Status of SQOs and Harbor TMDL Test Drive

Chris Beegan

Overview

- Summary of efforts since last meeting
 - Harbor Technical Work Group
 - Compliance Subcommittee
- Benthic Community Protection SQO
 - Overview
 - Issues associated with SQO and application within TMDL
 - Approach to resolving issues
- Human Health SQO
 - Overview
 - Issues associated with SQO and application within TMDL
 - Approach to resolving issues
- Benefit to SQOs

HTWG and Compliance Subcommittee

- Advisory Committee on hold till funds available
 - Collaborative effort focused on Harbor Technical Work Group
- Initial HTWG meetings focused on technical needs and studies
 - Identify data gaps and information needs
 - Review of proposed studies
- Multiple TMDL implementation issues identified early on, but limited opportunity to resolve
- Compliance subcommittee established January 2014
 - Separate meeting with select members
 - Experience with policy permit and compliance requirements
 - Provided time and discussion to make progress

Benthic Community SQO

Overview

- Based on Weight of Evidence at each station
 - Sediment Chemistry, Sediment Toxicity, Benthic Community Health
- Provides a station level categorization that integrates LOE responses
 - Degraded: possibly, likely, clearly impacted categories
 - Healthy: unimpacted categories
- Categorical result does not provide information on cause of the toxicity or benthic community degradation
 - Only addresses condition (healthy/degraded)

SQO Implementation Strategy

Water Quality Control Plan:

- Assess sediment quality using the Weight of Evidence approach
- If stations classified as likely or clearly impacted must perform stressor identification (SI)
 - Confirm stations classified as possibly impacted prior to SI
- After cause determined, all regulatory or management actions would be chemical specific – contaminants identified by SI
 - Approach used generally in sediment cleanup programs such as Superfund
- Does not address TMDL related applications

TMDL Implementation Issues

- 1. How should compliance with TMDL allocations through the SQO target option be determined?
- 2. How should monitoring program be designed to address TMDL compliance needs?
- 3. How should stressor identification be incorporated into TMDL?

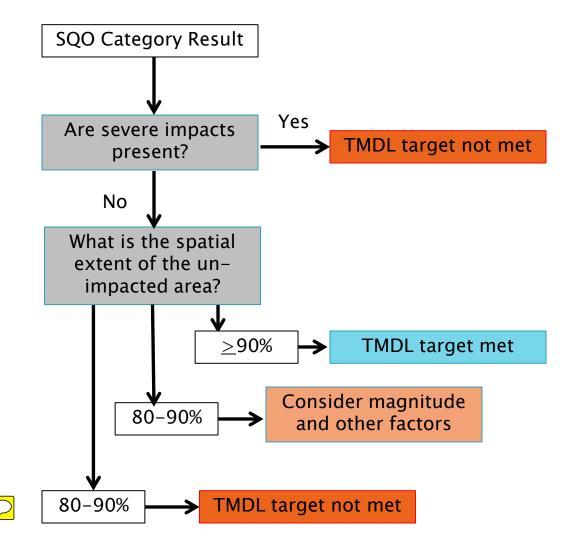
1. Compliance Determination – Background

- Plan does not provide guidance on how to determine compliance with TMDL SQO-based targets
- Unclear what statistical approach should be used with SQO category data
- 303(d) statistical approach currently specified in plan for assessment
 - Uncertain whether 303(d) approach appropriate for TMDL use
 - Data requirements are burdensome

1. Compliance Determination – Approach

- Use a different method than that for 303(d) listing/delisting
- Develop conceptual approach for TMDL compliance determination
- Determine statistical method for data evaluation

Status:


- Draft approach developed
- Investigating statistical methods

1. Compliance Determination-Preliminary Concept

- New approach aligned with SQO data characteristics
- Key elements
 - Based on percent area meeting SQO
 - Magnitude of impacts is considered
- Statistical method under development

2. Monitoring Program Design - Background

- TMDL requires a SQO compliance decisions for each assessment unit
- Need to develop MLOE Monitoring program for each TMDL assessment unit
- Suitability of existing assessment units uncertain
 - Existing assessment units established in Basin Plan and used for 303(d) Water Body designations
 - Not necessarily based on factors that commonly drive sediment quality
 - Hydrodynamics
 - Sources
 - Hydrology
 - Habitats

Assessment Units

2. Monitoring Program Design – Approach

- Develop assessment unit design parameters
- Reevaluate and potentially modify assessment units

Status:

- Ongoing
- Changes to ongoing monitoring program would be disruptive

3. Stressor Identification - Background

- Limited guidance for performing stressor identification on sediment
- No standardized process for interpreting results
 - How should the adequacy of stressor identification studies be judged?
- No formal process for incorporating results into TMDL
 - What is the mechanism to amend list of stressors within TMDL?

3. Stressor Identification - Approach

- Stressor identification study needed
 - Funding and timing uncertain
- Review results and findings of SI study
 - Determine weight of evidence needed to support causal determination
- Develop process for modification of TMDL list of stressors
 - Adaptive management
- Status
 - Future topic

Human Health SQO

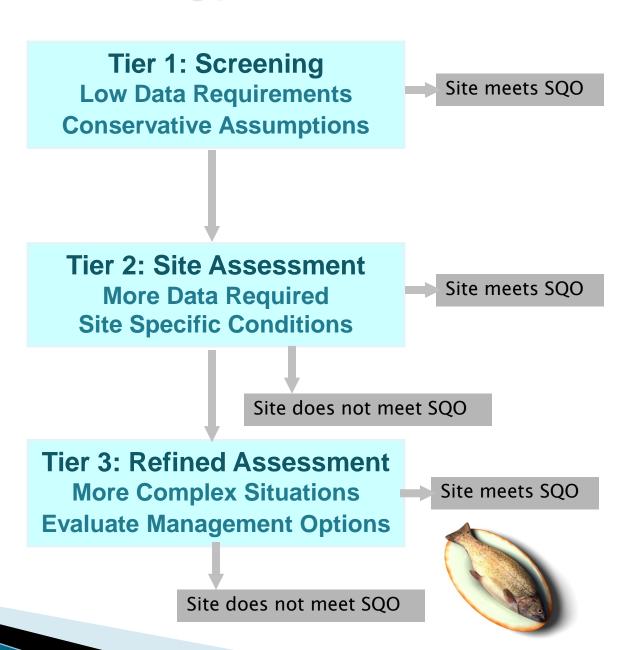
- Relies on two independent measures to assess sediment quality
 - Sediment Chemistry used assess sediment contribution
 - Tissue chemistry used to characterize risk to human consumers and to evaluate sediment contribution
- The data collected represents a snapshot of processes that act over broad spatial and temporal scales
 - Fish foraging area, age and life history of fish
 - Trends in contaminant loads and losses to system

Human Health SQO

 Tiered Assessment Framework results in a categorical outcome that reflects average conditions across the area of interest or site

Implementation Strategy

As envisioned by State Water Board Staff


- Use tiered approach, depending on site characteristics, to assess entire site
- If site classified as possibly, likely or clearly impacted, SQO not met and stressor is known
- Evaluate management options and take appropriate action

Implementation Strategy

Multiple Tiers

- Data requirements and complexity relate to situation
- Reduced effort for sites of no or low risk

Human Health SQO Issues

- 1. What are the monitoring program design requirements?
- 2. What constitutes a Tier 3 assessment?
 - What is allowed?
- 3. How should compliance be determined?
 - One result per site
- 4. How to address spatial patterns in contamination?
 - Hotspots
 - Regional background

1. Monitoring Program – Background

- No requirements or specifications for monitoring have been developed
- Guidance for determining assessment units is not available

1. Monitoring Program – Approach

- Determine monitoring program parameters based on science study results
- Develop assessment unit design parameters
- Reevaluate and potentially modify assessment units
 - Consider benthic SQO needs

Status:

- HTWG has helped refine monitoring program design
 - E.g., species selection and results interpretation
- Assessment unit design is a future topic

2. Tier 3 Assessment – Background

- Role of Tier 3 in assessment and remedy planning is unclear.
- Requirements for Tier 3 have not been established
- Limited guidance on how to interpret results

2. Tier 3 Assessment - Approach

- Clarify role of Tier 3 through HTWG and Advisory Committee discussion
- Determine Tier 3 requirements through work plan review by HTWG
- Develop interpretation guidance through results review by HTWG
 - Maintain consistency with SQO assessment framework

Status:

- Ongoing
- Clarified role of Tier 3 in assessment and remedy planning
- Refined study design

3. Compliance Determination – Background

- Assessment outcome differs from benthic SQO assessment
 - Assessment results in single categorical result for entire site
 - Instead of a multiple stations within site
 - Statistical evaluation usually requires multiple data points

3. Compliance Determination – Approach

- Limited discussion to date
- Initial focus has been on benthic SQO
- Status
 - To be addressed in upcoming meetings

4. Contaminant Spatial Patterns Background

- Legacy contamination is widespread in coastal sediments
- Legacy contamination may dominate bioaccumulation in sportfish
 - Due to fish movement/foraging outside of site
 - How should this contribution be addressed?
- Small sites also present assessment challenges
 - Difficult to quantify contribution to bioaccumulation in sportfish
 - How should hotspots be addressed?

4. Contaminant Spatial Patterns Approach

- Develop approaches to address each situation
 - Background contamination
 - Small sites/hotspots
- Test and refine approaches using port science study results
- Status:
 - Ongoing

SQO "Test Drive"

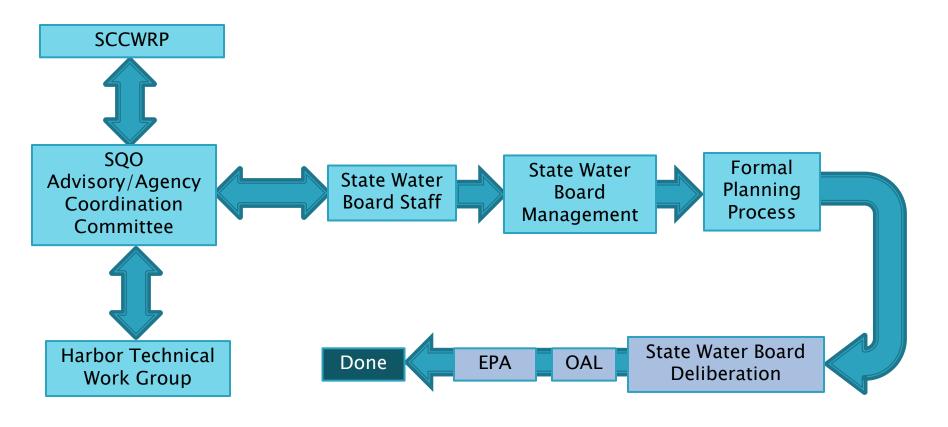
- Application of draft assessment framework to complex situation
- Developing practical implementation guidance
- Comparing bioaccumulation models

Window of Opportunity

- Overlap with TMDL special studies
- Similar issues identified for the TMDL are important for SQO implementation
- Special studies provide data for comparison
- Contract with SCCWRP awarded in March, 2014

SQO Advisory Committee Issues – Benthic Community SQO

- Monitoring Program Design
- 2. Compliance Determination
- 3. Stressor Identification



SQO Advisory Committee Issues-Human Health SQO

- Monitoring Program Design
- 2. Role of Tier 3 and criteria for application
- 3. Use and interpretation of Tier 3 Assessment
- 4. Compliance determination
- 5. Spatial distribution of contaminants
 - Regional background
 - Hotspots

Process for Development and Adoption

Studies to Support the Harbor Toxics TMDL Reopener and Remedy Planning

- POLA/POLB have committed significant funds in order to
 - Understand sources and transport of PCBs and DDTs into and out of the LA/LB Harbor
 - Assess fish movement and uptake of PCBs and DDTs within and outside the harbor
 - Understand partitioning between water, suspended and bedded sediment
 - Refine Sediment and Hydrodynamic models
- Develop a predictive tool to assess existing conditions as well as management scenarios