Monitoring of Human Pathogens and Source Identifiers for Discharges Across the United States: QMRA from Source to Bathing Site

Stefan Wuertz

Department of Civil & Environmental Engineering

University of California, Davis, USA

In collaboration with

Woutrina Miller University of California, Davis, USA

Dustin Bambic
Tetra Tech, Nashville, USA

Graham McBride NIWA, New Zealand

Quantification of Pathogens and Sources of Microbial Indicators for QMRA in Recreational Waters

WERF Report PATH2R08

Author(s): Stefan Wuertz, Woutrina Miller, Dustin

Bambic, Graham McBride

Publication Date: 30 Jun 2011 • ISBN: 9781843395430

Pages: 200

Type And Geographical Area Of Monitoring Sites

7-month campaign, 3+1 distinct regions, 67 samples

The WERF "Toolkit"

BACTERIA

V. cholerae Campylobacter Salmonella

V. parahaemolyticus

PROTOZOA

Giardia
Cryptosporidium
Toxoplasma

VIRUSES

Adenovirus

Enterovirus

Norovirus

Rotavirus

INDICATORS / SOURCE IDENTIFIERS

E. coli

Enterococcus

Bacteroidales (BacHum, BacCow, BacCan, BacUni)

Bird-associated assay (Catellicoccus)

RED = Priority Pathogens

The WERF "Toolkit"

BACTERIA

V. cholerae

Campylobacter

Salmonella

V. parahaemolyticus

PROTOZOA

Giardia

Cryptosporidium

Toxoplasma

VIRUSES

Adenovirus

Enterovirus

Norovirus

Rotavirus

INDICATORS / SOURCE IDENTIFIERS

E. coli

Enterococcus

Bacteroidales (BacHum, BacCow, BacCan, BacUni)

Bird-specific assay (Catellicoccus)

Experimental Set Up Using Fresenius Hollow-Fiber Ultrafiltration (HFF) Single-Use Cartridges

Monitoring Results: Pathogens

- Norovirus, Rotavirus, and Adenovirus 40/41 were more prevalent than Cryptosporidium, Giardia and pathogenic bacteria in stormwater or natural runoff.
- Norovirus GI and GII were reasonable predictors of other pathogens like Adenovirus 40/41, Adenovirus C, Giardia and Cryptosporidium.

E.coli Concentrations by Membrane Filtration

Percentage of Concentrations Less than or Equal to Measured Value (%)

Cryptosporidium Concentrations by Microscopy

Percentage of Concentrations Less than or Equal to Measured Value (%)

Norovirus GI Concentrations by qPCR

Percentage of Concentrations Less than or Equal to Measured Value (%)

Step 1: Discharges —→ Receiving Water

$$P_m(x=0, t=0)_D \longrightarrow P_p(x=x', t=t')_R$$

P_p= Predicted Pathogen Conc.

P_m = Measured Pathogen Conc.

x = Distance, t = Time, D = Discharge, R = Receiving Water

13

Step 2: Prediction of Health Risk $P_{p} (x=x', t=t')_{R} \xrightarrow{QMRA} Human Health Risk$

 P_p = Predicted Pathogen Conc.; P_m = Measured Pathogen Conc. x = Distance; t = Time; D = Discharge; R = Receiving Water

Example: Application of Discharge-based QMRA (Simplified)

- Assumption #1 Relative contribution of discharges-of-concern: Four discharges were evenly "composited", meaning a 25% by-volume contribution for each of the following: Residential stormwater, Commercial stormwater, Agricultural stormwater, and Forested Open Space stormwater.
- Assumption #2 Rates of dilution of discharges by other inputs: A dilution rate of 30:1 was applied to discharges-ofconcern.
- Assumption #3 Effects of dry versus wet conditions: The assessed condition was wet weather and dry weather is not considered.
- Assumption #4 Travel times and pathogen decay rates:
 While pathogen decay/inactivation is likely an important
 consideration for most recreational sites, this example assumes
 zero decay.

Hypothetical: Recreational Risks at an Impacted Site

Time percentile (cumulative frequency)

Hypothetical: Recreational Risks at an Impacted Site

Time percentile (cumulative frequency)

Risk with Norovirus Excluded from the Calculations

Time percentile (cumulative frequency)

Conclusions

- Norovirus is the most dominant health risk.
- Rotavirus generally induced the secondhighest incidence of risk among the tested pathogens.
- Can investigate relative risks from different discharges and for different densities and loadings
- Can use this QMRA approach for beaches if good knowledge of main discharges

Students and Collaborators

Wuertz lab	UC Vet Med (Miller lab)
Dr. Alexander Schriewer	Aiko Adell
Dan Wang	Nadira Chouicha
Arti Kundu	Ann Melli
Asma Rizva	Prof. Barbara Byrne
	Prof. Pat Conrad
AMEC Earth & Environmental	NIWA, New Zealand
Candice Owen	Dr. Rebecca Stott

<u>Funding:</u> Water Environment Research Foundation and California Department of Transportation