Microbial Source Identification Method Evaluation Study

Presentation to the SCCWRP Commission March 2, 2012

John F. Griffith

THE PROBLEM

- *Enterococcus* is a non-specific marker of fecal contamination
 - Beaches with known sources largely remediated
 - Still some beaches with chronic problems

 > 50 source-specific genetic methods of fecal identification have been developed

Need to know if they work

THE SOLUTION

 SCCWRP Microbial Source Identification Method Evaluation Study

 Create blind samples with various sources of fecal material

• Use multiple labs to assess repeatability

SOURCES

• Human

- Individuals, sewage, septage
- Dog
- Gull
- Cattle
- Pig
- Horse
- Geese
- Deer
- Pigeon
- Chicken

Eye alt 519.48 mi 🔘

PARTICIPATING LABS

- Ali Boehm, Stanford
- Jenny Jay, UCLA
- John Griffith, SCCWRP
- Trish Holden, UCSB
- Stefan Wuertz, UC Davis
- Jed Fuhrman, U Southern California
- Chris Sinigaliano, U Miami
- Rachel Noble, U North Carolina
- Mike Sadowsky, U Minnesota
- Jill Stewart, U North Carolina
- Gary Andersen, UC Berkeley
- Jiyoung Lee, Ohio State U
- Joan Rose, Mich State U
- Vijay Kannappan, Wayne State U Michigan
- Scott Reynolds, Environmental Canine Services

- Huw Taylor, U of Brighton, UK
- David Diston, Switzerland
- Melanie Wicki, Federal Office of Health, Switzerland
- Wim Meijer, U of Dublin, Ireland
- Andreas Farnleitner, Vienna U of Technology, Austria
- Michele Gourmelon, Ifremer Laboratoire de Microbiologie Plouzane France
- Raquel Rodriguez, National Institute of Health, Portugal
- Orin Shanks, EPA
- Kelly Goodwin, NOAA
- Jorge Santo Domingo, EPA
- Murulee Byappanahalli, USGS
- Theng Fong, Tetra Tech
- Mauricio Larenas, Source Molecular

STUDY APPROACH

Challenge each method with 64 blind samples

- Singletons and doubletons of fecal sources
- High and low concentrations

Most methods run by multiple labs

Want to understand method repeatability

50 methods evaluated

- 28 participating laboratories

CLASSES OF METHODS

Presence/ Absence

- Detect single source

• Quantitative

- Detect single source
- Provide information on concentration of source in sample

Community

- Detect multiple sources
- May provide some information about relative concentration in sample

EVALUATION CRITERIA

- Correctly identify presence/absence of a host source?
- Correctly identify the dominant source?
 - Relative contribution from each source?
- How repeatable are the assays?
- Do assay combinations provide more information than a single assay?

PIG ASSAYS

HUMAN ASSAYS

PIG ASSAY

HUMAN ASSAYS

BOTTOM LINE

	Human	Cow	Dog	Gull	Pig	Horse
Binary	HF183endpt, HF183SYBR	CF193 CowM2 CowM3 Rum2bac	BacCan	Gull2EndPt Gull2SYBR LeeSeaGull	PF163 mtPigDNA Phylochip Bac TRFLP	HoF597 Phylochip Bac TRFLP
Quant.	HF183Taqman BacH	BacR Rum2bac BacCow*	BacCan	LeeSeaGull	pig2bac	n.a.

In addition, all community methods were excellent for deer, and phylochip was excellent for chicken.

NEXT STEPS

- We now have a suite of reliable source-specific markers
 - Plan to use in field studies this year

 Develop a Microbial Source Identification Study Manual for the State

• Special Issue of Water Research devoted to this study