Developing Tools for Hydromodification Management and Assessment

Hydromodification: Channel Erosion

Hydromodification: Channel Erosion

Challenges in Managing Hydromodification

Change can occur rapidly

Streams respond differently

May be dealing with legacy effects

Responses are difficult to predict

Most stormwater permits require management of hydromodification effects

Current Study: Tool Development

- 1. Which streams are at the greatest risk of effects of hydromodification? Screening Tool
- 2. What are the anticipated effects in terms of increased erosion, sedimentation, or habitat loss, associated with increases in impervious cover? Modeling Tools

HYDROMODIFICATION SCREENING TOOLS: GIS-BASED CATCHMENT ANALYSES OF POTENTIAL CHANGES IN RUNOFF AND SEDIMENT DISCHARGE

(Stillwate

Scott

Researc

TR #607 – Tech Foundation

HYDROMODIFICATION SCREENING TOOLS: TECHNICAL BASIS FOR DEVELOPMENT OF A FIELD SCREENING TOOL FOR ASSESSING CHANNEL SUSCEPTIBILITY TO HYROMODIFICATION

Brian P. Bledsoe Robert J. Hawley Eric D. Stein Derek B. Booth

Southern California Coastal Water

Technical Report 607 - July 2010

Research Project

HYDROMODIFICATION SCREENING TOOLS: FIELD MANUAL FOR ASSESSING CHANNEL SUSCEPTIBILITY

TR #605 - GIS Tool

Southern California Coastal Water

Technical Report 605 - March 2010

Southern California Coastal Water Technical Report 606 - March 2010

Research Project

TR #606 - Field Manual

Current Study: Tool Development

- 1. Which streams are at the greatest risk of effects of hydromodification? Screening Tool
- 2. What are the anticipated effects in terms of increased erosion, sedimentation, or habitat loss, associated with increases in impervious cover? Modeling Tools

Model Options

- Deterministic Models-
 - ✓ Mobile Boundary Models
 - ✓ Sediment Imbalance/Load Ratio
- Probability/Stochastic Models
 - ✓ Logistic regression

- Pseudo Deterministic Models
 - ✓ Regime Diagrams
- Iterative Solution Models
 - ✓ Artificial Neural Networks

Deterministic Models

- For example:
 - **✓** HEC-RAS
 - ✓ FLUVIAL-12
- Don't typically perform well in S. CA Streams
 - ✓ Difficulty predicting flow and sediment & split flow
 - √ Geologic heterogeneity
 - √ Widening / bank failure processes
 - ✓ Extremely data intensive to calibrate
- High cost/effort → high uncertainty in output

Logistic Analysis of Channel Stability

- Can be derived empirically or using models
- Good for evaluating binary /threshold response
 - Less applicable for gradient of responses

Model Options

- Deterministic Models-
 - ✓ Mobile Boundary Models
 - ✓ Sediment Imbalance/Load Ratio
- Probability/Stochastic Models
 - ✓ Logistic regression

- Pseudo Deterministic Models
 - √ Regime Diagrams
- Iterative/Statistical Solution Models
 - ✓ Artificial Neural Networks

Regime Diagrams Overview

 Simple models to predict channel response to changing flow and sediment supply

Graphical representation of concepts of Lane's balance

 Based on empirical relationships, validated with local data

Sample Regime Diagram

Past research has taken a "one size fits all" approach for governing equations

Relationships Vary by Stream Type

Study Sites

Calibrated Regime Diagrams

Expected Products

- 8-12 regime diagrams that examine:
 - √ Vertical vs. lateral channel response
 - √ Thresholds that result in change in planform
 - ✓ Sand bed, bedload transport, mixed channels

Guidance on appropriate regime diagram based on channel type

- Regional relationship for stable channel slope
 - ✓ based on range of hydraulic parameters from reaches in S.

 California

Applications

 Use Regime Diagrams to assess expected general direction of change under proposed land use

change

- √ Channel deepening
- √ Channel widening
- ✓ Planform shift

- Initial guidance on potential management solutions
 - ✓ Flatter effect slope
 - √ Wider adjacent floodplain

