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There are known knowns.
These are things we know that
we know. There are known
unknowns. That is to say, there
are things that we know we
don't know. But there are also
unknown unknowns. There are
things we don't know we don't
know.

Donald Rumsfeld



. “Conventional” pollutants, e.g., pesticides, PCBs,
PAHs, metals, etc.

— Know how to measure them and have the data to assess risk
— Require effective exposure monitoring

: PBDESs, PPCPs (including some EDCs),
nanomaterials

— Suspect or know (increasingly) they are present, but don’t have data to
assess risk

— Require prospective assessments
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— Chemicals we either can’'t or don’t know to measure—could include
mixtures—but may be causing effects

— Require retrospective (or diagnostic) assessments



* Known unknowns (prospective)

Daunting “laundry lists” of chemicals for which little/no data exist

Need to identify those substances of most concern and acquire data
required to assess risk

Reliance only on fate/exposure (production volume, persistence,
residues) to identify these chemicals problematic

Requires ability to estimate possible effects without extensive testing

« Unknown unknowns (retrospective)

Adverse effects inferred either from field observations or controlled
testing of field samples (including in situ studies)

Effects generally associated with complex mixture of stressors

Requires ability to associate (chemical) stressors with observed
response(s)

Conventional toxicology approaches alone not well
suited to meeting these challenges
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Problems:
1. Costs of testing (money, time, animals)
« Example: pesticide registration — total costs around $50 M
« Example: EDSP — Tier 1 $200-400K, Tier 2 $1.25 M, 600-1200 animals
2. Tens of thousands of chemicals to evaluate
3. Species extrapolation challenges (25,000-30,000 species of fish alone)

4. Difficult to address environmental mixtures
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* The science of making predictions of toxicity outcomes based on previously
untested relationships ramos etal 2007

« ldentify organizing principles that underlie biological response to chemicals

*Use that knowledge in a systematic fashion to predict, based on
physical/chemical properties, a priori knowledge, and/or simplified bioassays, the
likelihood that a given chemical will elicit an adverse effect orthat an observed
response might be associated with a given chemical

» Grounded in established and verifiable theory
e Transparent

* Reasonable and quantifiable uncertainty
« Optimal use of available resources and data
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Prioritization (P)
— Depending on degree of allowable uncertainty, could be used to
eliminate chemicals from testing

Focus testing (P)
— Species, endpoints, experimental design

Cross-species/chemical extrapolations (P,R)

Exposure analysis/reconstruction (R)
— Critical for non-persistent chemicals

Support diagnostic approaches to ascertain chemicals (or chemical
classes) responsible for observed effects (R)



Many of the “tools” require specialized training/facilities

— Histological analyses

— In vitro (tissue, cell) assays

— Alterations in gene/protein/metabolite expression or abundance

Complex data analysis
— Bioinformatic challenges can be substantial (e.g., “omics”)

— Confusing or contradictory information (e.g., due to lack of
baseline knowledge)

Translation of information into endpoints meaningful to risk
assessment not always apparent

— Both a science and communication issue



In Press:
Environmental Toxicology and Chemistry

Adverse Outcome Pathways:
A Conceptual Framework to Support
Ecotoxicology Research and Risk Assessment.

Gerald T. Ankley, Richard S. Bennett, Russell J. Erickson,
Dale J. Hoff, Michael W. Hornung, Rodney D. Johnson, David R. Mount,
John W. Nichols, Christine L. Russom, Patricia K. Schmieder,
Jose A. Serrano, Joseph E. Tietge, Daniel L. Villeneuve

http:// www3.interscience.wiley.com /journal / 122596462 / issue
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Definition:

Adverse Outcome Pathway (AOP):
a conceptual framework that portrays existing knowledge

concerning the linkage between a direct molecular initiating event

and an adverse outcome, at a level of biological organization

relevant to risk assessment

Builds on the “toxicity pathway” concept described by NRC (2007)

Designed for the translation of mechanistic information into
endpoints meaningful to ecological risk
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Adverse Outcome Pathway

A

e N

Macro-
Molecular Cellular Organ Organism Population
Toxicant Interactions Responses Responses Responses Responses
. Receptor/Ligand Gene Altered Lethality Structure
Chemical Interaction _, Activation | Physiology || I . A\n
Properties S : : mpaire Recruitment
P DNA Binding Protein Disrupted. Development
_ S Production Homeostasis _ Extinction
Protein Oxidation _ Impaired
Altered Altered Tissue Reproduction
Signaling Development
_ or Function Cancer
Protein
Depletion

“Cellular response pathways that when sufficiently perturbed are

expected to result in adverse health effects”
Toxicity Testing in 21st Century, NRC 2007.



V. V. V V V

Narcosis

Photo-Activated Toxicity
AhR Mediated Toxicity
Estrogen Receptor Activation

Impaired Vitellogenesis
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Adverse Outcome Pathway
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* Prospective Assessments (prioritizing)

— Support endpoint selection for short-term in vivo screens (VTG in
females)

— Focus in vitro assay and QSAR model development (inhibition of
aromatase, ER antagonism, AR activation)

* Retrospective Assessments (diagnosing)

— ldentification of classes of causative chemical stressors (e.g.,
inhibitors of steroidogenesis)

— Interpretation of biomarker data (sex steroids, VTG) relative to
possible population responses



Prioritization/extrapolation based on existing knowledge
— Use of high-quality, searchable sources of ecotoxicology data

— Consideration of data from human health-oriented studies

« Evaluation of biological targets, pathway conservation and potency
(e.g., pharmaceuticals)

Pathway-specific computational models to predict effects

Prioritization/extrapolation based on pathway
identification for untested chemicals

— Short-term in vivo and in vitro assays

— Responses reflective of specific pathways
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PiEs considered CECs for several reasons
— Increasingly detected in drinking and surface waters
— Potentially 1000s of parent compounds and metabolites
— High public visibility (human health) \ | T«—g‘ - -

— Potential risk to fish/wildlife populations (EE2, diclofenac) g o

May not be highly persistent in conventional sense

. , }5
— Pseudo-persistence significant issue - W 2“‘% v ‘ e
Often target conserved pathways * . ' -

Tend not to be acutely toxic but can be extremely potent
— Fish ACRs (acute-to-chronic ratio) >1000

Little useful exposure/effects data for directly assessing ecological risk

“
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« Valuable data exist for many drugs collected as part of development/
human health safety testing (e.g., www.drugbank.ca)

— Basic physico-chemical properties

— Major degradates and metabolites

— Biological targets/pathways (primary & side effects)
— Potency

« Considered in a systematic manner, this information can provide an
basis for a screening-level assessment of risk

SETAC Pellston reports on human and veterinary drugs (2005; 2008)

Draft CENR report “Pharmaceuticals in the Environment: An
Interagency Research Strategy” (2009)



Which occur (or likely could occur) in the environment?

— Empirical data (e.g., Benaotti et al.; Wu et al.; Ramirez et al.) or
estimates from stability, Kow, etc.

Is there knowledge of stable and/or biologically-active
degradates/metabolites?

Are the known biological targets/pathways directly relevant to
processes controlling populations?

— Survival, growth/development, reproduction

What is the degree of conservation of pathways across species?

How potent are the chemicals?
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Narcosis is “non-specific toxicity resulting from weak and
reversible hydrophobic interactions” (Overton, 1901)

Baseline toxicity: if a chemical does not produce toxicity by some
more specific mechanism it will act by narcosis, providing it is
sufficiently soluble in water at high enough concentrations to
achieve required chemical activity

Narcosis is theorized to result from hydrophobic interactions
between chemicals and cellular membranes.

Estimated that 60% of industrial chemicals act via this pathway
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Not all linkages are known with absolute certainty in this AOP

Non-polar
Narcotics

Numerous
Chemicals

Cellular
Membranes

v

Changes in
fluidity
/ transport

2)

Neurons CNS/ Multiple _ _
(Multiple) Organ types Organism Population
B 4 Respiration, Equllllbnum Declining
' 1 Metabolic rate| 0SS, trajectory
Mortality

... but the relationship between chemical property and adverse
outcome is well established




96-h Log LC50 (mg/L)

Data from Russom et al. 1997. ET&C, 16, 948-967
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Robust Predictive QSAR
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 No empirical data for majority of chemicals in commerce

« Computational models helpful for predicting baseline
toxicity, but not available for many “reactive” pathways

« Collection of focused biological data for previously
untested chemicals and comparison to responses for
tested chemicals one viable option

— Suites of in vitro assays for well-defined pathways

— Short-term in vivo assays for pathway “discovery” and/or
simultaneously monitoring multiple pathways (toxicogenomics)



» Coordinated through EPA/ORD National Center for Computational
Toxicology

* Phase 1 data publically available; Phase 2 ongoing

« Addresses chemical screening and prioritization needs for pesticidal
inerts, anti-microbials, drinking water contaminants, HPVs, etc.

 Comprehensive use of HTS technologies to generate fingerprints and
predictive signatures reflective of biological pathways of concern

e Oriented toward human health, but covers many conserved
pathways
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Linkage of Exposure and Effeci

Proteomics, and Metabolomics

USEPA (NERL) — Cincinnati, OH
» D. Bencic, M. Kostich, D. Lattier, J. Lazorchak, G. Toth, R.-L. Wang,
USEPA (NHEERL)- Duluth, MN, and Grosse Isle, MI

* G. Ankley, E Durhan, M Kahl, K Jensen, E Makynen, D. Martinovic,
D. Miller, D. Villeneuve

USEPA (NERL)- Athens, GA

» T. Collette, D. Ekman, M. Henderson, Q. Teng
USEPA-RTP, NC

« M.&M. Breen, R. Conolly (NCCT)

* S. Edwards (NHEERL)
USEPA (NCER) STAR Program

* N. Denslow (Univ. of Florida), E. Orlando, (Florida Atlantic
University), K. Watanabe (Oregon Health Sciences Univ.), M.
Sepulveda (Purdue Univ.)

USACE - Vicksburg, MS
» E. Perkins, N. Garcia-Reyero
Other partners
* UC-SB, J. Shoemaker, K. Gayen (Santa Barbara, CA)
« Joint Genome Institute, DOE (Walnut Creek, CA)
« Sandia, DOE (Albuguerque, NM)
» Pacific Northwest National Laboratory (Richland, WA)
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Global (microarray) and focused (QPCR) gene
expression changes

Protein and metabolite profiles
Apical effects: steroids, gonad histology, reproduction

Linked physiological and population models in a systems
biology framework to facilitate prediction of effects
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* In vitro assays with complex samples (water, sediment)
from the field

« Short-term in vivo assays conducted with field samples
In the lab or in situ (caged animals)

e Collection of organisms from extant populations

Molecular/biochemical/histological endpoints
reflective of defined biological pathways



Cell lines transfected with estrogen/androgen receptor-
reporter (e.g., luciferase) gene constructs

Measurement of changes in single gene/protein
expression (e.g.,vitellogenin [VTG] in fish)

Evaluation of changes in multiple gene, protein,
metabolite expression profiles (i.e., transcriptomics,
proteomics, metabolomics)

Determination of histological abnormalities (e.g., testis-
ova) in fish collected from the field
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Ease/cost of measurement
— Commercial PCR (mRNA) or ELISA (protein) kits

Sensitivity, rapidity and persistence of response

— Occurs w/i hours at ng/L estrogen concentrations and can
remain elevated long-term

Specificity for pathway of concern
— No chemicals other than estrogens induce VTG in males
Linkage to biological impacts

— Estrogens well established reproductive toxins in fish

— Concentrations of EE2 (ca. 1 ng/L) that cause VTG induction
comparable to those reducing production of fertile eggs
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Retrospective assessments rely on observation of
biological responses to indicate potential impacts

Complex mixtures of chemical stressors are present

Toxicity identification evaluation (TIE) techniques
developed in late 80’s to identify toxicants causing
lethality in WWTP effluents (NPDES)

TIEs with mechanistic endpoints
— Estrogenic WWTP effluent in UK (EE2)
— Androgenic discharges from pulp/paper mills
— Surface water associated with agriculture



Collaborators: G. Ankley, L. Durhan (EPA, MED); E. Gray, P. Hartig, C. Lambright, L. Parks,
V. Wilson (EPA, RTD); L. Guillette (Univ. Florida)
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Predictive/mechanistic toxicology tools have substantial
potential for assessing the ecological risk of CECs

Prospective assessments

— Efficient use of existing knowledge/concepts
— Computational (QSAR/SAR) models

— Pathway-based in vitro/in vivo bioassays

Retrospective assessments

— Pathway-based bioassays with field samples

— Mechanistic endpoints in organisms from the field
— Fractionation/TIE to address mixtures
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