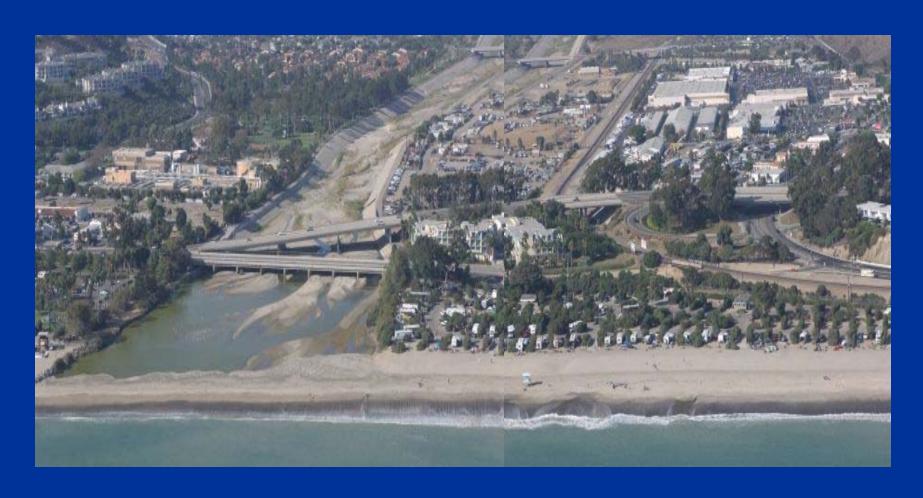
Preliminary Findings: Doheny State Beach Epidemiology Study

SCCWRP Symposium


John Griffith

January 25, 2011

BACKGROUND

- qPCR measures a different endpoint than traditional methods
 - Presence of genetic material vs. evidence of metabolic activity
- Good relationship between the two, but not perfect
- Epidemiology studies provide the basis for determining how health risk relationships differ between these endpoints
 - Also the basis for establishing a threshold specific to qPCR

Doheny State Beach

Predominately non-human fecal sources

STUDY DESIGN OVERVIEW

- Prospective cohort design
 - Screened and interviewed on day of beach visit
 - Participant health surveys by phone 10-14 days later
- Collect water quality data the same days as recruitment
- Correlate exposure (water contact and indicator level) with a suite of health outcomes
- Tight design parallel with EPA's epidemiology studies
 - Similar study instruments
 - EPA's QPCR method processed by EPA

NUMBER OF PARTICIPANTS

Swimmers	Non- swimmers	Total
5940	3585	9525

SYMPTOMS MEASURED

GASTROINTESTINAL

Nausea

Vomiting

Diarrhea

Cramps

Highly Credible Gastrointestinal Illness 1 (HCGI-1)

HCGI-2

HCGI-3

DERMATOLOGICAL

Skin rash

Infected scrapes or wounds

RESPIRATORY

Cough

Cough with phlegm

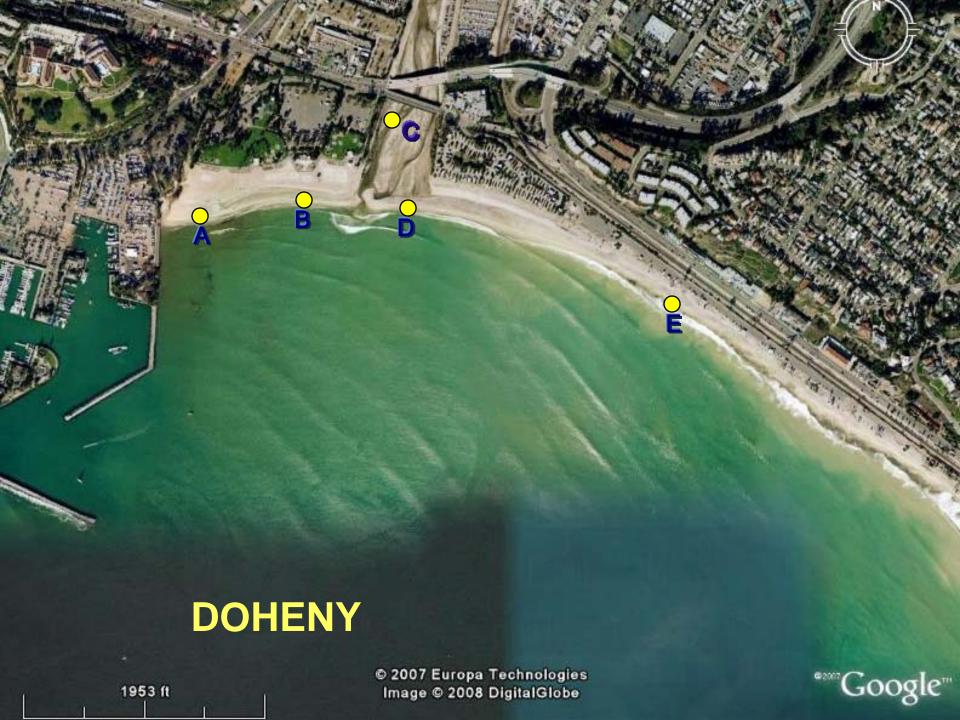
Nasal congestion

Sore throat

Significant respiratory disease (SRD)

NON-SPECIFIC

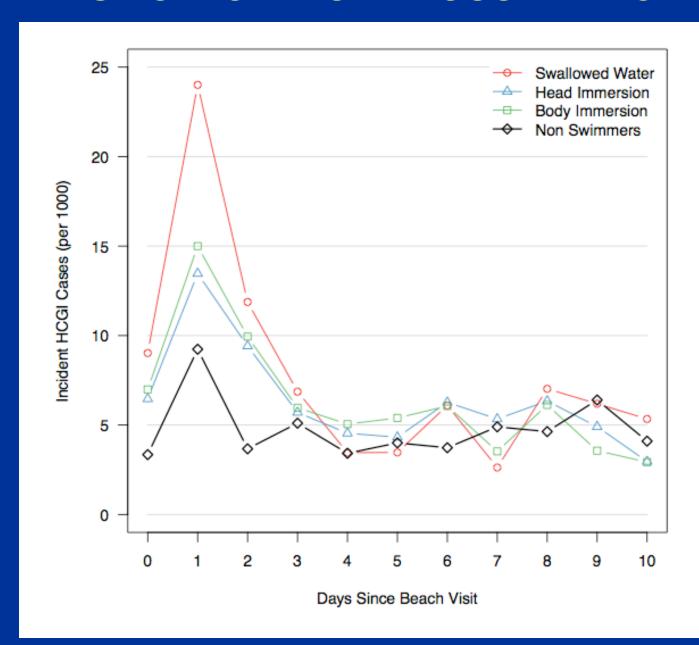
Fever


Chills

Earache

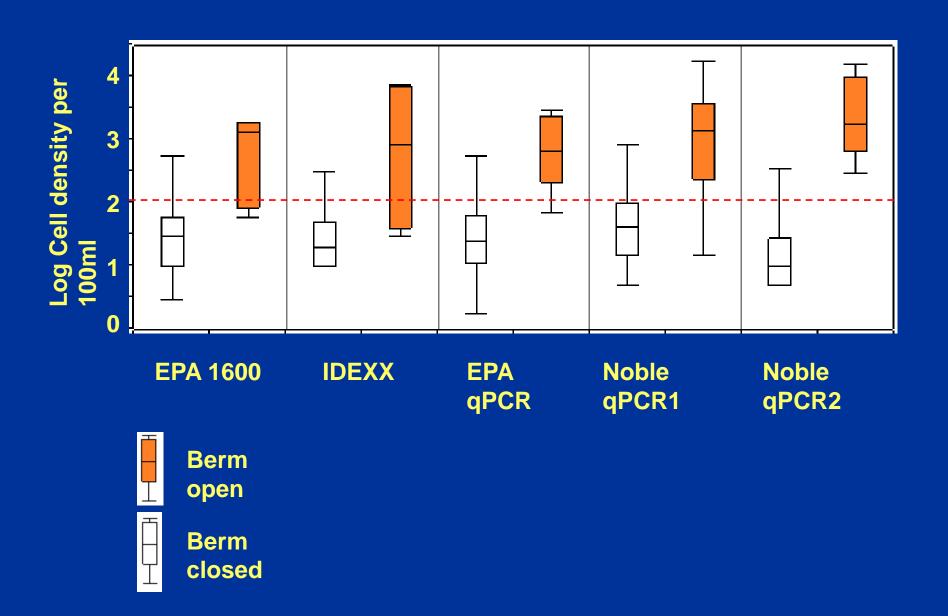
Ear discharge

Eye irritation


	<u>Method</u>	<u>Investigator</u>		Method	<u>Investigator</u>
Traditional Indicator	Bacteria		Phage		
Enterococcus	ldexx	SCCWRP	Phage +/-	Culture	Stewart
Enterococcus	MF	SCCWRP	Phage +/-	Culture	Sobsey
Fecal Coliform	ldexx	SCCWRP	<u> </u>		_
Fecal Coliform	MF	SCCWRP	Rapid phage	Antibody	Sobsey
Total Coliform	Idexx	SCCWRP			
Total Coliform	MF	SCCWRP	Marker Genes		
			Bacteroides	QPCR	EPA
Rapid Methods			Bacteroides theta	QPCR	Noble
Enterococcus	QPCR	EPA	Bacteroides theta	QPCR	EPA
Enterococcus	QPCR	Noble	Human Bacteroides (HF183)	QPCR	Field
Enterococcus	TMA	Moore	Human Bacteroides (Kildare	e)QPCR	Wuertz
Enterococcus	IMS	Jay	Human Bacteroides	QPCR	Shanks
E. coli	QPCR	Shanks	(HF183, HF134, HumM19)		
E. coli	QPCR	Noble	B. dorei	PCR/QPC	CR Shanks
E. coli	IMS	Bushon	B. stericoris	PCR	Shanks
E. coli	IMS	Jay	B. uniformis	QPCR	Shanks
Enterococcus	IMS	Bushon	C. perfringens	QPCR	Shanks
Enterococcus Enterococcus	Raptor QPCR	Harwood Noble	Enterococcus ESP gene	QPCR	Scott
Linterococcus	Narrow	NODIC	E. coli virulence gene	QPCR	Sadowsky
Virus			Phylochip		Anderson
Adenovirus	QPCR	Sobsey			
Enterovirus	QPCR	Stewart	Other Bacteria		
Norovirus	QPCR	Stewart		ODOD	I If o an
Norovirus	QPCR	Sobsey	Methanogens 	QPCR	Ufnar
Polyomavirus	QPCR	Harwood	Legionella	QPCR	Gast
Polyomavirus	PCR	Harwood	Staphylococcus aureus	Culture	Goodwin
HAV	QPCR	Fuhrman	Staphylococcus aureus	QPCR	Goodwin

PERCENT ILLNESS - DOHENY

	Non- swimmers	Body Contact	Head Under	Swallow Water
Gastrointestinal:				
Diarrhea	3.49	4.58	4.59	6.13
HCGI-3	5.37	6.82	6.92	8.07
Nausea	2.36	2.34	2.64	2.69
Cramps	4.60	5.67	5.77	6.22
Vomiting	1.51	1.63	1.61	1.60
Fever	1.95	2.61	2.71	2.95
Skin Rash	2.23	3.48	3.45	4.15
Eye Infection	0.31	0.72	0.76	0.58
Earache	1.21	2.08	2.25	2.40
Respiratory:				
Cough	1.82	2.39	2.30	2.66
Throat	4.23	4.34	4.70	4.34


DAYS FOLLOWING EXPOSURE - DOHENY

HCGI-3 ODDS RATIO FOR DOHENY

	Head Under	Swallow Water
EPA 1600	1.16	1.52
Enterolert	1.16	1.32
EPA qPCR	0.94	1.21
EPA qPCR 2	0.96	1.27
Noble qPCR	1.11	1.28
Noble qPCR 2	1.00	1.35

DOHENY ENTEROCOCCUS INDICATORS

HCGI-3 ODDS RATIO FOR DOHENY

	Berm Open		Berm Closed	
	Head Under	Swallow Water	Head Under	Swallow Water
EPA 1600	1.55	2.37	1.00	1.22
Enterolert	1.20	1.87	1.05	0.91
EPA qPCR	1.35	2.51	0.82	0.94
EPA qPCR 2	1.23	1.92	0.83	0.94
Noble qPCR	1.22	1.46	1.03	1.17
Noble qPCR 2	1.13	1.90	0.93	1.20

CONSIDER THE PROCESSING TIME

- The previous table compared health risk relationship among indicators for samples collected at the time of swimmer exposure
- That is reasonable for qPCR, but not for culture methods
 - With sample processing delay, today's sample are used to predict tomorrow's health risk
- We repeated the epidemiology analyses lagging culture-based exposure measures by one day

DOHENY HCGI-3 ODDS RATIO

Lagged Comparison

	Head Under	Swallow Water
EPA 1600	1.55	2.37
Enterolert	1.20	1.87
EPA qPCR	1.35	2.51
EPA qPCR 2	1.23	1.92
Noble qPCR	1.22	1.46
Noble qPCR 2	1.13	1.90
EPA 1600 (Lagged 1 day)	1.06	0.95
Enterolert (Lagged 1 day)	1.13	1.15

HCGI-3 - DOHENY

	Berm Open		Berm Combined	
	Head Under	Swallow Water	Head Under	Swallow Water
EPA 1600 Continuous	1.55	2.37	1.18	1.52
EPA 1600 104 Cutoff	2.15	7.42	1.17	2.68

DIARRHEA - DOHENY

	Berm Open		Berm Combined	
	Head Under	Swallow Water	Head Under	Swallow Water
EPA 1600 Continuous	1.89	3.26	1.33	1.74
EPA 1600 104 Cutoff	4.04	17.90	1.85	3.94

SUMMARY

- Enterococcus was an effective indicator, but mostly when the runoff source was continuous
 - Different health relationships at a beach, depending on source, presents an interesting management challenge
- Traditional methods and qPCR yielded equivalent relationships to health outcomes
- When the processing lag was considered, qPCR provided a superior relationship

QUESTIONS?