Development and Validation of a Framework for Integrating Sediment Quality Data

Steven M. Bay Stephen B. Weisberg and Jeff Brown

Southern California
Coastal Water Research
Project
steveb@sccwrp.org

California Sediment Quality Objectives Program

- Water quality policy under development for enclosed bays and estuaries
 - Phased adoption in 2008-2010
- Three beneficial use categories to be protected
 - Aquatic life (direct effects on benthos)
 - Human health (indirect effects)
 - Wildlife (indirect effects)
- Within each category, a multiple line of evidence (MLOE) approach will be used
 - MLOE involves demonstration of both exposure and effect
 - No single line of evidence is sufficient

SQO Assessment Framework

Multiple Lines of Evidence

- For many years, scientists have advocated a multiple line of evidence approach for evaluating sediment quality
 - Sediment quality triad
- The triad has been widely used in site-specific assessments, but has not found its way into most statutory frameworks
 - Most applications are based on best professional judgment
- Use of triad in regulatory programs presents challenges
 - Developing methods/assessment consistency across the state
 - Standardizing data interpretation among individuals with varying expertise

Three Levels of Assessment

Individual LOE

 Merging multiple indicators to characterize sediment chemistry, toxicity, and benthic community condition

Sampling station level

Merging MLOE to determine attainment of SQO at a site

Water body scale

Merging multiple sampling stations to identify impairment

MLOE Integration Framework Goals

- Classify stations with respect to both presence and severity of impacts
- Incorporate risk assessment elements of exposure and effect
- Establish a consistent and objective process for use by diverse organizations
- Provide scientifically credible results

Sediment Quality Lines of Evidence

	CHEMISTRY	TOXICITY	BENTHOS
RESPONSE	(Exposure)	(Toxicity)	(Disturbance)
Equivalent to reference or control condition	Minimal Exposure	Nontoxic	Reference
Slight change of uncertain statistical significance	Low Exposure	Low Toxicity	Low Disturbance
Reliable difference generally regarded as significant	Moderate Exposure	Moderate Toxicity	Moderate Disturbance
Highly reliable response of high magnitude	High Exposure	High Toxicity	High Disturbance

- Tools and classification thresholds developed for each LOE
- •64 possible LOE combinations

Direct Effects Station Assessment

Six assessment categories (narrative definition developed for each category)

- Unimpacted
- Likely Unimpacted
- Possibly Impacted
- Likely Impacted
- Clearly Impacted
- Inconclusive

MLOE FRAMEWORK Direct Effects

Framework elements developed with input from stakeholders and scientific review committee

B e n t

h

0

Severity of Effect

Toxicity

	Nontoxic	Low Toxicity	Moderate Toxicity	High Toxicity	
Reference	Unaffected	Unaffected	Unaffected	Low Effect	
Low Disturbance	Unaffected	Low Effect	Low Effect	Low Effect	
Moderate Disturbance	Moderate Effect	Moderate Effect	Moderate Effect	Moderate Effect	
High Disturbance	Moderate Effect	High Effect	High Effect	High Effect	

Potential for Chemically Mediated Effects Toxicity

Chemistrv

	Nontoxic	Low Toxicity	Moderate Toxicity	High Toxicity
Minimal	Minimal	Minimal	Low	Moderate
Exposure	Potential	Potential	Potential	Potential
Low Exposure	Minimal	Low	Moderate	Moderate
	Potential	Potential	Potential	Potential
Moderate	Low	Moderate	Moderate	Moderate
Exposure	Potential	Potential	Potential	Potential
High Exposure	Moderate	Moderate	High	High
	Potential	Potential	Potential	Potential

Station Assessment

Severity of Effect

Potential that Effects are Chemically Mediated

	Unaffected	Moderate naffected Low Effect Effect		High Effect	
Minimal Potential	Unimpacted	Likely Unimpacted	Likely Unimpacted	Inconclusive	
Low Potential	Unimpacted	Likely Unimpacted	Possibly Impacted	Possibly Impacted	
Moderate Potential	Likely Unimpacted	Possibly Impacted	Likely Impacted	Likely Impacted	
High Potential	Inconclusive	Likely Impacted	Clearly Impacted	Clearly Impacted	

Assessment Framework Validation

- Is the approach accurate and reliable?
 - Need a "gold standard" for comparison
- Comparison to best professional judgment
 - Can a standardized system replicate results obtained by experts in sediment quality assessment?
 - Is the framework biased?

Expert Opinion Comparison

- Six experts
- Evaluated data from 25 sites (California embayment stations)
 - Chemistry
 - Toxicity
 - Benthic assessment category
- Asked them to define condition
 - Rank from best to worst
 - Five assessment categories plus "inconclusive"
- Use consensus results as "gold standard"

Study Participants

- Walter Berry (USEPA)
- Peter Chapman (consultant)
- Rusty Fairey (Moss Landing Marine Labs)
- Tom Gries (Washington Dept. Ecology)
- Ed Long (NOAA ret.)
- Don MacDonald (consultant)

Expert Results

Station	Reviewer	Reviewer	Reviewer	Reviewer	Reviewer	Reviewer
#	1	2	3	4	5	6
1	1	1	2	1	1	1
2	2	3	3	3	2	2
3	2	2	3	3	2	2
4	1	2	2	2	1	1
5	4	3	4	3	2	4
6	1	1	2	1	1	1
7	2	Х	3	X	2	Χ
8	4	X	4	X	3	Х
9	3	Х	4	3	2	Х
10	4	3	4	5	3	4
11	5	3	4	5	4	5
12	3	2	3	3	2	2
13	3	3	3	3	2	3
14	4	3	4	3	4	4
15	5	3	4	3	4	4
16	3	2	3	Х	1	3
17	3	2	3	4	1	3
18	1	1	1	1	1	1
19	5	3	5	5	5	5
20	5	4	5	5	5	5
21	5	4	5	5	5	5
22	5	4	5	5	5	5
23	1	1	2	Х	1	1
24	1	1	2	Х	1	1
25	1	1	2	Х	1	1

Unimpacted
Likely unimpacted
Possibly impacted
Likely impacted
Clearly impacted
x Inconclusive

MLOE Framework Results

Station #	Expert Median	MLOE Framework
1	1	1
2	3	3
3	2	3
4	2	1
5	4	4
6	1	1
7	2	2
8	4	4
9	3	3
10	4	4
11	5	5
12	3	2
13	3	3
14	4	5
15	4	4
16	3	1
17	3	3
18	1	1
19	5	5
20	5	5
21	5	5
22	5	5
23	1	1
24	1	1
25	1	1

Unimpacted
Likely unimpacted
Possibly impacted
Likely impacted
Clearly impacted
x Inconclusive

Comparison to Median Expert

	Reviewer 1	Reviewer 2	Reviewer 3	Reviewer 4	Reviewer 5	Reviewer 6	MLOE Framework
Error rate	6/25	16/22	13/25	10/19	14/25	5/22	6/25
Bias	+4	-14	+12	+7	-14	-1	-2

Summary

- Incorporation of MLOE approach represents a milestone for sediment assessment policy development
- A unique approach to MLOE framework validation was developed
 - First comparison among experts
- Accuracy and bias varied among experts
 - Reflects conceptual differences in assessment approach
- A standardized MLOE framework is feasible for implementing a statewide sediment quality assessment program
 - results were equivalent to best professional judgment