI, only 5%
had unaltered biology but were under high stress conditions (healthy and
resilient), whereas 6% sites had altered biology not related to physical or
chemical stressors (impacted by unknown stress).

For the biological condition category, sites with altered conditions
were more often altered for both CSCI and ASCI scores (50%) than the
other categories (i.e., altered for only one index). For sites with one low-
scoring index, more sites were altered for the ASCI (16%) than the CSCI
(11%). Less than a quarter of all sites had unaltered biology (23%).

For stress conditions, 38% of sites were stressed by both chemistry
and physical habitat stressors. More sites were stressed by water chem-
istry (24%) than physical habitat degradation (6%) if only one stressor
was present. Over 23% of sites had low stress, and 9% of sites were
stressed by the additive effect of both low chemistry and physical habitat
stressors.

Spatial patterns among SQI categories in southern California gener-
ally followed elevation and land use gradients (Figs. 3 and 4). More
altered biological communities and high stress conditions were observed
toward coastal areas at lower elevation where urbanization is highest
(e.g., Los Angeles, Orange County, Ventura, San Diego). Sites with altered
biological condition showed similar spatial patterns as the overall SQI,
although sites altered only for the ASCI were more often observed at mid-
elevation across the study region, whereas sites altered only for the CSCI
were more common at higher elevation areas in central and northern
areas of the study region. Stress condition patterns were similar to
biology, although low stress conditions also occurred at higher elevation
areas in each watershed. This produced a handful of sites that had altered
biology under low stress conditions at mid-elevation ranges (i.e.,
impacted by unknown stress, Table 2).

3.2. Model precision

The distinction between healthy and impacted biological commu-
nities was well-described by the estimated likelihood of biological
Table 2
Counts of sites in each of the categorical outputs from the SQI. For every SQI
output (biological condition, overall SQI, stress condition), a site is categorized as
one of four possible outcomes.

SQI output Category Count
(percent)

Overall SQI Healthy and unstressed 47 (17.6)
Healthy and resilient 13 (4.9)
Impacted and stressed 192 (71.9)
Impacted by unknown stress 15 (5.6)

Biological
condition

Healthy 60 (22.5)
Impacted for ASCI 43 (16.1)
Impacted for CSCI 30 (11.2)
Impacted for CSCI and ASCI 134 (50.2)

Stress condition Low stress 62 (23.2)
Stressed by chemistry and habitat degradation 101 (37.8)
Stressed by chemistry degradation 65 (24.3)
Stressed by habitat degradation 16 (6)
Stressed by low levels of chemistry or habitat
degradation

23 (8.6)
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alteration provided by the empirical models (Fig. 5). Relatively good
separation was observed between sites designated as healthy or impacted
in the validation (dark grey boxes) data for the three stressor-response
models. Slightly larger differences between the likelihood of alteration
for healthy and impacted communities were observed for the chemistry
model compared to the physical habitat model, suggesting an improved
fit for the former (for healthy/impacted communities at validation sites,
t¼ 5.6, df¼ 15.97, p< 0.001 for pChem; t¼ 3.78, df¼ 18.54, p< 0.01 for
pHab). For the overall likelihood of biological alteration (pOverall), more
sites were greater than 90% likely to be altered in the impacted category
as compared to the separate pChem and pHab models. For all cases
(pChem, pHab, pOverall), there were no systematic differences in model
results between calibration and validation datasets both qualitatively
(similar distribution in the boxplots) and quantitatively (p > 0.05 for
models describing likelihood of alteration between site types as cali-
bration or validation).

The underlying empirical models provided insight into instream
characteristics that were related to the likelihood of biological alteration
(Figs. 6 and 7). About 79% of sites (n¼ 212) had greater than 50%
likelihood of biological alteration from water chemistry stressors, and
83% (n¼ 222) had greater than 50% likelihood of biological alteration
from physical habitat stressors (Fig. 6). Collectively, 94% (n¼ 251) of
sites had greater than 50% likelihood of biological alteration from the
overall stress of both chemistry and physical habitat stressors.

Water chemistry and physical habitat predictors included in the
empirical response models for pChem and pHab (equations (1) and (2))
explained a substantial portion of variability among sites related to the
occurrence of biological alteration (Table 3). The pChemmodel explained
65% of the variation among sites, whereas the pHab model explained
48%. All variables in the pChem model had VIF values less than 3 and
were also included in the final set of predictors after model selection. All
predictors in the pChem model were significantly and positively associ-
ated (p < 0:05) with the occurrence of biological alteration, except total
nitrogen which was marginally significant (p ¼ 0:08). For the pHab
model, two predictors were removed that had VIF values greater than
three (diversity of natural substrate and biological structure). Predictors
included in the final pHabmodel after variable selection were hydrologic
structure, percent sands, fines, or concrete, and riparian cover. All pre-
dictors were negatively and significantly associated with the likelihood
of biological alteration, except riparian cover (p ¼ 0:15).

Fig. 7 demonstrates how the individual components for each stressor
model were related to likelihood of alteration. These partial dependency
plots were created by estimating the likelihood of alteration across a
range of values for each predictor, while holding other predictors con-
stant. For each plot, the variables in each model (equations (1) and (2))
not on the x-axis were held at approximate values that were associated
with low stress to better understand how biological alteration may be
related to each predictor. For water chemistry stressors, all were posi-
tively associated with likelihood of alteration, particularly conductivity
which had the steepest per-unit increase in likelihood. Associations of
biological alteration with physical habitat predictors were also as ex-
pected, except that decreases in likelihood of biological alteration were
observed with increases in the three predictors (all are indicators of
habitat integrity or low physical habitat stress). The strongest relation-
ship was observed with increases in CRAM hydrologic structure, where
likelihood of alteration decreased sharply with scores greater than 50.

3.3. Model sensitivity to biological decision points

Results in Fig. 8 show changes in the categorical SQI results based on
different decision points that defined biological condition. As a general
trend, lowering the cutpoint for healthy/impacted to designate more
sites as healthy (�6) resulted in an increase in the number of sites
designated as “low stress” for the stress condition. For the overall SQI,
lowering this cutpoint also increased the number of sites designated as
“healthy and unstressed” or “impacted by unknown stress”. Conversely,



Fig. 4. Categorical site descriptions for the Stream Quality Index (SQI) at monitoring sites in Southern California. The overall SQI (top) is described as the possible
outcomes from biological (middle) and stress conditions (bottom). The biological conditions are described by the possible outcomes from the CSCI and ASCI. The stress
conditions are described by the possible outcomes from the chemistry and habitat stressors.

Fig. 5. Boxplot distributions of the modelled
likelihood of biological alteration relative to
water chemistry (pChem, eqn. (1)) and
physical habitat variables (pHab, eqn. (2))
and the additive overall stress as the product
between the two (pOverall, eqn. (3)). Groups
are separated into healthy or impacted bio-
logical condition at each site (Table 1) as the
response measure for each model and by
calibration/validation datasets (3:1 split).
Model precision can be evaluated by
comparing the differences between the box-
plots for the validation data for healthy and
impacted categories, whereas model bias can
be assessed by comparing the distributions
between calibration and validation data
among biological state and models. Points
show the four possible categorical outcomes
from the overall SQI.
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increasing the cutpoint for healthy/impacted to designate more sites as
impacted (6) caused in increase in the number of sites designated as
“stressed by chemistry and habitat” for the stress condition and sites as
7

“impacted and stressed” or “health and resilient” for the overall SQI.
Changing the threshold for the likelihood values that defined stressed

biology (dotted lines in Fig. 6) also affected the categorical results



Fig. 6. Relationship between stress models
for water chemistry (pChem, eqn. (1)) and
physical habitat (pHab, eqn. (2)). Stress
models for water chemistry and physical
habitat were created based on the likelihood
of biological alteration for the observed
stress measures. The overall stress measures
(pOverall, eqn. (3)) is the product of both
stress models shown in the left plot. Points
represent estimated stress at a single site,
with shapes showing the biological condi-
tion. The right plot shows the same points
but colored by the stress condition categories
that are defined by thresholds from the
dotted lines.
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(Fig. 9). Higher thresholds shifted the number of sites to low stress
conditions, whereas lower thresholds had the opposite effect of assigning
more sites to high stress conditions. The number of sites that were
stressed by low levels of both water chemistry and habitat conditions
were relatively unchanged with different thresholds. The overall SQI
categories were less affected by changing thresholds for the stress con-
dition than for changing the cutpoint that defined healthy/impacted
biology. However, higher thresholds shifted some sites from the
impacted and stressed category to the impacted by unknown stress
category and from the healthy and resilient category to the healthy and
unstressed category.

4. Discussion

The Stream Quality Index offers a solution for watershed managers
seeking to synthesize large amounts of physical, chemical, and biological
data about stream health. Using the SQI, users can both recognize large-
scale patterns in data frommultiple indicators, and improve how the data
are communicated to high-level, non-technical environmental managers.
This need is particularly pressing in regions like southern California,
where large-scale landscape alteration and competing demands for water
usage require managers to prioritize limited resources and management
actions. As shown by the application of the SQI to stream data from the
southern California, this tool could be used to prioritize sites for man-
agement activities on a large scale. Conversely, the SQI can be used as a
valuable communication tool to highlight areas where biological objec-
tives are not being met, which could provide a context for identifying
specific stressors in a more rigorous framework (see supplemental ma-
terial, Figure S1).

While the simplest way to synthesize indicators would be to treat
them equivalently and simply “average” the results, this approach would
mask the types of information provided by each, and ultimately could not
characterize situations where these indicators disagreed – a common
situation in the SMC data set. Dobbie and Clifford (2014) evaluated
sources of uncertainty for an integrative index of estuarine health that
was based on averaging separate water quality components across
different spatial units. By their own admission, averaging indicators
raised concerns about the consistency and validity of interpretation and
their results showed that the composite index was indeed sensitive to the
8

parameters for averaging. This is particularly relevant when biology and
stressors provide different or unexpected information about stream
condition. In other words, a finding of good water chemistry should not
obscure or distort an indication of poor biology, and vice versa.

To properly capture relationships among indicators of stream quality
in a way that is consistent with conceptual modeling of a healthy stream
ecosystem, it was crucial to develop an index that accurately reflected
biology’s role as a direct measure of condition, and that reflects physical
and chemical indicators as measures of stress. These relationships were
captured using the stressor-response model that reflected an empirical
and ecological relationship between biology and stressors. Empirically,
we quantified the likelihood of different sites having altered biology
across stressor gradients. Ecologically, stream biota have documented
and mechanistic responses to the in-stream or riparian stressors included
in the SQI (Wang et al., 2007; Rehn et al., 2018; Richards et al., 1997; Pan
et al., 2002). These linkages were reflected in the separate categorical
components of the SQI; altered biology was more often associated with
high stressors. Detailed outputs provided additional information about
ecological relationships. For example, some sites were altered for the
ASCI and had high water chemistry stressors, whereas other sites were
altered for the CSCI and had high physical habitat stressors. This reflects
a potential difference in the sensitivity of algae to water chemistry and
macroinvertebrates to physical habitat, highlighting the utility of using
different assemblages to assess condition.

As a categorical index, the SQI provides a readily interpretable
description of stream conditions that is easily accessible through a web-
based application. The four condition categories defined by the index
(i.e., healthy and unstressed, healthy and resilient, impacted and
stressed, impacted by unknown stress) can be understood by a general
audience that may not need the underlying data and tools used to analyze
them. In contrast, numeric indices require a benchmark or other appro-
priate context to interpret scores; without this information, it can be
difficult to identify which values of a numeric index correspond to
healthy conditions that could warrant protection, and conversely, which
values correspond to impacted conditions that may be in need of inter-
vention. Defining the condition categories from empirical models that are
ultimately linked to continuous data provided a quantitative link be-
tween the two.

The SQI also addresses the challenge of synthesizing large amounts of



Fig. 7. Modelled likelihood of biological alteration from water quality (top) and physical habitat stressors (bottom). Curves are the binomial likelihood (þ/� standard
error) of biological condition being altered (as measured by macroinvertebrate and algal indices) across the range of observed values for water quality and physical
habitat stressors on the x-axes. The water chemistry and physical habitat stress plots are derived from equations (1) and (2). Other variables in each model not on the x-
axis for each plot are held constant at values for low stress conditions. Biological condition for observations in each stressor model is shown as rug plots on the x-axes,
with healthy sites on the bottom and impacted on the top. Note that IPI metrics are positively associated with physical habitat integrity, e.g., an increase in the % sands
and fines metric suggests higher physical integrity and lower observed sands and fines.

Table 3
Summary of empirical stress models to quantify associations of water chemistry
(pChem, eqn. (1)) and physical habitat (pHab, eqn. (2)) predictors with biolog-
ical alteration. Generalized linear models were fit to predict the likelihood of
both healthy benthic macroinvertebrate and algal communities at calibration
sites (75% of n¼ 267 sites).

pChem pHab

Constant 2.22 * 11.51 ***
(0.97) (2.08)

log(TN) 0.90
(0.51)

log(TP) 2.46 ***
(0.64)

Conductivity 0.00 ***
(0.00)

CRAM hydrologic structure �0.10 ***
(0.02)

IPI riparian cover �1.40
(0.98)

IPI percent sands, fines, or concrete �2.99 *
(1.19)

N 200 200
AIC 109.73 146.53
BIC 122.92 159.72
Pseudo R2 0.65 0.48

***p < 0.001; **p < 0.01; *p < 0.05.
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information about stream condition without losing the individual com-
ponents, which are readily available to the user for more in-depth
exploration because the index is hierarchical. This provides a critical
service by allowing users to identify likely reasons behind the categorical
classification for a given site. In other words, users can determine which
biological indicators account for a stream’s health rating, along with
which stressors may or not be associated with biological condition. Users
also can identify presence or absence of physical and/or chemical
stressors included in the empirical model, and which components in
equations (1) and (2) may be linked to their respective stressor cate-
gories. Further, physical habitat measures (i.e., CRAM and IPI) include
component metrics that can serve as additional diagnostic information to
describe physical conditions (e.g., percent sands, fines, or concrete,
shading, diversity of natural substrates, etc.). An evaluation of compo-
nent metrics for sites that are stressed by physical habitat may reveal
which stream characteristics could be prioritized to improve condition
(e.g., reduce bank erosion or increase riparian cover).

Tools that are similar to the SQI have been developed, although key
differences exist. The Canadian Water Quality Index (CWQI (CCME,
2001; Hurley et al., 2012),) evaluates the scope, frequency, and ampli-
tude of water quality objective exceedances for numerous parameters,
resulting in a numeric value that ranges from 0 (poor) to 100 (excellent).
This approach is appropriate for assessing compliance with regulatory
criteria at sites where monitoring covers many parameters and occurs at
regular intervals (i.e., at selected sites of interest, such as below discharge



Fig. 8. Changes in stress condition (left) and overall SQI categories (right) for different cut points that define healthy or impacted biology. Lower cutpoints mean more
sites are designated as healthy, whereas higher cutpoints mean more sites are designated as impacted. The healthy/impacted categories are those modelled by
equations (1)–(3) that relate stress measures to biology. The cut point definitions are shown in Table 1.

Fig. 9. Changes in stress condition (left) and overall SQI categories (right) for different thresholds defining the stress categories. Lower thresholds mean more sites are
designated as high stress, whereas higher thresholds mean more sites are designated as low stress. Sites are designated as low/high stress using the continuous
likelihoods from the fitted models in equations (1)–(3) that relate stress measures to healthy/impacted biology. The dotted lines in Fig. 6 show stress thresholds set
at 90%.
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points or at mass-emission stations). In contrast, the SQI is better suited
for ambient monitoring programs (e.g. (Mazor, 2015; A (Environmental
P, 2016),) that typically sample many sites with little or no replication
and that focus on just a few indicators broadly indicative of water
chemistry conditions rather than a large suite of potential stressors. Our
approach is also applicable to indicators where thresholds are unavai-
lable (e.g., CRAM or IPI), but where the relevance for measuring aquatic
life support is maintained even when it has less bearing on regulatory
compliance than with other approaches, such as the CWQI. Finally, the
SQI approach can be directly interpreted without familiarity of estab-
lished benchmarks because the empirical stress models in the SQI are
expressed as probabilities of degrading biological condition, rather than
discrete thresholds that may not have context.
4.1. Limitations of the approach

Our theoretical framework for the SQI is not without drawbacks. The
index as designed cannot accommodate additional or fewer indicators of
stream condition/stress without recalibration - a contrast to the CWQI
that can include any number of available parameters. Missing data (e.g.,
10
lost samples or incomplete coverage of required data at a site) prevent
calculation of the complete SQI, and the index cannot be estimated
without recalibration to include or exclude individual components.
However, partial output for the SQI can be obtained if, for example, only
stressor data are available. The overall SQI category cannot be assigned
to a site for incomplete data, but the sub-categories (e.g., biological
condition category or stressor condition category) can still be obtained
where the data are available.

At the same time, the initial SQI described herein was purposefully
restricted to a limited number of parameters to focus on developing the
foundation of the index, as we were aware that a broader scope could
preclude many sites from analysis. For example, CSCI and ASCI scores for
the biological components of the SQI are available at over 1000 sites in
southern California, but combining these data with the required chemical
and physical stressor data reduced the total number of sites where all
components were available to 267 sites. An additional concern is our
choice of predictors that were purposefully limited to the most relevant
and ubiquitous data for describing eutrophication (water quality) and
instream/riparian condition (physical habitat) in the study region. We
realize that these variables are proxies and may also be correlated with
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other variables (e.g., stream temperature). Thus, causation can only be
partially inferred with our models and more rigorous follow-up work
would be needed to identify specific stressors. Similarly, recalibration of
the model and choosing appropriate thresholds for defining categorical
output would be required if the framework were applied in a different
setting or context (e.g., different regions or stressor gradients). This may
also apply to the current dataset as new observations become available to
best describe regional conditions.

4.2. The SQI web application

A web application was developed to make the SQI - and all of the
foundational data for the overall SQI assessment - accessible to a broad
user base, that in turn can readily share findings with high-level, non-
technical managers and other stakeholders (https://sccwrp.shinyapps.i
o/sqi_shiny). The web interface uses an open source software program
developed in R (Chang et al., 2018; RDCT (R Development Core Team),
2018) to automate batch calculation of the SQI at large numbers of sites
(Beck and Mazor, 2018). This allows the index and web application to be
easily updated as new data become available for sites already in the
database.

The web app’s visualization features also support exploration of the
data at both regional and site scales, encouraging users to explore results
in different spatial contexts. Scores for each index component are pro-
vided alongside the option to view the underlying data that were used for
the empirical stress models and categorical outcomes. A map allows for
rapid comparison of sites of interest to the region as a whole, as well as
county- or watershed-level summaries. With this information, managers
can prioritize follow-up actions to identify causes of biological impacts
(e.g., wildfire, bank erosion, or other sources) or pursue other appro-
priate management actions (e.g., formal causal analysis or site restora-
tion). As such, the web application provides a screening tool to rapidly
assess condition and identify potential stressors that may be impacting
condition – insights that would be more difficult to identify via tradi-
tional research products (e.g., tabular data).

4.3. Conclusions

An integrated stream health index that synthesizes physical, chemical
and biological indicators could be a powerful tool to support watershed
management. The SQI accurately captures our understanding of the roles
that physical, chemical and biological indicators play in describing
stream health. Furthermore, the SQI not only combines the data into a
single, managerially relevant categorical classification, the tool also
preserves the data underlying the integrated assessment, enabling man-
agers to readily access this information as they work to better understand
the reasons behind the overall assessment.

The SQI is a viable approach for managers that need to synthesize
large amounts of data, assign priorities based on this synthesis, and
communicate these decisions to a broad range of high-level managers
and other stakeholders who may lack familiarity with bioassessment
and/or watershed science. In particular, the SQI could be used to convey
critical insights for routine watershed assessments, permit reporting, and
environmental report cards. Although the SQI is calibrated and validated
specifically for southern California, USA, the approach could be applied
anywhere with sufficient data. Many national and international moni-
toring programs that have collected data for several years could easily
apply the SQI framework with alternative biological endpoints or stressor
data.

Supplement 1

SQI results for two case study sites were explored in detail to provide
a narrative description of how the index can be used to inform man-
agement of water quality in perennial streams. The first example de-
scribes SQI results in an urban channel with impacted biology (County of
11
Orange) to complement a previous causal assessment study to identify
potential stressors of low CSCI scores. The second example describes a
natural channel with impacted biology but low stress that is highlighted
in a draft regional basin plan for biological objectives for the San Diego
region. Both examples demonstrate how the SQI can be used in the
context of existing, site-specific information to support management.

Supplement 2

An interactive website is available for viewing results of the SQI:
https://sccwrp.shinyapps.io/SQI_Shiny (Beck et al., 2019). An R package
is also available for calculating SQI scores: https://github.com/S
CCWRP/SQI (Beck and Mazor, 2018).
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