Development of Sediment Quality Guidelines Based on Benthic Macrofauna Response

Steven M. Bay Kerry J. Ritter

Southern California
Coastal Water Research Project
steveb@sccwrp.org

Background

- California is developing a sediment quality assessment framework focused on protection of the benthic macrofaunal community
 - Regulatory incorporation of sediment quality triad
 - Specific tools for implementation statewide
- Toolbox of indicators for chemistry, toxicity, and benthic community disturbance under development
- Sediment Quality Guidelines (SQGs) will be used to interpret chemistry measurements

Sediment Quality Guidelines

- Most SQGs are based on empirical relationships between individual chemical contaminants and toxicity
 - Probability of toxicity (logistic regression)
 - Effects range median (ERM)
- Approaches that integrate multiple chemicals perform best
 - Maximum probability (Pmax)
 - Mean SQG quotient (mERMq)

Toxicity vs. Benthos

- Want to protect benthos, but most SQGs based on toxicity data
- Are SQGs based on toxicity accurate predictors of benthic impact?
- Benthos may have a differential response to individual chemicals and/or chemical mixtures
 - Laboratory vs. field
 - Single animal vs. population
 - Short-term vs. long-term exposure

Research Questions

- How do chemical relationships between toxicity and benthos compare?
- Can the predictive ability of SQGs be improved by developing a benthosspecific SQG?

Comparison of Chemical Relationships

- Matched chemistry, toxicity, and benthos data
 - Southern California embayments (N=441)
 - Toxicity: 10 day amphipod survival
 - Benthos: Abundance across multiple benthic organisms
- Correlations between individual chemicals and toxicity/benthos
- Cumulative distribution functions of affected samples

Spearman's Correlation

Chemical Response Ranges

Apparent response thresholds for toxicity and benthos disturbance were similar for all chemicals

Measuring SQG Agreement with Toxicity and Benthos

- Four levels of biological response
 - Reference, low, moderate, high
- Two measures of response
 - Toxicity (amphipod mortality)
 - Benthos (benthic community disturbance)
- SQG thresholds for predicting biological response were selected by statistical optimization

Predictive Ability Comparison

- Compared agreement predicting biological response using tox-based SQGs and a new benthos-based SQG
- Toxicity-based SQGs
 - ERM: mean ERMq across all chemicals
 - Logistic Regression: maximum probability of toxicity (Pmax)
- Benthos-based SQG
 - Chemical Score Index (CSI): mean score (mCSI)

Chemical Score Index

- Reflects association between chemicals and magnitude of response (BRI) of California benthos
- Two types of data are combined
 - Set of <u>predicted benthic response categories</u>
 based on individual chemical concentrations
 - Set of <u>weighting factors</u> for each of the chemicals based on strength of association.

Chemical Response Categories

Calculating mCSI

Agreement with Respect to Toxicity (n=146)

SQG	Agreement
mERMq	38%
Pmax	40%

No statistically significant differences

Agreement with Respect to Benthic Response (n=146)

SQG	Agreement
mERMq	43%
Pmax	31%
mCSI	52%*

^{*} Statistically different from other SQGs

Application to San Pedro Bay n=67

Application to San Pedro Bay

Summary

- Benthos and toxicity test responses appear to have differential associations with chemistry
- Toxicity-based SQGs are useful for predicting benthos
- Benthos-based SQGs show improvement in predicting response of benthos, particularly at the extremes
- Merit to using both types of SQGs in sediment quality assessments