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There are known knowns. 
These are things we know that 
we know. There are known 
unknowns. That is to say, there 
are things that we know we 
don't know. But there are also 
unknown unknowns. There are 
things we don't know we don't 
know. 

Donald Rumsfeld 
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Assessing Risks of Contaminants of Concern

• Known knowns: “Conventional” pollutants, e.g., pesticides, PCBs, 
PAHs, metals, etc.
– Know how to measure them and have the data to assess risk
– Require effective exposure monitoring

• Known unknowns: PBDEs, PPCPs (including some EDCs), 
nanomaterials
– Suspect or know (increasingly) they are present, but don’t have data to 

assess risk
– Require prospective assessments

• Unknown unknowns:  ???
– Chemicals we either can’t or don’t know to measure—could include 

mixtures—but may be causing effects
– Require retrospective (or diagnostic) assessments
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Contaminants of Emerging Concern
• Known unknowns (prospective)

– Daunting “laundry lists” of chemicals for which little/no data exist
– Need to identify those substances of most concern and acquire data 

required to assess risk
– Reliance only on fate/exposure (production volume, persistence, 

residues) to identify these chemicals problematic
– Requires ability to estimate possible effects without extensive testing

• Unknown unknowns (retrospective)
– Adverse effects inferred either from field observations or controlled 

testing of field samples (including in situ studies)
– Effects generally associated with complex mixture of stressors
– Requires ability to associate (chemical) stressors with observed

response(s)

Conventional toxicology approaches alone not well 
suited to meeting these challenges 
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Conventional Approach to Toxicology

• Empirical emphasis focused on whole animal testing
• “Apical” endpoints

– Survival, development/growth, reproduction, cancer
• Dose Observe

– Adverse effects assessed without necessarily understanding 
how or why they occur

• Test all possible outcomes to determine which are relevant

http://images.google.com/imgres?imgurl=http://www.all-creatures.org/saen/rat-01a.jpg&imgrefurl=http://www.all-creatures.org/wlalw/fact-product.html&usg=__qp9Q22PdWOZNEbVjk7Vw0l1SgwE=&h=492&w=520&sz=20&hl=en&start=1&tbnid=Ho6MDoOsj6OfjM:&tbnh=124&tbnw=131&prev=/images%3Fq%3DToxicity%2Btesting%26gbv%3D2%26hl%3Den
http://images.google.com/imgres?imgurl=http://www.nrcan-rncan.gc.ca/mms/canmet-mtb/mmsl-lmsm/enviro/metals/images/gallery/images/composite.jpg&imgrefurl=http://www.nrcan-rncan.gc.ca/mms/canmet-mtb/mmsl-lmsm/enviro/metals/images/gallery/pages/composite-e.htm&usg=__H1yJwuQFVNW7Ro7vx5FxD5sA_bs=&h=363&w=359&sz=15&hl=en&start=10&tbnid=Co760veVIlQknM:&tbnh=121&tbnw=120&prev=/images%3Fq%3DToxicity%2Btesting%26gbv%3D2%26hl%3Den
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Traditional Approach to Toxicology

Problems:

1. Costs of testing  (money, time, animals)

• Example: pesticide registration – total costs around $50 M

• Example: EDSP – Tier 1 $200-400K, Tier 2 $1.25 M, 600-1200 animals

2. Tens of thousands of chemicals to evaluate

3. Species extrapolation challenges  (25,000-30,000 species of fish alone)

4. Difficult to address environmental mixtures
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http://search.barnesandnoble.com/booksearch/imageviewer.asp?ean=9780309109925&z=y
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Predictive Toxicology

• Transparent

• Reasonable and quantifiable uncertainty
• Optimal use of available resources and data

• Grounded in established and verifiable theory

• The science of making predictions of toxicity outcomes based on previously 
untested relationships (Ramos et al. 2007)

• Identify organizing principles that underlie biological response to chemicals 

•Use that knowledge in a systematic fashion to predict, based on 
physical/chemical properties, a priori knowledge, and/or simplified bioassays, the 
likelihood that a given chemical will elicit an adverse effect or that an observed 
response might be associated with a given chemical

http://images.google.com/imgres?imgurl=http://static.twoday.net/bmworacleracing/images/crystal_ball2_bmwPreview.jpg&imgrefurl=http://openeuropeblog.blogspot.com/2008_07_01_archive.html&usg=__SnNCbPTRFAAMjZ5GI167TX8AsMc=&h=263&w=400&sz=22&hl=en&start=2&tbnid=uEWQyKoCpJUnGM:&tbnh=82&tbnw=124&prev=/images%3Fq%3DCrystal%2Bball%26gbv%3D2%26hl%3Den
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Predictive/Mechanistic Toxicology in
Ecological Risk Assessments

• Prioritization (P)
– Depending on degree of allowable uncertainty, could be used to 

eliminate chemicals from testing

• Focus testing (P)
– Species, endpoints, experimental design

• Cross-species/chemical extrapolations (P,R)

• Exposure analysis/reconstruction (R)
– Critical for non-persistent chemicals

• Support diagnostic approaches to ascertain chemicals (or chemical 
classes) responsible for observed effects (R) 
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Challenges in the Application of Mechanistic
Toxicology to Ecological Risk Assessment

• Many of the “tools” require specialized training/facilities
– Histological analyses
– In vitro (tissue, cell) assays
– Alterations in gene/protein/metabolite expression or abundance

• Complex data analysis
– Bioinformatic challenges can be substantial (e.g., “omics”)
– Confusing or contradictory information (e.g., due to lack of 

baseline knowledge)

• Translation of  information into endpoints meaningful to risk 
assessment not always apparent
– Both a science and communication issue
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In Press:
Environmental Toxicology and Chemistry

Adverse Outcome Pathways: 
A Conceptual Framework to Support

Ecotoxicology Research and Risk Assessment.

Gerald T. Ankley, Richard S. Bennett, Russell J. Erickson, 
Dale J. Hoff, Michael W. Hornung, Rodney D. Johnson, David R. Mount, 

John W. Nichols, Christine L. Russom, Patricia K. Schmieder, 
Jose A. Serrano, Joseph E. Tietge, Daniel L. Villeneuve 

http:// www3.interscience.wiley.com / journal / 122596462 / issue
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Adverse Outcome Pathway

11

Definition:

Adverse Outcome Pathway (AOP):

a conceptual framework that portrays existing knowledge 

concerning the linkage between a direct molecular initiating event

and an adverse outcome, at a level of biological organization 

relevant to risk assessment

Builds on the “toxicity pathway” concept described by NRC (2007)

Designed for the translation of mechanistic information into 
endpoints meaningful to ecological risk
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“Cellular response pathways that when sufficiently perturbed are 
expected to result in adverse health effects”
Toxicity Testing in 21st Century, NRC 2007.
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AOP Examples (Ankley et al. in press)

13

Narcosis

Photo-Activated Toxicity

AhR Mediated Toxicity

Estrogen Receptor Activation

Impaired Vitellogenesis
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Insights from the Impaired Vitellogenesis AOP

• Prospective Assessments (prioritizing)
– Support endpoint selection for short-term in vivo screens (VTG in 

females)
– Focus in vitro assay and QSAR model development (inhibition of 

aromatase, ER antagonism, AR activation)

• Retrospective Assessments (diagnosing)
– Identification of classes of causative chemical stressors (e.g.,

inhibitors of steroidogenesis)
– Interpretation of biomarker data (sex steroids, VTG) relative to

possible population responses
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Mechanistic Toxicology Approaches 
in Prospective Ecological Assessments

• Prioritization/extrapolation based on existing knowledge
– Use of high-quality, searchable sources of ecotoxicology data
– Consideration of data from human health-oriented studies

• Evaluation of biological targets, pathway conservation and potency 
(e.g., pharmaceuticals)

• Pathway-specific computational models to predict effects

• Prioritization/extrapolation based on pathway 
identification for untested chemicals
– Short-term in vivo and in vitro assays
– Responses reflective of specific pathways
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ECOTOX: A Freely Available Data Resource
http://cfpub.epa.gov/ecotox/
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In ECOTOX’s Advanced 
Database Query one can 
access independently 
compiled data sets

ECOTOX has been adding
data fields quarterly (12/09)
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Pharmaceuticals in the Environment (PiE)

• PiEs considered CECs for several reasons
– Increasingly detected in drinking and surface waters
– Potentially 1000s of parent compounds and metabolites
– High public visibility (human health)
– Potential risk to fish/wildlife populations (EE2, diclofenac)

• May not be highly persistent in conventional sense
– Pseudo-persistence significant issue

• Often target conserved pathways

• Tend not to be acutely toxic but can be extremely potent 
– Fish ACRs (acute-to-chronic ratio) >1000

• Little useful exposure/effects data for directly assessing ecological risk
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Prioritizing PiEs for Assessment and Monitoring

• Valuable data exist for many drugs collected as part of development/ 
human health safety testing (e.g., www.drugbank.ca)
– Basic physico-chemical properties
– Major degradates and metabolites
– Biological targets/pathways (primary & side effects)
– Potency

• Considered in a systematic manner, this information can provide an 
basis for a screening-level assessment of risk

SETAC Pellston reports on human and veterinary drugs (2005; 2008)

Draft CENR report “Pharmaceuticals in the Environment: An 
Interagency Research Strategy” (2009)
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Prioritizing PiEs for Potential 
Ecological Risk

• Which occur (or likely could occur) in the environment?
– Empirical data (e.g., Benotti et al.; Wu et al.; Ramirez et al.) or 

estimates from stability, Kow, etc.

• Is there knowledge of stable and/or biologically-active 
degradates/metabolites?

• Are the known biological targets/pathways directly relevant to 
processes controlling populations?
– Survival, growth/development, reproduction

• What is the degree of conservation of pathways across species?

• How potent are the chemicals?



1/17/2010
Published in: Lina Gunnarsson; Alexandra Jauhiainen; Erik Kristiansson; Olle Nerman; D. 
G. Joakim Larsson; Environ. Sci. Technol. 2008, 42, 5807-5813.
DOI: 10.1021/es8005173
Copyright © 2008 American Chemical Society

Conservation of Drug Targets Across Species



1/17/2010 24

Computational Models for Predicting
Effects: Narcosis Example

24

Narcosis is “non-specific toxicity resulting from weak and 
reversible hydrophobic interactions” (Overton, 1901)

Baseline toxicity:  if a chemical does not produce toxicity by some 
more specific mechanism it will act by narcosis, providing it is
sufficiently soluble in water at high enough concentrations to 
achieve required chemical activity

Narcosis is theorized to result from hydrophobic interactions 
between chemicals and cellular membranes.

Estimated that 60% of industrial chemicals act via this pathway
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Narcosis – Baseline Toxicity

25
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Not all linkages are known with absolute certainty in this AOP

… but the relationship between chemical property and adverse 
outcome is well established 
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Data from Russom et al. 1997. ET&C, 16, 948-967 
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Identifying Pathways of Concern
for Untested Chemicals 

• No empirical data for majority of chemicals in commerce

• Computational models helpful for predicting baseline 
toxicity, but not available for many “reactive” pathways

• Collection of focused biological data for previously 
untested chemicals and comparison to responses for 
tested chemicals one viable option 
– Suites of in vitro assays for well-defined pathways
– Short-term in vivo assays for pathway “discovery” and/or 

simultaneously monitoring multiple pathways (toxicogenomics)
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ToxCast Background

• Coordinated through EPA/ORD National Center for Computational 
Toxicology
• Phase 1 data publically available; Phase 2 ongoing

• Addresses chemical screening and prioritization needs for pesticidal
inerts, anti-microbials, drinking water contaminants, HPVs, etc.

• Comprehensive use of HTS technologies to generate fingerprints and 
predictive signatures reflective of biological pathways of concern

• Oriented toward human health, but covers many conserved 
pathways
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ToxCast In vitro HTS Assays

• Cell lines
– HepG2 human hepatoblastoma
– A549 human lung carcinoma
– HEK 293 human embryonic kidney

• Primary cells
– Human endothelial cells
– Human monocytes
– Human keratinocytes
– Human fibroblasts
– Human proximal tubule kidney cells
– Human small airway epithelial cells

• Biotransformation competent cells
– Primary rat hepatocytes
– Primary human hepatocytes

• Assay formats
– Cytotoxicity
– Reporter gene 
– Gene expression
– Biomarker production
– High-content imaging for cellular phenotype

• Protein families
– GPCR
– NR
– Kinase
– Phosphatase
– Protease
– Other enzyme
– Ion channel
– Transporter

• Assay formats
– Radioligand binding
– Enzyme activity
– Co-activator recruitment

Cellular AssaysBiochemical Assays

467 Endpoints
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Phase I ToxCast
309 Unique Chemicals

Chemical Class Distribution
(≥5/Class)

• 276 Conventional Actives
• 16 Antimicrobials
• 9 Industrial Chemicals
• 8 Metabolites

Organophosphorus (39)
Amide (26)
Urea (26)
Conazole (18)
Carbamate (16)
Phenoxy (15)
Pyrethroid (12)
Pyridine (11)
Triazine (9)
Dicarboximide (8)
Phthalate (7)

Dinitroaniline (7)
Antibiotic (7)
Thiocarbamate (7)
Pyrazole (6)
Nicotinoid (6)
Dithiocarbamate (6)
Aromatic Acid (6)
Insect Growth Regulators (5)
Imidazolinone (5)
Unclassified (21)
Other (93)

www.epa.gov/ncct/toxcast/
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• USEPA (NERL) – Cincinnati, OH
• D. Bencic, M. Kostich, D. Lattier, J. Lazorchak, G. Toth, R.-L. Wang, 

• USEPA (NHEERL)– Duluth, MN, and Grosse Isle, MI
• G. Ankley, E Durhan, M Kahl, K Jensen, E Makynen, D. Martinovic, 

D. Miller, D. Villeneuve
• USEPA (NERL)– Athens, GA

• T. Collette, D. Ekman, M. Henderson, Q. Teng
• USEPA-RTP, NC

• M.&M. Breen, R. Conolly (NCCT)
• S. Edwards (NHEERL)

• USEPA (NCER) STAR Program
• N. Denslow (Univ. of Florida), E. Orlando, (Florida Atlantic 

University), K. Watanabe (Oregon Health Sciences Univ.), M. 
Sepulveda (Purdue Univ.)

• USACE – Vicksburg, MS
• E. Perkins, N. Garcia-Reyero

• Other partners
• UC-SB, J. Shoemaker, K. Gayen (Santa Barbara, CA)
• Joint Genome Institute, DOE (Walnut Creek, CA)
• Sandia, DOE (Albuquerque, NM)
• Pacific Northwest National Laboratory (Richland, WA)

Linkage of Exposure and Effects Using Genomics, Linkage of Exposure and Effects Using Genomics, 
Proteomics, and Metabolomics in Small Fish Models Proteomics, and Metabolomics in Small Fish Models 
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Zebrafish
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Fathead Minnows
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Endpoints and Analysis

• Global (microarray) and focused (QPCR) gene 
expression changes

• Protein and metabolite profiles

• Apical effects: steroids, gonad histology, reproduction

• Linked physiological and population models in a systems 
biology framework to facilitate prediction of effects
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Prospective Assessment Application:
Screening to detect different classes of EDCs

Small battery of molecular 
responses measured by real-time 
PCR array
•Established linkage to impaired 
reproduction in fish & diagnostic utility

•Robust across species

•Short-term exposure duration (e.g., 4 d)

•Analyses amenable to HTS automation

•Design based on robust power analysis 
for all responses

CN

N
N
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Mechanistic Toxicology Approaches
in Retrospective Assessments

• In vitro assays with complex samples (water, sediment) 
from the field

• Short-term in vivo assays conducted with field samples 
in the lab or in situ (caged animals)

• Collection of organisms from extant populations

Molecular/biochemical/histological endpoints      
reflective of defined biological pathways



1/17/2010 39

Examples of Mechanistic Assays/Endpoints for 
Retrospective Assessment of EDCs

• Cell lines transfected with estrogen/androgen receptor-
reporter (e.g., luciferase) gene constructs

• Measurement of changes in single gene/protein 
expression (e.g.,vitellogenin [VTG] in fish)

• Evaluation of changes in multiple gene, protein, 
metabolite expression profiles (i.e., transcriptomics, 
proteomics, metabolomics)

• Determination of histological abnormalities (e.g., testis-
ova) in fish collected from the field
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VTG Induction as an Indicator
of Estrogen Exposure in Fish
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Considerations in Assay/Endpoint Selection:
VTG Induction as a Case Example

• Ease/cost of measurement
– Commercial PCR (mRNA) or ELISA (protein) kits

• Sensitivity, rapidity and persistence of response
– Occurs w/i hours at ng/L estrogen concentrations and can 

remain elevated long-term

• Specificity for pathway of concern
– No chemicals other than estrogens induce VTG in males

• Linkage to biological impacts
– Estrogens well established reproductive toxins in fish
– Concentrations of EE2 (ca. 1 ng/L) that cause VTG induction 

comparable to those reducing production of fertile eggs



1/17/2010 42

?

Impaired 
spawning  
behavior

Reduced
fecundity

Altered “X-Y”
gamete Ratio

Adult Fish

AOP: Estrogen Receptor Activation

Declining
trajectory

Skewed
sex ratio

Population

Increased VTG 
production

Hepatocyte

Sex reversal
Intersex

Testes

Increased
VTG in males

Liver-Blood

Impaired
development 
& ovulation

Ovary

?

Gonadal Cells

Agonism

Estrogen
Receptor

EE2,
E2

ER
Agonist

Feminized
phenotype

Multiple
Tissues

?

Feminized
phenotype

Multiple
Cell Types

?
Brain

??
Neurons

?

?

?

Established mechanistic linkage with
quantitative or semi-quantitative data

Potential biomarker associated with 
exposure/response information

Plausible linkage with limited data Hypothetical linkage

KEY Predictive model linkages based on 
chemical structure/property and quantitative 
exposure-response data

Empirical linkage based on quantitative
exposure-response data

AOPs for putting Biomarkers in 
Context: VTG Induction and 

Reproduction



1/17/2010 43

Establishing Causation: The Role of TIE
• Retrospective assessments rely on observation of 

biological responses to indicate potential impacts
• Complex mixtures of chemical stressors are present
• Toxicity identification evaluation (TIE) techniques 

developed in late 80’s to identify toxicants causing 
lethality in WWTP effluents (NPDES) 

• TIEs with mechanistic endpoints
– Estrogenic WWTP effluent in UK (EE2)
– Androgenic discharges from pulp/paper mills
– Surface water associated with agriculture
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Mechanism-Based TIEs: A Pulp Mill Case Study

Collaborators: G. Ankley, L. Durhan (EPA, MED); E. Gray, P. Hartig, C. Lambright, L. Parks, 
V. Wilson (EPA, RTD); L. Guillette (Univ. Florida)
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Application of TIE Analysis to 
Androgenic PME
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Summary and Conclusions
• Predictive/mechanistic toxicology tools have substantial 

potential for assessing the ecological risk of CECs

• Prospective assessments
– Efficient use of existing knowledge/concepts
– Computational (QSAR/SAR) models
– Pathway-based in vitro/in vivo bioassays

• Retrospective assessments
– Pathway-based bioassays with field samples
– Mechanistic endpoints in organisms from the field
– Fractionation/TIE to address mixtures 
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