Pilot Monitoring of CECs in California via the Mussel Watch Program

Nathan Dodder

Keith Maruya

Chemistry Department

NOAA Mussel Watch Program

Purpose

- collect occurrence data on coastal contaminants and monitor temporal trends
- in operation 1986 -2008

Mussel Watch Sampling Locations zebra mussels / mussels /oysters

Spatial distribution

145-300 sites along US coast and Great Lakes

Measured contaminants

 Approximately 140 legacy contaminants including PCBs, DDT, other pesticides, PAHs, and trace metals.

Bivalves as Contaminant Samplers

Bivalves

- filter-feeders
- bioaccumulate contaminants in their tissues
- indicators of local contamination

Deployment

- native bivalves are collected
- caged bivalves are deployed

Analysis

- tissue extraction followed by instrumental analysis
- GC-based methods for organic contaminants

General Decline in Legacy Contaminants - Palos Verdes

Pilot Monitoring of CECs in California

The SCCWRP Commission identified a lack of CA CEC data.

Goal of pilot

- determine the occurrence of contaminants of emerging concern
- suggest compounds for inclusion in future Mussel Watch surveys (nation-wide)
- suggest compounds for further investigation in CA waters

Selection of analytes (207 CECs total)

- reported in the literature with a likelihood of occurring in CA waters
- available robust analytical methods (GC/MS and LC/MS/MS)

Timeline

samples collected in 2010 and analyzed in 2011

Pilot Study Questions

What are the most abundant CECs?

Can future monitoring focus on a prioritized list CECs?

What habitats/regions are the most impacted?

- How do urban and rural regions compare?
- What is the impact of POTWs and stormwater?

Do urban areas have the same contaminant profile?

 Are CECs are generic management problem, or a specific management problem depending on the area?

Pilot Study Site Selection

Land Use	Number		
Urban	29		
Undeveloped	31		
Agricultural	8		

Category	Number		
POTW Discharge	21		
Stormwater	25		
ASBS	23		

CECs by Land Use

CECs in SF Bay and Southern California Urban Areas

CECs have consistent urban profiles. These are "background" urban levels not associated with major industrial point discharges.

Abundant CECs in CA Mussel Tissues

Most abundant contaminants within each use category

compound	use	max	percent detected	mean
4-Nonylphenol	detergent precursor	270	21	12
Sulfamethazine	veterinary antibacterial	87	35	4.1
Methylprednisolone	pharmaceutical	31	15	2.5
Caffeine	stimulant	2 3	19	2.2
BDE-47	flame retardant	14	84	1.1
Dacthal	pesticide	7.0	37	0.4

concentrations in ng/g dry weight

- 149 of 207 CECs were detected in mussel tissue
- variety of uses/sources
- variety of physical/chemical properties

CEC Occurrence Data - Summary

Spatial distribution

- CECs were more abundant in urban areas but detected in all but one of the sampling sites
- a wide variety of CECs were detected

Occurrence of specific contaminants

- first-of-its-kind data for California coastal waters at this spatial scale and number of CECs
- can be used to suggest a prioritized list of CECs for future Mussel
 Watch surveys or California-specific monitoring

Do these CECs have a negative ecological effect?

Future Work - Mussel Watch as a Bio-Indicator Platform

Future Work - Mussel Watch as a Bio-Indicator Platform

Future Work - Mussel Watch as a Bio-Indicator Platform

Measure toxicity in bivalves by gene expression profiling

Quantify CECs in bivalves by mass spectrometry

Future Monitoring Methods - Passive Samplers

Bivalves

- significant logistics/regulations/cost
- cannot be deployed in freshwater

PS Mechanism of Operation

- diffusion transports contaminants to a sorbent material
- mimics the exposure of aquatic organisms
- different sorbent materials target various chemical classes

Thank You

SCCWRP:

Keith Maruya, Dario Diehl, David Tsukada, Wayne Lao, Becky Schaffner, Stephen Weisberg

External Collaborators:

National Oceanic and Atmospheric Administration (NOAA)

U.S. Geological Survey (USGS)

San Francisco Estuary Institute (SFEI)

State Water Resources Control Board (SWRCB)

AXYS Analytical

Duke University

TDI / Brooks

Virginia Institute of Marine Sciences (VIMS)