

Past Efforts to Develop Criteria

- National Nutrient
 Criteria Strategy
 (1998) based on
 distribution of
 ambient nutrient
 concentration data
- Many factors affect nutrients, so not necessarily linked to beneficial use impairment.

California's Approach: Nutrient Numeric Endpoint (NNE) Framework

SWRCB Staff Strategy: Narrative objectives (criteria) with numeric guidance (NNE)

Conceptual Approach:

- 1. Response indicators (rather than nutrients) provide a direct link to BU impairment
- 2. Use multiple indicators in a "weight of evidence" approach
- 3. Create tools to simulate ecological response to nutrient loads et al. co-factors (e.g. hydromod)

Technical Basis for Estuarine NNE Development—The Process

Identify target population and propose classification

Develop assessment framework & summarize dose-response data

Develop conceptual models and select indicators

SWRCB and Advisory Group Review and **Endpoint Selection**

Preliminary Classification

Geoform Tidal Regime

Enclosed Bay Perennial

Lagoon Perennial

Intermittent

Ephemeral

Permanently closed

River mouth Perennial Intermittent

Conceptual Model Development and Initial Indicator Selection

Estuarine NNE Framework: Candidate Indicators

Primary Producers Indicators

- Phytoplankton biomass and/or community composition
- Macroalgal biomass
- Submerged aquatic vegetation
- Microphytobenthos
 (MPB) biomass and/or comm. composition

Estuarine NNE Framework: Candidate Indicators

Primary Producers Indicators

- Phytoplankton biomass and/or community composition
- Macroalgal biomass
- Submerged aquatic vegetation
- Microphytobenthos
 (MPB) biomass and/or comm. composition

Physiochemical Indicators

- Dissolved oxygen
- Water clarity
- Harmful algal bloom toxins
- Sediment organic matter accumulation
- Benthic metabolism

Secondary Consumer Indicators

 Benthic macroinvertebrates

Indicators Selection Criteria:

- Clear link to beneficial uses
- Predictive relationships with causal factors (nutrients, hydrology etc)
- Scientifically sound and practical measurement process
- Show a trend either towards increasing or/and decreasing eutrophication (signal: noise good)

Dominant Indicators of Eutrophication Change as a Function of Habitat Type (ie. Class)

Depth	Dominant Primary Producers
Intertidal	MPB Macroalgae
Shallow Subtidal	MPB Phytoplankton Macroalgae SAV
Deep Subtidal or Light Limited	MPB Phytoplankton

Degrading Biological Condition

Eutrophication Disturbance Gradient Model (Lower Intertidal and Shallow Subtidal Habitat)

MPB and/or seagrass biomass and extent high, minor cover and biomass macroalgae

MPB and/or seagrass biomass and extent moderate, moderate cover and biomass macroalgae

Moderately high cover & biomass macroalgae or cyanobacteria, MPB and/or seagrass biomass moderate, extent patchy

Extremely high cover & biomass macroalgae or cyanobacteria, MPB and/or seagrass biomass low, extent minimal

Increasing nutrient availability

Eutrophication Disturbance Gradient Model (Lower Intertidal Habitat)

MPB and/or seagrass biomass and extent high, minor cover and biomass macroalgae

MPB and/or seagrass biomass and extent moderate, moderate cover and biomass macroalgae

Moderately high cover & biomass macroalgae or cyanobacteria, MPB and/or seagrass biomass moderate, extent patchy

Extremely high cover & biomass macroalgae or cyanobacteria, MPB and/or seagrass biomass low, extent minimal

Increasing nutrient availability

Conceptual Figure of Dose Response Relationship

Technical Basis for Estuarine NNE Development—The Process

Identify target population and propose classification

Develop assessment framework & summarize dose-response data

Develop conceptual models and select indicators

SWRCB and Advisory Group Review and Endpoint Selection

Technical Basis for Estuarine NNE Development—The Process

Identify target population and propose classification

Develop nutrient load-response models

Develop assessment framework & summarize dose-response data

Develop conceptual models and select indicators

SWRCB and Advisory Group Review and Endpoint Selection

Timing and Benefits

- Technical framework will provide
 - Clear links between criteria and beneficial uses
 - Basis for consistent statewide standards
- Initial technical framework for Estuarine NNE by March 2012
 - Bight '08 Eutrophication Assessment and SD Lagoon TMDL data will help shape and test framework
 - Additional work anticipated to address identified data gaps and load-response models

E-NNE Technical Team

- Martha Sutula (SCCWRP, 714-755-3222; marthas@sccwrp.org)
- Karen McLaughlin (SCCWRP)
- Peggy Fong (UCLA)
- John Largier (UC Davis)
- Jim Kaldy (EPA ORD)
- Naomi Dettenbeck (EPA ORD)
- Nicole Beck (Second Nature, Inc.)
- Camm Swift (Entrix, Inc.)
- Lester McKee (SFEI)