Human indicator persistence in the environment

Patricia A. Holden, Ph.D.
Professor, Bren School of Environ. Sci. Mgmt.
Director, UCSB Natural Reserve System

State-of-the-Science: Fecal Source Identification and Associated Risk Assessment Tools

November 28-29, 2012

A workshop held at the Southern California Coastal Water Research Project Authority

Fecal Indicator Bacteria: a chain of inference

What is this HF183 "human marker"?

DNA

- Extractable
- Amplifiable
- Specific to human waste

(Haugland et al, 2010; Boehm et al., in rev. 2012)

Bacterial taxon

Domain: Bacteria

Phylum: *Bacteroidetes*

Class: Bacteroidetes

Order: Bacteroidales

Family: Bacteroidaceae

Genus: *Bacteroides*

Species: dorei (?)

(Carrero-Colón et al. 2010. Taxonomy, Phylogeny and Physiology of Fecal Indicator Bacteria. A chapter in **The Fecal Indicator Bacteria** edited by Michael Sadowsky and Richard Whitman. ASM Press. 328 pages; Haugland et al. 2010; Bakir et al. 2006)

HF183 Marker: Short History

- Discovery: Bernhard & Field (2000)
- X-method performance: Field et al. (2003)
- qPCR assay(s)
 - Seurinck et al. (2005)
 - Haugland et al. (2010)
- Comparison w/ other human markers, e.g.
 - Van De Werfhorst et al. (2011)
 - Boehm et al. (in rev. **2012**)

Abundant in human fecal sources

- Bacteroides spp.
 - 30% of human fecal isolates
 - Human feces: up to 10¹⁰ / gram (dry)

- HF183 marker
 - Sewage or septage: 10⁵ to 10⁹ copies / liter
 - Human feces: 10⁷ copies / gram (wet)

(Carrero-Colón et al. 2010. Taxonomy, Phylogeny and Physiology of Fecal Indicator Bacteria. A chapter in **The Fecal Indicator Bacteria** edited by Michael Sadowsky and Richard Whitman. ASM Press. 328 pagesHaugland et al., 2010; Layton et al., in rev. 2012)

Application in Field Studies

(Sercu et al., 2009; Sercu et al. 2011; Murray et al. 2011, WERF Report U2R09; Mission Study Report, 2011)

Geosyntec Consultants, 2009; Sercu et al., 2012, in revision)

Interpreting low levels of human marker in environmental waters

- low levels are due to decay and/or dilution of target feces
- 2. low levels are due to <u>cross reactivity</u> with non-target feces (but requires lots of non-target

We can't dismiss low levels of source-associated markers in environmental waters.

(M. National Marketta Marketta

HF183: Rapid Decay

Environment	Location	Reference	K (day ⁻¹)	Half life (d)
fresh-light	Oregon-lab	Walters & Field, 2009	-1.7	0.4
fresh-dark	Oregon-lab		-1.4	0.5
marine-dark	Oregon-lab	Green et al., 2011	-2.02	0.3
marine-light	Oregon-lab		-0.25	2.8
fresh-dark	Oregon-lab		-1.34	0.5
fresh-light	Oregon-lab		-1.39	0.5
freshwater	Florida	Liang et al., 2012	-0.73	1
seawater	France	Jeanneau et al., 2012	-1.03	0.7
freshwater	France		-1.39	0.5

Persistence scenarios

Bacterial cells

- Introduced (HF183)
 - storm drains (dry weather)
- Attenuate (Bacteroides)
 - Predated upon
 - Die
 - Settle
- Establish
 - low diversity background (E. coli)
- Colonize (Bacteroidetes biofilms)
- Grow (Bacteroides)
 - nM oxygen (up to 5%)

eDNA (generic)

- Accumulates
 - biofilms
 - soils
 - sediments
- Moves
 - even in soils, by capillarity
- Protected by clays
 - PCR-amplified from clays

(Van Elsas et al., 2012; Baughn et al. 2004; Meehan et al.; 2012; Gomez-Alvarez et al., 2012; Besemer et al.; 2009)

(Whitchurch et al. 2002; Steinberger et al. 2005; Pietramellara et al., 2009; Dell 'Anno et al., 2004; Ceecherini et al. 2007; Demaneche et al., 2001; Alvarez et al., 1998)

Outstanding Issues

- Systematic understanding: decay in field conditions
- Relationship to regulated indicators, & pathogens
- How environmental factors govern
 - sunlight, temperature, salinity, predation, O₂
- How to use data (field samples & conditions), plus knowledge of decay (rates, and factors) to diagnose (a condition or event)?
 - statistical approaches and/or modeling

Moving forward

- SIPP MST studies: more field HF183 examples
- SIPP-proposed fecal <u>"aging" study</u>
 - Addressing open questions
 - Relating to pathogen taxa (community analysis)
- SIPP MST guide forthcoming
- However: HF183 marker is <u>already useful</u> in the context of a well-designed fecal source tracking study
 - Management <u>actions need not wait</u>

Tools for Tracking Human Fecal Pollution in Urban Storm Drains, Creeks, and Beaches

- Sources
- Tools
- Strategies

Dye entering Mission Creek (Santa Barbara, CA) after being flushed down toilets in nearby businesses. A private sewer lateral serving six businesses was found to be leaking into a storm drain.

City of Santa Barbara, Creeks Division
In partnership with:
University of California, Santa Barbara

September 1, 2012

Acknowledgements

- SCCWRP, SIPP Colleagues and CBI Proposition 84
- Holden Lab contributors
 - Bram Sercu
 - Laurie Van De Werfhorst
 - Kilty Inafuku
- City of Santa Barbara
 - Jill Murray (City of SB) and associates (incl. Josh Bader)
- Geosyntec, Brandon Steets and associates
- Jim Frew
- Jessie Golman
- State of CA, CBI (Proposition 50)
- Switzer Foundation
- WERF (to the City of Santa Barbara)

