Science-based Recommendations for Monitoring Chemicals of Emerging Concern (CECs) in California's Receiving Waters

Keith Maruya

SCCWRP Commission Meeting September 7, 2012

CECs are detected in effluent discharged from California WWTPs

- low parts per billion (ug/L) range
- concentrations dependent on level of treatment

...and in urban stormwater

COMMERCIAL CHEMICALS IN THE US

Source: Muir and Howard 2006

SCCWRP SELECTED TO FACILITATE CEC SCIENCE ADVISORY PANEL

- Convened on behalf of SWB in 2009 for recycled water, then later for coastal & marine ecosystems
- Solicited stakeholder input on panel charge & selection
- Organized 6 meetings with public participation
 - charge & perspectives (Winter 2010)
 - expanded to include freshwater systems (Fall 2011)
 - addressed public comments on draft report (Spring 2012)
- Coordinated production, dissemination of report
 - final recommendations submitted to SWB in May 2012

STAKEHOLDER ADVISORS

- Jim Colston (Tri-TAC; OCSD)
- Chris Crompton (CASQA; County of Orange)
- Mark Gold (Heal the Bay)
- Amber Mace (CA Ocean Science Trust)
- Rick Moss* (State Water Board)
- Linda Sheehan (CA Coastkeeper Alliance)

^{*} succeeded by Gary Dickenson, Melenee Emanuel

HOW DO WE MONITOR FOR CECs?

- What are the relative contributions from stormwater & WWTP effluent?
- What are the fate(s) of CECs in WWTPs, storm & receiving waters?
- What are the appropriate CECs to be monitored, including analytical methods and MDLs?
 - Scenarios, matrices, frequency
- What approaches should be used to assess biological effects?
- What levels of CECs should trigger additional action? What range of actions should be considered?

ASK THE EXPERTS

- Dr. Paul Anderson
 - Human Health Toxicologist
 - Arcadis US
- Dr. Nancy Denslow
 - Biochemist
 - University of Florida
- Dr. Jörg Drewes
 - Civil Engineer
 - Colorado School of Mines

- Dr. Adam Olivieri
 - Risk Assessor
 - EOA Incorporated
- Dr. Daniel Schlenk (Chair)
 - Environmental Toxicologist
 - UC Riverside
- Dr. Shane Snyder
 - Analytical Chemist
 - Univ. Arizona
- Dr. Geoff Scott
 - Coastal & Marine Sciences
 - NOAA

RISK-BASED SCREENING FRAMEWORK

- Step 1: measure or predict occurrence (MEC or PEC)
 - provided through investigative monitoring (e.g. regional, special studies)

- Step 2: determine concentration that is protective of resource (aka monitoring trigger level or MTL)
 - published information on no/low observable effects concentrations

- Step 3: calculate Monitoring Trigger Quotient (MTQ)
 = MEC or PEC / MTL
 - If MTQ < 1, no concern
 - If MTQ \geq 1, add to candidate list

EXPOSURE SCENARIOS

- #1 -- Effluent dominated inland waterway
 - low flow (dry weather) conditions
 - no dilution of WWTP effluent

- #2 -- Coastal embayment
 - WWTP effluent and stormwater discharge
 - 10 fold dilution of source input
- #3 -- Offshore ocean discharge
 - Large WWTP outfalls on mid-Shelf
 - 100 fold dilution of WWTP effluent

ADAPTIVE MONITORING STRATEGY

Ir corporate new information and revisit recommendations

High concern – control (all controllable) sources

Elevated concern – confirm levels; expand monitoring (ID sources); refine risk assessment; control (easy) sources

Moderate concern – continue monitoring to ensure concentrations are not increasing

Little/No concern – Discontinue monitoring

PURPOSES FOR MONITORING

- Investigative or exploratory: e.g. lack of occurrence data
 - changing chemical use/discharge patterns
 - evolving methodology
 - serves an "on-ramp" for problematic CECs
- Validation of concept or model:
 - are trigger levels (e.g. MTQs) consistently exceeded?
 - If yes, continue and/or take action; If no, remove or monitor less frequently
- Regulatory or compliance: CECs with demonstrated risk
 - proven methods with established QA/QC procedures

PANEL's LIST OF CECs

Aqueous Phase (River & Bay)

- Pesticides (bifenthrin, permethrin, chlorpyrifos)
- Consumer (bisphenol A, diclofenac, galaxolide, ibuprofen)
- Hormones (17b-estradiol, estrone)
- Antibiotics (triclosan) -- River only

Sediments (Bay & Ocean)

- Plasticizers (bis-2-ethylhexyl, butylbenzyl phthalates)
- Flame retardants (PBDE-47, -99)
- Detergents (4-nonylphenol)
- Pyrethroids (bifenthrin, permethrin) Bays only

Biological tissue (All)

- PBDEs
- Perfluorinated chemicals (PFOS)

DIFFERENT LISTS FOR DIFFERENT NEEDS

PPCPs	PANEL	LARB	SAWPA	SDRB
Acetaminophen		х	X	
Amoxicillin, Azithromycin		х		
Atorvastatin (lipitor)		х		
Caffeine		х	X	x
Carbadox				x
Carbamazepine		x	X	x
Chloro-, oxy-tetracycline				x
Ciprofloxacin		x		
DEET		x	x	
Diclofenac	X			
Dilantin		х		
Doxycycline				х
Erythromycin hydrate				х
17-alpha ethinyl estradiol		x	x	
17-beta estradiol	х	x	x	x
Estrone	x	х		
Gemfibrozil		х	x	x
Galaxolide (HHCB)	x			
Fluoxetine				х
Ibuprofen	x	х	x	х
lopromide		х		
Lincomycin, Roxithromycin				x
Salicylic acid		х		
Sulfamethoxazole		х	x	
Sulfachloropyridazine				х
Sulfa-methazine, -methizole				х
Sulfa-merazine, -dimethoxine, -thiazole				
TCEP	I	х	x	х
Triclosan	x	х	X	х
Trimethoprim		X		X
Tylosin				X
. 4.00111				^

Industrial & Commercial	PANEL	LARB	SAWPA	SDRB
Bifenthrin	X			
Bis(2-ethylhexyl) phthalate	x			
Bisphenol A	X	x	x	
Butylbenzyl phthalate	x			
Chlorpyrifos	X			
Diuron	- 1		X	
Fipronil + degradates	- 1			
Octylphenol		x		
p-Nonylphenol	x	x		x
Nonylphenol ethoxylates		х		x
Permethrin	x			
PBDE -47 and 99	x	x		
PFOS	x			
2,3,4-Trimethylphenol				x
X – targeted for monitoring				
I recommended by Panel				
for investigative monitoring				

DEVELOPING BIOANALYTICAL TOOLS

Ultimate endpoint of interest

Of lesser concern if the biology (e.g. the consumer) is unaffected

In vitro bioassays to screen for CECs by mode of action

- applicable to known & unknown chemicals
- multiple endpoints are needed to address range of possible effects
- must be cost-effective, easily transferable to practitioners

Linking molecular responses with higher order effects

- CECs may not impact populations until later generations
- Invertebrate, fish life cycle tests in conjunction with screening bioassays

HIGH THROUGHPUT IN VITRO BIOASSAYS

Linking molecular responses with higher order effects

Concentration of Toxicant X Time of Exposure

A NEW CHEMICAL MONITORING APPROACH

TAKING FULL ADVANTAGE OF BIGHT 13

- Our next opportunity to work collaboratively on a regional scale
 - validate Panel's and Regional Board's initial lists
 - fill data gaps on occurrence of other CECs of interest
 - put stakeholder talent and facilities to good use
- Leverage collection of sediment & tissue samples
 - Challenge member agencies to analyze "easy" CECs
 - Identify partners & prioritize funding for difficult to measure CECs
- Advance the application of bioanalytical tools
 - will they work for ambient samples? In different matrices?
- Kickoff meeting will be held on Sep 24 @ SCCWRP

SCHEDULE

- Regulatory staff contemplating monitoring requirements
- SWB Informational Briefing October 2012
- Development of relevant bioanalytical tools
 - in vitro ("rapid screening") methods for recycled water (2011-14)
 - linking in vitro responses to whole organism effects (2012-
- Filling data gaps on priority CECs
 - Special studies (e.g. LARB River CECs)
 - Regional Monitoring (Bight 13; SMC, SFEI RMP)
- Revisit recommendations after 3-5 years