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Abstract: Stream management goals for biological integrity may be difficult to achieve in developed landscapes
where channel modification and other factors constrain in-stream conditions. To evaluate potential constraints
on biological integrity, we developed a statewide landscape model for California that estimates ranges of likely
scores for a macroinvertebrate-based index that are typical at a site with the observed level of landscape alteration.
This context can support prioritization decisions for stream management, like identifying reaches for restoration
or enhanced protection based on how observed scores relate to model predictions. Median scores were accurately
predicted by the model for all sites in California with bioassessment data (Pearson correlation r 5 0.75 between
observed and predicted for calibration data, r5 0.72 for validation). The model also predicted that 15% of streams
statewide are constrained for biological integrity within their present developed landscape, particularly for ur-
ban and agricultural areas in the South Coast, Central Valley, and Bay Area regions. We worked with a local stake-
holder group from the San Gabriel River watershed (Los Angeles County, California) to evaluate how the statewide
model could support local management decisions. To achieve this purpose, we created an interactive application,
the Stream Classification and Priority Explorer, that compares observed scores with predictions from the landscape
model to assign priorities. We observed model predictions consistent with the land-use gradient from the upper
to lower watershed, where potential limits to achieving biological integrity were more common in the heavily-
urbanized lower watershed. However, most of the sites in the lower watershed scored within their predicted ranges,
and were therefore given a low priority for restoration. In contrast, 2 low-scoring sites in the undeveloped upper
watershed were prioritized for causal assessment and possible future restoration, whereas 3 high-scoring sites were
prioritized for protection. The availability of geospatial and bioassessment data at the national level suggests that
these tools can easily be applied to inform management decisions at other locations where altered landscapes may
limit biological integrity.
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The widespread use of bioassessment data to assess the
ecological condition of aquatic environments is a signifi-
cant advance over chemical or physical methods of assess-
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many biological indices provides a broad context for inter-
preting observed biological condition relative to that occur-
ring in unaltered habitats for a particular region (Reynold-
son et al. 1997, Stoddard et al. 2006). However, achieving a
reference condition of biological integrity (i.e., having struc-
ture and function comparable to natural habitat for the same
region; Karr et al. 1986)may be challenging if landscape con-
ditions (e.g., watershed imperviousness) limit the spatial and
temporal scales that can be effectively managed (Chessman
and Royal 2004, Chessman 2014). Resource management
decisions could be improved if information is available that
describes these limitations. A landscape context is required
that describes how likely a site is to achieve biological integ-
rity, which can inform how bioassessment data supports
decisions or be used to identify priorities.

Prioritizing among sites that are affected by landscape
alteration is a critical challenge for managers in urban and
agricultural settings (Walsh et al. 2005, Beechie et al. 2007,
Paul et al. 2008). In developed landscapes, the majority of
stream miles are in poor biotic condition (USGS 1999, Fin-
kenbine et al. 2000, Morgan and Cushman 2005). Restoring
streams in urban or agricultural settings can be costly; suc-
cess is not universally defined, and achieving regionally-
defined reference-like conditions may be difficult (Bern-
hardt et al. 2007, Kenney et al. 2012, Shoredits and Clayton
2013). Conventional approaches to protect and restore bio-
logical integrity have commonly focused on both direct im-
provements at the site level to mitigate instream stressors
(Carline and Walsh 2007, Lester and Boulton 2008, Roni
and Beechi 2012, Loflen et al. 2016) and implementation of
upstream preventive measures. These approaches can lead
to improvements in ecological condition (e.g., Bernhardt
et al. 2007), but there is no universal remedy for achieving
biological integrity in streams. In urban areas, the protective
thresholds needed to maintain biological integrity have been
debated (Cuffney et al. 2011). For biological integrity, several
states have implemented a tiered aquatic life use or alterna-
tive use designation as potential approaches to account for
shifts in ecosystem baseline conditions caused by channel
modification (e.g., FDEP 2011, USEPA 2013, MBI 2016,
permitted under section 303(c)(2) of the Clean Water Act,
33 U.S.C. §1251 - 1376). Other approaches may include site-
specific criteria or alternative thresholds with specific guide-
lines for implementation (e.g., SDRWQB 2016).

Herein, we define constrained streams as those where
present landscape conditions are likely to limit manage-
ment options for restoring biological integrity. This defini-
tion describes a biological expectation and is distinct from
thedefinitionof constrainedused in the general streamecol-
ogy literature (e.g., a physically-constrained channel in the
morphological sense). By describing an expected range of
biological conditions caused by factors that may be difficult
to manage, managers could prioritize sites for protection or
restoration where factors influencing condition are more
easily managed. For example, a monitoring site with an ob-
served biological index score that is above its predicted
range could be assigned a higher management priority (i.e.,
for protection) relative to a site that is scoring within the ex-
pected range given its type and amount of landscape devel-
opment. A predictive model of bioassessment scores that
is based on landscape metrics (e.g., imperviousness) could
identify likely constraints on biological integrity, particu-
larly for factors that are difficult to manage and are often
associated with instream stressors. Analysis methods that
characterize biotic and abiotic factors that limit assem-
blage composition have been explored by others (i.e., lim-
iting factor theory; Chessman et al. 2008, Chessman 2014).
Similar concepts have been applied in a landscape context
to describe variation in biological communities and metrics
at different spatial scales (Waite 2013, Waite et al. 2014),
although they have not been developed to identify constraints
as defined above.

Consistent and empirical relationships between land use
and biotic integrity have been identified inmany cases (Allan
et al. 1997, Wang et al. 1997, Clapcott et al. 2011), and pre-
vious modeling efforts have successfully used geospatial
data to predict local stream biological condition across ei-
ther regional or national scales (Vølstad et al. 2004, Carlisle
et al. 2009, Brown et al. 2012, Hill et al. 2017).Many of these
models are based on our understanding of relationships
between stream biota and watershed characteristics (Hynes
1975, Johnson et al. 1997, Richards et al. 1997), which can be
broadly conceptualized within the Driver-Pressure-Stress-
Impact-Response (DPSIR) framework that describes rela-
tionships between the origins and consequences of environ-
mental problems (Smeets and Weterings 1999). However,
past efforts have primarily focused on predicting the most
likely biological condition occurring at unsampled locations.
Alternative modeling approaches, such as quantile-based
methods (e.g., Cade and Noon 2003), could be used to pre-
dict the range of condition scores likely to occur given a
site’s environmental setting. Once the responses of macro-
invertebrate assemblages to landscape changes that occur
across large spatial scales are modeled, predictions can be
compared to observed conditions and sites can be prioritized
by local managers based on the degree of deviation of ob-
served from the expected conditions.

The goal of this study was to present the development
and application of a model to predict the lower and upper
bioassessment scores that would be expected at a stream
reach given its surrounding land use. Our specific objectives
were to 1) develop and validate a model applicable to most
sites occurring within a large and environmentally diverse
landscape, 2) use the model to categorize all stream seg-
ments in California into constraint classes, and 3) provide
a case study within a single watershed to demonstrate how
model predictions and classifications can be used to prior-
itize management actions at a local scale. The model was
developed and applied to all streams and rivers in California,
specifically focusing on the potential of urban and agricultural
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land use to constrain biological condition. The case study
demonstrated how the statewide model could be used to
classify and prioritize management actions at the regional
scale in conjunction with guidance from a local stakeholder
group from a heavily-urbanized watershed. An interactive
software application, the Stream Classification and Priority
Explorer (SCAPE), was developed for our case study to help
stakeholders choose regional management priorities from the
statewide landscape model.
METHODS
Study area and data sources

California covers 424,000 km2 of land and is extremely
diverse in terms of elevation, geology, and climate (Fig. 1A;
Ode et al. 2016b). Temperate rainforests occur in the north
(North Coast region), deserts and plateaus in the northeast
and southeast (Deserts and Modoc Plateau region), and
Mediterranean climates in coastal regions (Chaparral and
South Coast regions). The Central Valley region is largely
agricultural and receives water from multiple rivers that
drain a large mountainous area in the east-central region of
the state (Sierra Nevada region). Urban development is con-
centrated in coastal areas in the central (San Francisco Bay
Area, Chaparral region) and southern (Los Angeles, San Diego
metropolitan area, South Coast) regions of the state. Devel-
oped lands (i.e., low- to high-density urban areas) have in-
creased in California by 38% from 1973 to 2000 (Sleeter et al.
2011). Silviculture and logging activities have also occurred
in forested regions (SN, NC). For analysis, the state was eval-
uated as a whole and by the major regions described above
(Ode et al. 2011).

The predictive model was developed with land-use data,
national stream hydrography layers, and biological assess-
ment data. Our predictivemodel followed theDPSIR frame-
work where the general assumption was human-caused al-
terations to the landscape influence water quality, which in
turn influences biotic integrity (Fig. 2; Smeets andWeterings
1999). The National Hydrography Dataset Plus (NHDPlus;
McKay et al. 2012) was used to identify stream segments in
California for modeling biological integrity. The NHDPlus
is a surface water framework that maps drainage networks
Figure 1. Map of California showing areas with extensive urban and agricultural land use (A) and distribution of observed stream
CSCI scores (B). Cover of urban and agricultural land use in stream watersheds was used to develop a model to predict the range of
bioassessment scores expected at a stream segment. Breakpoints for defining classes of CSCI scores are the 1st, 10th, and 30th percentile
of scores observed at least-disturbed reference sites throughout the state. Altered and intact refer to biological condition (Mazor et al.
2016). Grey lines delineate major environmental regions in California defined by ecoregional and watershed boundaries. CV 5 Central
Valley, CH 5 Chaparral, DM 5 Deserts and Modoc Plateau, NC 5 North Coast, SN 5 Sierra Nevada, SC 5 South Coast.
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and associated features (e.g., streams, lakes, canals, etc.) in the
United States. Stream segments designated in the NHDPlus
were used as discrete spatial units for modeling biological
integrity. Here and throughout, segment is defined based
on NHDPlus flowlines. Hydrography data were combined
with landscape metrics available from the StreamCat data-
set (Hill et al. 2016), which provided estimates of land use
within the riparian zone (i.e., a 100-m buffer on each side of
the stream segment), the local catchment (i.e., nearby land-
scape flowing directly into the immediate stream segment, ex-
cluding upstream segments), and the entire upstream water-
shed for each NHDPlus segment. Many of the metrics in
StreamCat were derived from the 2006 National Land Cover
Database (Fry et al. 2011).

The California Stream Condition Index (CSCI; Mazor
et al. 2016) was used as a measure of biological condition
in California streams. The CSCI is based on a comparison
of the taxa and metrics observed at a site to those expected
under least disturbed reference conditions (Stoddard et al.
2006). Expected values at a site are derived from models
that estimate the likely macroinvertebrate assemblage in
relation to factors that naturally influence biology (e.g., wa-
tershed size, elevation, climate, etc.; Moss et al. 1987, Cao
et al. 2007). The index score at a site can vary from 0 to
~1.4, with values near 1 indicating less deviation from the
reference state. Because the index was developed to mini-
mize the influence of natural gradients on index scores, the
scores have consistent meaning across the state (Mazor et al.
2016). A CSCI threshold of 0.79, the 10th percentile of scores
from all reference calibration sites for the original index, has
been proposed as a threshold below which a site does not
meet designated biological uses (SDRWQB 2016). As de-
scribed below, the expected CSCI scores obtained from the
predictive model were compared to this threshold to iden-
tify different constraint classes.

Benthic macroinvertebrate data were used to calculate
6270 individual CSCI scores at ~3400 unique sites between
2000 and 2016 (Fig. 1B). We aggregated data collected un-
der >20 federal, state, and regional bioassessment pro-
grams (Mazor 2015, Rehn 2015, Ode et al. 2016a). Most of
these programs targeted perennial streams, although an
unknown number of intermittent streams with flows last-
ing into the normal sampling period were included (Mazor
et al. 2014), particularly in more arid southern California.
Most regions and stream-types where perennial wadeable
streams are located were represented in the calibration data
set because these programs are so spatially extensive.

We collected field samples during base flow conditions
typically between May and July following methods in Ode
et al. (2016a). Bioassessment sites were snapped to the
closest NHDPlus stream segment in ArcGIS (ESRI ArcGIS
v10.5, Redlands, California). In cases where multiple sites
were located on the same segment, we selected the most
downstream site for model calibration under the assump-
tion that the landscape data in StreamCat were most rele-
vant to this site. One sample date was chosen randomly for
sites with multiple sampling dates so that 1 CSCI score was
matched to a site. This procedure created a final dataset of
2620 unique field observations that we used to calibrate
and validate the model.
Building and validating the predicted CSCI score model
We modeled expected CSCI scores based on estimates

of canal/ditch density, imperviousness, road density/cross-
ings, and urban and agricultural land use for each stream
segment (Table 1, Fig. S1). We used StreamCat as the only
source for predictor variables to maintain consistency in
methods and linkages to NHDPlus flowlines (Hill et al.
2016). Preliminary analyses indicated that these variables
produced a predictive model with comparable performance
to a model with additional predictors. These variables were
chosen specifically as indicators of land-management activ-
ities that were most likely to limit the attainability of bio-
logical integrity. We used landscape condition variables in-
stead of in-stream data because we specifically wanted to
Figure 2. Response and management pathways as conceptu-
alized in the Driver-Pressure-Stress-Impact-Response (DPSIR)
framework (Smeets and Weterings 1999). The predictive model
was developed to quantify relationships between pressures and
impacts and inform potential responses. Landscape predictors
provided in StreamCat (Hill et al. 2017) were used to describe
pressures from urban and agricultural development that could
alter macroinvertebrate assemblages in streams by modifying
physical and chemical habitat. Biological impact was measured
with the CSCI (Mazor et al. 2016) and then evaluated relative
to ranges of CSCI scores that were predicted at each site by the
model. Observed CSCI scores and context from the landscape
model provide a basis for informing management actions that
could address environmental impacts at different points in the
response pathway, where the management pathway could ad-
dress causes at different scales and efficiencies.
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quantify how biological condition was related to these types
of landscape alterations, which can be challenging to man-
age. We also did not use data on presence or absence of in-
channel modifications because landscape predictors were
more broadly inclusive of the problem (e.g., modified chan-
nels are often but not always constrained, and constrained
channels are not always modified). Overall, we developed
a correlative model by design, which was not intended to
identify specificmechanisms of biological alteration.We as-
sumed that the importance of in-stream factors to biological
condition scores could be assessed with follow-up analyses
as desired or needed.

We used quantile regression forests (QRF) to estimate
ranges of likely CSCI scores in different landscapes (Meins-
hausen 2006, 2017). Random forests modeling is an ensem-
ble learning approach to predictive modeling that aggre-
gates information from a large number of regression trees
and have been used extensively in bioassessment applica-
tions (Carlisle et al. 2009, Chen et al. 2014, Mazor et al.
2016, Fox et al. 2017). Random forest models can quantify
complex, non-linear relationships and interactions between
variables and can be more effective with large datasets rela-
tive to more commonly-used approaches, such as multiple
regression (Breiman 2001, Hastie et al. 2009). Quantile mod-
els, such as QRF, evaluate the range of values of the response
variable that are expected, in contrast to conventional models
that provide only an estimate of the mean response (Cade
and Noon 2003). This modeling approach can estimate a
lower and an upper limit of likely scores that might be ex-
pected at a site given its surrounding land use, which can be
therefore used to identify sites where that range includes
management targets. We used a statewide, validated QRF to
predict CSCI scores in each stream segment where predic-
tors were available at 5% increments (i.e., 5th, 10th, etc.) from
the 5th to 95th percentile of expectations. For example, the
50th percentile prediction was the most likely score for a
stream segment given observed values of landscape variables,
whereas lower (e.g., 5th percentile) and upper (95th percen-
tile) conditional quantiles identified the 90% (range) of scores
likely to occur at a site. We used the quantregForest pack-
age with default settings to develop the model (Meinshausen
2017).

We stratified sample data to ensure sufficient represen-
tation of landscape gradients across major regions in the
state (Fig. 1). We used data from 75% of the segments with
observed CSCI scores to calibrate the model, and we en-
sured data were representative of the full range of landscape
conditions by randomly drawing segments from 4 quartiles
(strata) of the full data defined by increasing watershed im-
perviousness relative to each region (n 5 1965 segments).
We used the remaining 25% of sites for model validation
(n 5 655). Where replicate samples were available at a sin-
gle site, we selected 1 sample at random for both calibration
and validation purposes. We used out-of-bag estimates for
the calibration data to prevent bias and over-fitting. Out-of-
bag predictions are based on the subsets of trees that are ex-
cluded in random forest models during calibration (Brei-
man 2001).

We evaluated the model for both predictive ability and
bias, both of whichmay vary depending on land-use setting.
We compared differences between observed CSCI scores
andmedian predictions at the same locations (Pearson cor-
relations and root mean square errors [RMSE]) to evaluate
performance for both the entire statewide dataset and each
Table 1. Land-use variables used to develop the predictive model of stream bioassessment scores. All variables were obtained from
StreamCat (Hill et al. 2016) and applied to stream segments in the National Hydrography Dataset Plus (NHDPlus; McKay et al.
2012). The measurement scales for each variable are at the riparian (100 m buffer), local catchment, or watershed scale relative to a
stream segment. Combined scales for riparian measurements (e.g., riparian 1 catchment, riparian 1 watershed) are riparian estimates
for the entire local catchment or watershed area upstream, as compared to only the individual segment. Total urban and agriculture
land-use variables were based on sums of individual variables in StreamCat as noted in the description. CanalDens 5 canal density,
PctImp 5 % imperviousness, TotUrb 5 total urban, TotAg 5 total agriculture, RdDens 5 road density, RdCrs 5 road crossings,
Rp100 5 riparian, Cat 5 catchment, Ws 5 watershed

Name Scale Description Unit

CanalDens Cat, Ws Density of NHDPlus line features classified as canal,
ditch, or pipeline

km/km2

PctImp2006 Cat, Ws, Cat 1 Rp100, Ws 1 Rp100 Mean imperviousness of anthropogenic surfaces
(Fry et al. 2011)

%

TotUrb2011 Cat, Ws, Cat 1 Rp100, Ws 1 Rp100 Total urban land use as sum of developed open, low,
medium, and high intensity (Fry et al. 2011)

%

TotAg2011 Cat, Ws, Cat 1 Rp100, Ws 1 Rp100 Total agricultural land use as sum of hay and crops
(Fry et al. 2011)

%

RdDens Cat, Ws, Cat 1 Rp100, Ws 1 Rp100 Density of roads (2010 Census Tiger Lines) km/km2

RdCrs Cat, Ws Density of roads-stream intersections (2010 Census
Tiger Lines-NHD stream lines)

crossings/km2
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major region. High correlation coefficients and low RMSE
values indicate good predictive ability. We assessed poten-
tial bias by regressing observed scores on predicted scores
and assessing if intercepts and slopes differed from 0 and 1,
respectively.

Statewide application of the landscape model
We applied themodel to 138,716 stream segments state-

wide to estimate the extent of streams in 1 of 4 different con-
straint classes: likely unconstrained, possibly unconstrained,
possibly constrained, and likely constrained (Table 2). Ranges
in predictor variables between the statewide and calibra-
tion datasets were similar, such that over-extrapolation of the
model domain to the statewide data was unlikely.We assigned
sites to constraint classes by comparing a CSCI threshold rep-
resenting a management goal with the predicted range or pre-
dicted median score at a segment (Fig. 3). We used a CSCI
threshold of 0.79 following previous examples (Mazor et al.
2016, SDRWQB 2016) and a lower and upper bound esti-
mated as the 10th and 90th percentiles of expectedCSCI scores.
Stream segments where the predicted 90th quantile score
was below the threshold were considered likely constrained,
whereas those where the predicted 10th percentile was above
the threshold were considered likely unconstrained (Fig. 3C).
We assigned the remaining sites to possibly unconstrained
or possibly constrained classes depending on whether the
median expectation was above or below the threshold, re-
spectively (Table 2).

We evaluated the influence of the key decision points on
the extent of segment classifications created by the model.
Stream segment classifications depend on the percentile
range of score expectations (or certainty) from the land-
scapemodel (Fig. 3B) and the CSCI threshold for evaluating
the overlap extent (Fig. 3C). With respect to the certainty
range, these bounds do not describe statistical certainty
in the traditional sense (e.g., prediction interval), but rather
a desired range that is defined as a potentially acceptable
lower and upper limit around the median prediction for
a CSCI score given landscape development. We evaluated
8 different ranges of values for the score expectations from
wide to increasingly narrow at 5% intervals (i.e., 5th–95th,
10th–90th, . . . , 45th–55th). We also evaluated different CSCI
thresholds of 0.63, 0.79, and 0.92, which correspond to the
1st, 10th, and 30th percentile of scores at reference calibra-
tion sites used to develop the CSCI (Fig. 1B; Mazor et al.
2016). We estimated the percentage of stream segments
in each class statewide and by major regions based on each
of the 24 scenarios (prediction interval by threshold com-
binations). We expected differences among regions based
on differences in land use, although some of the results can
be assumed (e.g., increasing CSCI thresholds causes more
sites to be classified as constrained).

We developed a categorization scheme to assess how ob-
servedCSCI scores compared with the range of CSCI scores
predicted from the model (Fig. 3D). This post-hoc classifi-
cation was used to determine if observed CSCI scores were
under- or over-scoring relative to landscape expectations,
which can help prioritize management actions. For exam-
ple, managers may choose to prioritize sites with index scores
above or below the model’s predictions differently than those
that have scores within the prediction intervals. Sites with
observed scores above the upper prediction limit (e.g., above
the 90th percentile of predicted scores) were considered over-
scoring, and sites with scores below the lower limit (e.g.,
10th percentile) were considered under-scoring. Otherwise,
the site was considered to be in the condition expected given
its landscape setting.

RESULTS
Model performance

Model performance varied across regions (Table 3,
Fig. S2). For the statewide calibration dataset, observed and
predicted values were correlated (r 5 0.75, RMSE 5 0.17),
with an intercept (0.04) and slope (0.93) that indicated min-
imal prediction bias of median scores. Performance was sim-
ilar with the validation dataset (r5 0.72, RMSE5 0.18, in-
tercept 5 0.07, slope 5 0.90).

Overall, the model performed well in regions with a mix
of urban, agricultural, and open land (e.g., South Coast and
Chaparral regions), whereas performance was weakest in
regions without strong development gradients (e.g., Sierra
Nevada region; Table 3, Figs S2, S3). Performance for the
Chaparral and South Coast regions was similar to that for
the statewide dataset for both the calibration (r 5 0.71,
Table 2. Stream class definitions describing potential biological constraints. Classes are based on the overlap of the range of likely
bioassessment scores with a potential threshold for a biological objective. Identifying stream classes requires selecting both the
cutoff range of likely scores predicted by the model and a chosen threshold for the objective.

Class Definition Example

Likely unconstrained Lower bound of prediction range is above threshold 10th percentile > 0.79

Possibly unconstrained Lower bound of prediction range is below threshold,
but median prediction is above

50th percentile > 0.79

Possibly constrained Upper bound of prediction range is above threshold,
but median prediction is below

50th percentile < 0.79

Likely constrained Upper bound of prediction range is below threshold 90th percentile < 0.79
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0.75, RMSE 5 0.19, 0.16, respectively) and validation (r 5
0.74, 0.72, RMSE5 0.19, 0.17, respectively) datasets. Model
predictions for the Central Valley, Desert/Modoc, andNorth
Coast regions had worse performance compared with the
statewide data, with correlations of ~0.66, 0.50, and 0.55
(RMSE5 0.15, 0.20, 0.17) between observed and predicted
values for the calibration dataset and 0.49, 0.55, and 0.55
(RMSE5 0.19, 0.17. 0.16) for the validation dataset. Model
performance was weakest for the Sierra Nevada region (cal-
ibration r5 0.45, RMSE5 0.16, validation r5 0.21, RMSE5
0.17), where timber harvesting, rather than urban or agri-
cultural development, is the most widespread stressor. A
slight bias in model predictions was observed for the Cen-
tral Valley and North Coast, where the former was over-
predicted and the latter was under-predicted (Fig. S2).
Statewide patterns in stream constraints
Statewide, spatial patterns in the predicted limits of bio-

logical integrity were similar to patterns in land use (Fig. 4).
A majority of stream segments statewide were classified as
possibly constrained (11% of all stream length) or possibly
unconstrained (46%), whereas a minority were likely con-
strained (4%) or likely unconstrained (39%; Table 4). Likely
unconstrained streams were common in the Sierra Nevada
(50%), North Coast (46%), andDesert/Modoc (46%) regions,
whereas likely constrained were relatively abundant in the
Central Valley (22%) and South Coast (15%) regions. How-
ever, both constrained and unconstrained streams were
found in every region (Fig. 4).

Observed CSCI scores were within the predicted decile
range as often as expected (i.e., 80% statewide, based on the
10th and 90th conditional quantiles), and over-scoring sites
were roughly as common (9%) as under-scoring sites (10%;
Table 5). The correspondence between observed scores
and predicted ranges from themodel further indicatesmin-
imal bias in the calibration data. Similar patterns were ob-
served within regions, although a slightly larger percentage
of sites in the Central Valley were under-scoring compared
to the other regions, which may be evidence of a slight bias
of over-predicting or lack of model precision in this region.
Over-scoring sites were slightly more common in the South
Figure 3. Application of the landscape model to identify site expectations and assess bioassessment performance for 16 example
sites (points in D). A range of CSCI scores is predicted from the model (A) and the lower and upper prediction limits are used to
define a certainty range of expected CSCI scores (B). Overlap of the certainty range at each segment with a chosen CSCI threshold
(C; stream segment class by CSCI threshold) defines the stream segment classification as likely unconstrained, possibly unconstrained,
possibly constrained, and likely constrained. The observed bioassessment scores are described relative to the classification as over-
scoring (above the certainty threshold), expected (within), and under-scoring (below) for each of 4 stream classes (D; observed CSCI
scores by stream class).
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Coast and Sierra Nevada regions, whereas under-scoring
sites were more common in others (i.e., the Chaparral, Cen-
tral Valley, and Desert/Modoc regions).

Changing key decision points of the landscape model af-
fected the estimates of the extent of streams in each class
(Fig. 5). As expected, narrowing the quantile range (from
5th–95th to 45th–55th) shifted a number of streams from the
possible to likely category, and changing the CSCI thresh-
old from relaxed to more conservative (from 0.63 to 0.92)
increased the number of streams classified as possibly or
likely constrained. However, the effects of these decision
points varied greatly by region. For example, over 80% of
segments in the Central Valley were classified as likely con-
strained based on a high CSCI threshold with the narrow-
est range of predictions, whereas <1% of segments were in
this category based on a lowCSCI threshold with the widest
range of predictions. Opposite trends were observed in re-
gions with reduced land-use pressures. For example, almost
all stream segments in the North Coast and Sierra Nevada
regions were classified as likely unconstrained based on a
low CSCI threshold and narrow prediction interval.
DISCUSSION
Managing for biological integrity requires the use of 1) as-

sessment tools that can accurately evaluate condition and
2) tools that can estimate the range of attainable conditions
given the landscape settings. We developed our predictive
model with these needs in mind to better inform applica-
tion of the CSCI for decision-making relative to landscape
constraints on biological condition. Statewide application of
the model demonstrated where streams are likely constrained
on a regional basis, whereas application in a case study (de-
scribed below) demonstrated how the model can be used by
local stakeholders to prioritize and inform management ac-
tions within a landscape context. The model can inform how
landscape conditions can constrain biotic condition and is a
decision-making tool that can help identify where manage-
ment goals could be focused.

Model performance was comparable to similar studies
that developedpredictions of biological condition fromgeo-
spatial data. For example, Hill et al. (2017) developed a na-
tional model to predict stream site condition that correctly
classified sites as poor, fair, or good at ~75% of locations,
depending on region. For continuous predictions of bioin-
tegrity index scores, Carlisle et al. (2009) developed amodel
for a large area of the eastern United States. Models for con-
tinuous data were able to correctly identify class member-
ship from an a posteriori assignment to condition class at
~85% of sites, which was similar in performance to models
that were developed to predict classes. Our model had sim-
ilar performance to those developed in other studies based
on a comparison of the percentage of correctly classified sites
that were above the 10th percentile of reference site scores
(0.79) and observed site scores. The model had 83% predic-
tive accuracy for classifying sites as altered (<0.79) or unal-
tered (>0.79) for the statewide results. However, the goal
of our model was distinct from previous studies, such that
our intent was not to predict the most likely bioassessment
scores at unsampled locations, but rather to quantify the
Table 3. Performance of the predictive model as measured with calibration (Cal) and validation (Val) datasets in predicting CSCI
scores. The statewide dataset (Fig. 4) and individual regions of California (Fig. 1) are evaluated. Averages and standard deviations (in
parentheses) for observed and predicted CSCI values of each dataset are shown. Pearson correlations (r), root mean square errors
(RMSE), intercepts, and slopes are for comparisons of predicted and observed values were used to evaluate model performance. All
correlations, intercepts, and slopes were significant at alpha 5 0.05. CV 5 Central Valley, CH 5 Chaparral, DM 5 Deserts and
Modoc Plateau, NC 5 North Coast, SN 5 Sierra Nevada, SC 5 South Coast.

Dataset Location n Observed Predicted r RMSE Intercept Slope

Cal Statewide 1965 0.82 (0.26) 0.83 (0.20) 0.75 0.17 0.04 0.93

CH 512 0.76 (0.27) 0.79 (0.21) 0.71 0.19 0.03 0.92

CV 116 0.51 (0.18) 0.57 (0.15) 0.66 0.15 0.05 0.81

DM 86 0.87 (0.22) 0.91 (0.14) 0.50 0.20 0.15 0.79

NC 208 0.92 (0.20) 0.94 (0.13) 0.55 0.17 0.12 0.86

SC 631 0.79 (0.24) 0.78 (0.21) 0.75 0.16 0.11 0.87

SN 412 0.98 (0.18) 0.98 (0.09) 0.45 0.16 0.12 0.88

Val Statewide 655 0.82 (0.25) 0.84 (0.20) 0.72 0.18 0.07 0.90

CH 172 0.76 (0.27) 0.81 (0.21) 0.74 0.19 20.04 0.98

CV 40 0.52 (0.19) 0.59 (0.16) 0.49 0.19 0.16 0.60

DM 28 0.84 (0.17) 0.93 (0.11) 0.55 0.17 0.07 0.83

NC 71 0.94 (0.19) 0.96 (0.11) 0.55 0.16 0.00 0.98

SC 208 0.80 (0.24) 0.78 (0.21) 0.72 0.17 0.17 0.81

SN 136 0.97 (0.17) 0.98 (0.09) 0.21 0.17 0.57 0.41
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range of scores likely to occur given specific land-use set-
tings and, thus, help identify likely constraints on biological
condition. Interpretation of differences in the predictive ac-
curacies of different models should consider the goals that
informed the development of each model.

Case study: Application of the model to the San Gabriel
River watershed

We applied the statewide model in a regional context
through collaboration with a stakeholder group from the
San Gabriel River watershed (Los Angeles County, Califor-
nia; Fig. S4). The statewide model provides a range of ex-
pected scores for a given stream segment. Comparison of
observed index scores derived from biological samples with
model predictions can provide a basis for how managers
prioritize sites (Fig. S5). For example, managers may prior-
itize sites for protection if the observed scores are above the
modeled predictions and for restoration if the observed
scores are below the modeled predictions. Alternatively,
a site scoring within the prediction interval in an uncon-
strained segment could be a higher priority formanagement
actions (e.g., restoration or protection) than a similarly scor-
ing site in a constrained segment. The latter site may require
more resources to achieve comparable changes in biotic con-
dition. The lower SanGabriel watershed is a useful case study
because it is heavily urbanized with many modified chan-
nels (Fig. S4B), and managers require prioritization tools
to identify where efforts should be focused among many
sites that vary in landscape and land use setting.

The stakeholder group had 3 management priorities for
individual sites (Table S1, Fig. S6). First, investigate sites by
either continuing to monitor or review supplementary data
(e.g., field visits, review aerial imagery). Second, protect sites
by recommending additional scrutiny of any proposed de-
velopment or projects that could affect a site. Third, restore
sites by targeting action for either causal assessment or res-
toration activity at a site.

These priority actions were first identified independently
without knowledge of model prediction condition classes.
The priority actions were then assigned to each site based
on a comparison of observed CSCI scores and the expected
range of scores from the landscapemodel. In general, stake-
holders assigned higher priority for all 3 actions to sites in
likely unconstrained segments where CSCI scores were ei-
ther over- or under-scoring or at sites that were possibly un-
constrained but the observed CSCI scores were below the
biological threshold (Table S1, dotted line in Fig. S6). Con-
strained sites were given lower priority overall or restora-
tion actions were recommended as a lower priority despite
low CSCI scores. Stakeholders also identified continuing
current practices (e.g., routine monitoring, neither of the
above actions) as a necessary action for these low priority
sites. Recommended actions to investigate were applied to
bothover-scoring andunder-scoring sites, protectwas given
a high priority exclusively at over-scoring sites, and restore
was more common at under-scoring sites.

The model is primarily a screening tool to help identify
patterns among monitoring sites where more intensive anal-
yses may be appropriate. This application was tested through
engagement with our local stakeholder group. Rather than
identifying individual sites in need of specific management
actions, the group used the model to characterize patterns on
the landscape that were consistent with the recommended
management priorities. In doing so, the group explored and
discussed potential management actions relative to the land-
scape characteristics of the watershed. The final decision by
the group to prioritizemanagement actions for the different
sites by broad categories of protect, restore, and investigate
was based on group discussions meant to reach agreement
on how outcomes from the model could be applied. Facili-
tated discussions that directly engage stakeholders have been
suggested by others as effective mechanisms that allow rec-
ommendations provided by these tools to be adopted in for-
mal decision-making (Stein et al. 2017, Kroll et al. 2019).
However, the recommended actions have relevance only in
the context of the interests of the San Gabriel Regional Moni-
toring Program. Localized applications of the statewide model
Figure 4. Statewide application of the landscape model
showing the stream segment classifications. Major regional
boundaries are also shown (see Fig. 1).
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must engage stakeholders in a similar process to develop rec-
ommendations that are specific to regional needs at the water-
shed scale (Brody 2003, Reed 2008).

Engagement with the stakeholder group was facilitated
through creation of an interactive and online application,
SCAPE (Fig. S7; Beck 2018b). The SCAPE application can
be used to select and visualize management priorities for
all monitoring sites in the San Gabriel watershed (Fig. S8)
and was also critical for demonstrating how results from
the statewide model could be used at a regional scale. This
application allowed the stakeholder group to explore the po-
tential impacts of biointegrity policies currently under re-
view in California, such as the effect of changing a potential
threshold for defining biological use attainment and how
the assigned priorities shift accordingly. Additionally, the
SCAPE application correctly identified sites where discrep-
ancies between CSCI scores and other measures of stream
condition had been previously observed. Without the land-
scape context provided by the model (i.e., Fig. S5A), stake-
holders had limited information to prioritize among sites
(i.e., no context for scores; Fig. S5B).
The SCAPE application also demonstrated core concepts
of the model and allowed stakeholders to explore the key de-
cision points that affected model output. Specifically, drop-
down menus and sliders allowed users to change predic-
tion intervals in the CSCI score predictions (e.g., 10th and
90th percentile predictions) and explore alternative thresh-
olds for biological objectives (e.g., 10th percentile of refer-
ence scores that defined constraint classes). This function-
ality allowed the stakeholders to develop recommendations
that were completely independent of the model, i.e., deci-
sions were not hard-wired into the model nor SCAPE. Our
results (Fig. 5) also demonstrate the broader implications
of how key decision points can affect model results at re-
gional and statewide scales. These results and the function-
ality provided by SCAPE demonstrate flexibility of the land-
scape model and the considerations of appropriate decision
points that could be made for regional applications. For
example, constraint classifications and the decision points
that define them may have little relevance in regions with-
out development gradients that are not captured well by the
model (e.g., Sierra Nevada, North Coast). Conversely, the
Table 4. Summary of stream length for each stream class statewide and within major regions of California (Figs 1, 4). Lengths
are in km with the percentage of the total length in a region in parentheses. All lengths are based on a CSCI threshold
of 0.79 and the 10th to 90th percentiles of scores predicted by the model. CV 5 Central Valley, CH 5 Chaparral,
DM 5 Deserts and Modoc Plateau, NC 5 North Coast, SN 5 Sierra Nevada, SC 5 South Coast.

Constrained Unconstrained

Region Likely Possibly Possibly Likely

Statewide 8150 (4) 24,735 (11) 101,591 (46) 85,317 (39)

CV 3356 (22) 8010 (52) 3202 (21) 951 (6)

CH 1642 (3) 7840 (13) 30,693 (50) 21,206 (35)

DM 255 (0) 3395 (6) 27,194 (47) 26,479 (46)

NC 108 (0) 1442 (5) 14,152 (49) 13,286 (46)

SN 20 (0) 1067 (3) 18,228 (48) 19,032 (50)

SC 2770 (15) 2981 (16) 8122 (45) 4363 (24)
Table 5. Summary of CSCI scores by relative expectations for each stream class statewide and within each major region of California
(Figs 1, 4). Average CSCI scores (standard deviation) and counts (%) of the number of monitoring stations in each relative score cate-
gory and region are shown. Sites are over-scoring if the observed scores are above the upper prediction interval for a segment, expected
if within the lower and upper prediction interval, or under-scoring if below the lower prediction interval. CV 5 Central Valley, CH 5
Chaparral, DM 5 Deserts and Modoc Plateau, NC 5 North Coast, SN 5 Sierra Nevada, SC 5 South Coast.

Under-scoring Expected Over-scoring

Region CSCI n (%) CSCI n (%) CSCI n (%)

Statewide 0.54 (0.21) 267 (10) 0.83 (0.23) 2041 (80) 1.08 (0.17) 242 (9)

CH 0.47 (0.18) 89 (13) 0.79 (0.24) 535 (80) 1.08 (0.17) 45 (7)

CV 0.34 (0.12) 25 (17) 0.54 (0.17) 118 (81) 0.63 (0.25) 2 (1)

DM 0.6 (0.17) 15 (14) 0.9 (0.17) 89 (80) 1.15 (0.08) 7 (6)

NC 0.66 (0.17) 28 (10) 0.93 (0.16) 228 (82) 1.15 (0.08) 22 (8)

SC 0.54 (0.22) 56 (7) 0.78 (0.22) 656 (81) 1.02 (0.2) 97 (12)

SN 0.67 (0.16) 54 (10) 0.99 (0.11) 415 (77) 1.16 (0.06) 69 (13)
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chosen prediction interval defining the lower and upper ex-
pectation of biological integrity determines how constraint
classes are assigned to stream segments in a region. Wider
ranges force more stream segments into the possible con-
straint classes, whereas smaller ranges provide more sepa-
ration of segments into the likely constrained or likely un-
constrained classes. The specific choice is a management
decision, and we provide the ability to evaluate tradeoffs
both in SCAPE and with our results in general.
Alternative applications of the landscape model
Results from our analysis could be used for managing

the biological integrity of streams under state or federal wa-
ter quality mandates (e.g., biological criteria under the Clean
Water Act). Management activities for biological integrity
could involve the protection of sites meeting or exceeding
biological objectives or the restoration of sites that have
the potential to meet or exceed biological objectives. The
selection of appropriate management actions for streams
requires the consideration of their physical and chemical
condition concurrent with biological assessment scores. Our
model can place observed biological condition scores in an
appropriate context relative to their expected condition for
the landscape. This information could provide flexibility in
the selection of regulatory or management actions at spe-
cific sites or within larger regions (e.g., hydrologic subareas)
and help further prioritize where and when actions should
take place based on the resources needed for protection or
restoration actions. For example, for sites that meet biological
Figure 5. Differences in stream segment class assignments between different scenarios used to define biological constraints by re-
gion and statewide. Twenty-seven scenarios were tested that evaluated different combinations of prediction interval in the CSCI pre-
dictions (9 scenarios from wide- to narrow-prediction ranges as identified by the tail cutoff for the expected quantiles) and potential
CSCI thresholds (3 scenarios from low to high). The percentage of total stream length for likely unconstrained and likely constrained
is shown for each scenario. Stream classifications as possibly unconstrained or possibly constrained are not shown but can be inferred
from the area of white space above or below each bar. The solid black line indicates the percentage division between unconstrained
and constrained classifications. CV 5 Central Valley, CH 5 Chaparral, DM 5 Deserts and Modoc Plateau, NC 5 North Coast, SN 5
Sierra Nevada, SC 5 South Coast.
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objectives but where the models predict some degree of con-
straint, regulatory actions may be associated with protecting
that condition and could be implemented in the short-term
to prevent degradation. Moreover, additional actions could
be recommended to determine why these sites score above
the constrained expectations, such as causal assessments to
identify site-specific elements contributing to biointegrity (e.g.,
intact physical habitat independent of landscape develop-
ment). This flexibility is not intended to exclude sites from
considerationthatarelesslikelytoachievebiologicalobjectives
but rather to facilitate the decision-making process through
a more transparent application of the model in a regulatory
application. The landscape model could also help identify
where tiered aquatic life uses (Davies and Jackson 2006) may
be needed. However, the model is not intended, nor is it is
sufficient, as a standalone tool for this purpose because it
lacks specificity as to what uses may apply under different
landscape conditions.

Non-regulatory applications of the model are also pos-
sible by identifying where additional restoration, monitor-
ing, or protection may have the most benefit. For example,
these types of models could be used to support conserva-
tion planning, particularly at thewatershed scale where land
use practices can be a critical factor for decision-making.
Ongoing work in California has focused on setting priori-
ties for managing biodiversity that focus on watersheds
within a conservation network (Howard et al. 2018). Re-
sults from our model could be used to enhance this net-
work by providing supporting information on constraints
in an assessment framework. More generally, these appli-
cations could represent a novel use of bioassessment data
beyond the pass/fail paradigm in the regulatory sense, for
example, as tools for land-use planning (Bailey et al. 2007).
In many cases, including California, bioassessment pro-
grams are sufficiently large in spatial extent that they allow
large-scale condition assessment across regions, yet they
are rarely used as planning tools to guide decisions onwhere
resources should be focused (Nel et al. 2009). Our model
makes bioassessment data in California more accessible and
identifies an appropriate expectation for the information, en-
abling the potential for both regulatory and non-regulatory
applications.

Several states have implemented alternative-use designa-
tions for applying bioassessment criteria in modified chan-
nels (FDEP 2011, USEPA 2013, MBI 2016). Although our
results generally support the link between degraded biology
and channel modification, a regulatory framework based on
direct channel modificationmay be insufficient because con-
straints are more accurately defined relative to landscape de-
velopment. As defined for our model, a constrained channel
may or may not be engineered (see supplement for Teco-
lote Creek example, Fig. S9), but an engineered channel
in a developed landscape will typically be constrained. Fur-
thermore, channel modification does not always result in
biological degradation, particularly if the contributing water-
shed is largely undeveloped. For example, Stein et al. (2013)
observed reference-like bioassessment index scores in ar-
mored reaches within national forest lands in southern Cal-
ifornia. A classification framework for biological constraints
based only on channelmodificationwouldprovide incomplete
and potentially misleading information on stream condition
and likelihood for needing management. Ideally, context for
evaluating biological condition from amodel, in conjunction
with reach-specific data on channel modification, should be
used.

Our approach to assessing constrained streams is readily
transferable outside of California. Our modeling approach
could be applied to other bioassessment methods, such as a
multi-metric index (the most common bioassessment ap-
proach within the United States; Buss et al. 2014), O/E assess-
ments (Moss et al. 1987), biological condition gradients (Da-
vies and Jackson 2006), or with other biological endpoints
(e.g., fish or diatoms). More importantly, our use of national
geospatial datasets (i.e., NHDPlus, StreamCat; McKay et al.
2012, Hill et al. 2016) means that these methods could be
applied across theUnited States. National-scale bioassessment
indices have been developed, and themodeling approach de-
scribed here could be applied at a national scale to estimate
constraints on biological condition that complement recent
work that predicted probable biological conditions with the
National Rivers and Streams Assessment (Hill et al. 2017).
Global geospatial datasets of freshwater-specific environmen-
tal variables are also available and could be used to develop
similar models outside of the United States (Domisch et al.
2015).

Extension of these types of models beyond California
should also consider landscape stressors that are predictive
of biotic condition in other regions. For example, urban and
agricultural gradients were sufficient to characterize con-
straints in many regions of California, whereas Hill et al.
(2017) found that the volume of water stored by dams was
an important predictor of biological condition in theNorth-
ern Appalachian and Northern Plains regions of the United
States. In their paper, Hill et al. (2017) provided an exam-
ple of how predictive models could be used to identify po-
tential sites for restoration or conservation; however, their
illustration did not explicitly identify sites that were over-
or under-scoring relative to a biological endpoint. Our case
study provided an example of how our model can help es-
tablish priorities at the local-scale, and a similar process
could be used for applying different models in other states.

Model assumptions and limitations
There are several characteristics of the landscape model

that could affect its performance when applied outside of
urban and agricultural settings. First, the model was devel-
oped with a focus on the needs of managers that apply bio-
assessment tools in developed landscapes where conditions
are presumably constrained. As such, landscape variables
were chosen to capture the effects of development on CSCI
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scores in these areas (Table 1). Application of the model in
regions where different stressors have strong impacts on
stream condition should consider the relevance of urban
and agricultural stressors and if other stressor gradients are
needed. For example, our results suggest that streams in
the North Coast and Sierra Nevada regions are largely un-
constrained, but the observed and predicted scores had the
lowest correlation coefficients among all regions (calibra-
tion r5 0.45, validation r5 0.21). The dominant stressors
likely to affect stream condition in these regions originate
from sources that are less common in developed landscapes,
such as silviculture, cannabis cultivation, or livestock graz-
ing. Our current model does not adequately capture these
impacts.Moreover, poormodel predictions are compounded
by low sensitivity of the CSCI to some stressor gradients in
these regions (Mazor et al. 2016). Accurate data for quan-
tifying these potential stressors are not explicitly available
in StreamCat, but surrogates could be explored in future
models (e.g., coverage of introduced vegetation classes). Re-
gardless, investments in improving spatial data could yield
significant improvements in further development of bio-
assessment indices and tools for their interpretation.

An additional assumption is that the landscape model
can adequately discriminate between intractable constraints
on biology that are spatially and temporally pervasive relative
to more manageable constraints. That is, we assumed that
the impacts of stressors included in the model, such as ur-
banization, require long-term extensivemitigation planning,
whereas stressors associated with deviations from model
predictions can be mitigated in the short-term by applying
focused actions. These assumptions are not unique to our
model and have been used in other applications that have
evaluated biological potential (Paul et al. 2008, Chessman
2014,Waite et al. 2014). However, many stressors excluded
from the model can have long-lasting impacts, leading to
management scenarios where long-term recovery may only
be possible with sustained and costly application of re-
sources. For example, logging activities can alter benthic
macroinvertebrate assemblages for a decade or more after
harvesting activities have stopped (Stone and Wallace 1998,
Quinn andWright-Stow 2008). Channel and riparianmodi-
fications through historical splash damming or railroad tie
driving can also have effects lasting several decades (Young
et al. 1994, Miller 2010, Wohl 2019). In urban areas, perva-
sive and profound alteration to groundwater and hydrology
is common and stream communities in groundwater fed
systems may require substantial time and resources for res-
toration. The potential legacy impacts of large-scale alter-
ations of the natural environment are not well captured by
the current model, neither from a spatial nor temporal per-
spective. A more refined application of the model would be
necessary to evaluate different scales of impact, which could
include developing separate models for each region, as well
as more careful selection of model inputs to capture scales
of interest for potential impacts on stream condition.
Our model identifies potential constraints at scales larger
than instream characteristics as a necessary approach to ac-
curately predict bioassessment scores. Additional analyses
that evaluate how different predictors influence model per-
formance at different quantiles could provide insight into
how landscape factors relate to constraints (e.g., Koenker
and Machado 1999). Further, a distinction between con-
straints on biological condition and channel modification
is implicit such that indication of the former by the model
does not explicitly indicate presence of the latter. As noted
above, our results consistently indicated that engineered
channels are biologically constrained, but the model is based
on an a priori selection of land-use variables to predict biotic
integrity. A correspondence between habitat limitations and
channel modification is likely in many cases, but data are in-
sufficient to evaluate biological effects statewide relative to
land-use constraints. Moreover, bioassessment scores can be
similar in modified channels compared to natural streams
independent of watershed land use, i.e., concordance be-
tween degraded stream condition and channel modification
may not always be observed (Stein et al. 2013). More com-
prehensive assessments at individual sites may be needed
to diagnose the immediate causes of degraded condition.

Finally, there are a few concerns regarding using a mod-
eling approach for bioassessment based on the NHDPlus
flowlines as a base layer.We applied ourmodel to the entire
network of the NHDPlus represented in StreamCat, which in-
cluded a large number of intermittent or ephemeral streams,
as well as non-wadeable rivers. The application of model re-
sults to these stream-types is open to question and would be
valid only to the degree that the CSCI and its response to
landscape disturbance describe biological integrity in these
locations. In regions where ephemeral streams are particu-
larly common (e.g., the inland deserts or the South Coast re-
gion), estimates of the extent of constrained or unconstrained
streamsmay be inaccurate.
Summary
We demonstrated the use of quantile regression forests

to successfully predict the range of biological index scores
that couldbeexpectedatastreamsegmentgiventheamount
and type of landscape development surrounding a stream.
Although random forest models have been increasingly used
in bioassessment applications, our approach is the first to
use quantile models to estimate the range of biological con-
dition scores likely to be observed at a site. Additional work
could build on this initial approach to apply such models in
different locations, apply them to alternative biological re-
sponse endpoints, or explore different predictors that rep-
resent regionally-specific stressor gradients. The predictive
performance of quantile regression forests in bioassessment
applications have also not been fully explored, such as un-
derstanding the accuracy of predictions or if the relative im-
portance of predictors varies depending on the quantiles being
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predicted. Our approach suggests these models are prom-
ising and future work could focus on any of theabove sug-
gestions to better understand the utility of these tools.

This modeling approach can be used to characterize the
extent of biologically constrained channels in developed land-
scapes, and it provides a tool to determine how managers
can best prioritize resources for stream management by
identifying what landscape factors might constrain the bio-
logical condition of each stream segment. Our application
to the San Gabriel watershed demonstrated how the state-
wide results can be used at a spatial scale where manyman-
agement decisions are implemented through close interac-
tion with a regional stakeholder group with direct interests
in the local resources. The approach leverages information
from multiple sources to develop a context for biological as-
sessment that provides an expectation of what is likely to be
achieved given current land use conditions. Such integra-
tion of information can facilitate more targeted manage-
ment actions that vary depending on the landscape context
and can also inform decisions on extent and effort for future
monitoring locations.
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