STARTING POINT

- The Oregon Department of Environmental Quality (ODEQ) is developing a 303d listing process for ocean acidification
- They formed a workgroup of experts to help them with that process
- ODEQ asked SCCWRP to help structure the workgroup discussion

GOALS FOR TODAY'S PRESENTATION

- Acquaint the Commission with Oregon's process and timing
- Share some preliminary thoughts on ODEQ's direction
 - With the caution that their process is still in its early phase
- Talk next steps and opportunity for input
 - ODEQ has indicated they are interested in feedback from our member agencies
 - They value our unique interface between science and management
 - They would like to see symmetry among the three west coast states

APPROACH

• ODEQ has convened a small group of bilingual people

 Those who know both the technical details of OA and the management context for an integrated assessment report

The small group will delineate questions that the experts should answer

 Differentiate policy level decisions that are the State's purview from technical questions which are appropriately addressed by a scientific advisory body

Small group will develop a strawman proposal

 Provide the larger group of experts with something to react to rather than asking them to develop a holistic approach on the fly

QUESTIONS THAT NEED TO BE ANSWERED

- Should the 303(d) assessment methodology be based on chemical or biological data?
- Which metrics within those classes should be used for 303(d) assessment methodology?
- What values of those metrics represent exceedance of the assessment threshold?
- Which collection and processing methods are acceptable for quantifying the selected metrics?
- How many samples are necessary to make an assessment?

CHEMISTRY OR BIOLOGY?

 Rationale for selecting biology: People are more willing to act when they know there is an impact

- Biology provides a direct measure of effect
- Chemistry is an indirect prediction of likely effect, with substantial uncertainty because we don't yet fully understand variable exposure duration and multi-stressor effects

Rationale for selecting chemistry: There is more data available

- We already have consensus on measurement methods, so data are comparable across sites
- There are even models that can be used to predict chemistry at unmeasured sites
- ODEQ has decided that either type of data is acceptable
 - ODEQ has further determined that a hybrid approach combining the two is preferable

HYBRID APPROACH

Combining allows for independent confirmation when there are uncertainties with an individual data type

	Acidification chemistry					
Percent of impaired individuals		Low number all agree is bad	Number that is likely bad, but for which there is uncertainty	High number all agree is good		
	High number all agree is bad	Impaired	Impaired	Impaired		
	Number that is likely bad, but for which there is uncertainty	Impaired	Impaired	Potentially impaired		
	Low number all agree is good	Impaired	Potentially impaired	Not impaired		

WHICH BIOLOGY METRIC SHOULD BE USED?

Two-part question

Part 1: Where on a spectrum of response severity do you want to be?

- Measures of biological exposure to OA stress, such as mild dissolution of shells
- Loss of fitness in individuals, such as a physiological response
- Population response, such as mortality or reduction in density
- This is a policy question for the State: Where does loss in beneficial use begin?
- Part 2: Which specific metric within the selected level of severity should you use?
 - Part 2 is a question for the scientific experts

ODEQ'S ANSWER TO PART 1

A fitness level response is preferable

- Something that is linked to a likely population effect
- Something that is attributable to OA stress

Population level effect is too late

– Don't want the threshold to be exceeded only after the population has already been decimated

Exposure level effect is too early

 Failure of water quality threshold is an enduring, potentially expensive, decision that requires reasonable certainty about effect manifestation

SUGGESTED ANSWER TO PART 2 (SCIENCE QUESTION)

Severe shell dissolution

- Clearly linked to OA stress
- There is evidence it is related to fitness (growth and survival)

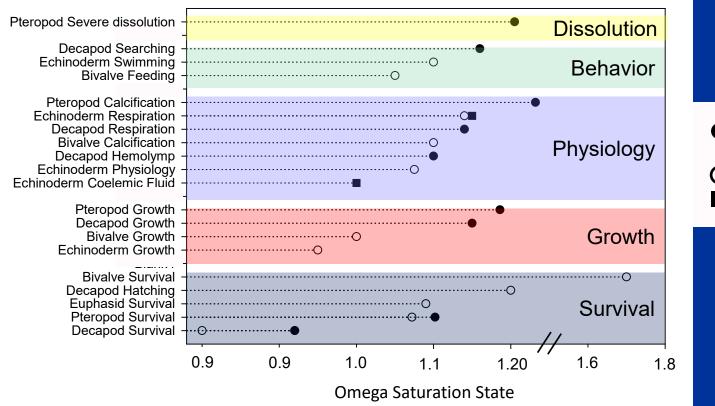
Dissolution is becoming widely measured in monitoring programs

- Needed for contextual information
- Methodologies are close to being standardized (thanks in part to OPC)

This is a rational answer, but only one of many possibilities

This is exactly the type of question they want to pose to the experts

QUESTIONS THAT NEED TO BE ANSWERED


- Should the 303(d) assessment methodology be based on chemical or biological data?
- Which metrics within those classes should be used for 303(d) assessment methodology?
- What values of those metrics represent exceedance of the assessment threshold?
- Which collection and processing methods are acceptable for quantifying the selected metrics?
- How many samples are necessary to make an assessment?

WHICH CHEMISTRY METRIC SHOULD BE USED?

- This is a simpler question to answer for chemistry than biology
- Scientists have largely agreed that aragonite saturation state should be the common monitoring parameter
 - Though there are other possibilities
- The answer is fungible
 - Converting among metrics like pH, omega, pCO2 is easy if you collect the right data

WHAT VALUE OF OMEGA IS TOO LOW?

- This is complicated because you are making a translation from chemistry to anticipated biology effects
 - That translation has three pieces
- Policy question: What desired level of severity is appropriate?
- Policy question: Which taxa should be used to make the conversion?
 - Do you want to use sensitive taxa are median taxa?
- Technical question: Which data for those species and metrics are best?
 - How do you integrate data from multiple studies, species and metrics?

 Pelagic or epibenthic juvenile/adult
Pelagic larvae
Benthic juvenile/adult

	Omega					
Percent of individuals with severe dissolution		<1.0	1.0 – 1.4	>1.4	No data	
	<5%	Impaired	Potentially impaired	Not impaired	Not impaired	
	5 – 40%	Impaired	Impaired	Potentially impaired	Potentially impaired	
	>40%	Impaired	Impaired	Impaired	Impaired	
	No data	Impaired	Potentially impaired	Not impaired	No assessment	

SPATIAL AND TEMPORAL EXTENT

 ODEQ: Use their existing approach to determine adequate number of samples for chemical impairment assessment

- Enough samples to demonstrate threshold is exceeded >10% of the time, with 90% confidence
- Determination of percentage focused on critical biological season (not necessary annually)
- Minimum of 5 samples over 5 sampling times

Complicating issue: Background failure rate is zero for most chemicals

– Acidification will fail the thresholds naturally based on routine oceanographic patterns

 Solution: Increase the 10% exceedance requirement to account for background frequency not meeting the threshold

- Perfect role for the scientists: Decide what that adjustment factor should be
- Determine how it changes cross-shelf and at different depths in the water column

NEXT STEPS

• The small group is done with delineating questions for the large group

- Nearly done with developing strawman answers
- One more meeting later this month to ensure we agree
- Meeting of the large group is scheduled for July 8
 - Anticipate the large group will subsequently break into subgroups to answer each question
- ODEQ is hoping to have answers by the end of the year
- They want to use the same process for ocean hypoxia assessments
 - That process will follow several months later, wanting to get acidification right first
 - SCCWRP has been asked to help with hypoxia as well