

Monitoring for the occurrence and effects of endocrine disrupting chemicals in fish

Donald Tillitt

Columbia Environmental Research Center

Columbia, MO

U.S. Department of the Interior

U.S. Geological Survey

Overview

- Biomonitoring Environmental Status and Trends – Large Rivers Monitoring Network
 - Endpoints
 - Summary findings
 - Evaluation of endocrine metrics
- Lessons learned
- Recommendations for biological monitoring

National Contaminants Biomonitoring Program (NCBP)

USFWS monitoring program 1970's-1992

Effects Biomonitoring: How we got here.

- 1940-50's New Age Pesticides
 - Organochlorine pesticides
- 1960-70's Contaminant monitoring
 - NCBP, NOAA Status & Trends, EPA
- 1970-80's Ban of Certain Pesticides and PCBs
 - DDT, Toxaphene, Dieldrin, PCBs
- 1980-present New Generation Pesticides
 - Organophosphates, Carbamates, Triazenes......
 - Shortened half-life, little or no accumulation in biota
- 1990's-present Pharmaceuticals, Veterinary products, Antibiotics, Personal Care Products
- Are effects occurring even without residual chemicals being present?

Common wastewater constituents

Kolpin et al. 2002 ES&T 36(6):1202-1211

Organic wastewater contaminants

FIGURE 4. Frequency of detection of organic wastewater contaminants by general use category (4A), and percent of total measured concentration of organic wastewater contaminants by general use category (4B). Number of compounds in each category shown above bar.

Kolpin et al. 2002 ES&T 36(6):1202-1211

Non-monotonic dose-response relationships with EDCs

- Non-linear dose-response relationships are common
- Hormesis
- Predictive models must incorporate

Shapes of response relationships vary

Paradigm shift for environmental chemical monitoring

OC pesticides and industrial chemicals (POPs)

- High Kow
- Low metabolism
- WS <<< LOD
- TRV <<< WS
- Tissue burdens critical
 - Spatial distribution
 - Temporal distribution
 - Toxicity evaluation

New generation pesticides, veterinary and health care products, and industrial chemicals

- Lower Kow (70% < 3.0)
- Greater metabolism
- WS >> LOD
- TRV ???
- Tissue analysis useless
- Water analysis ???
- Effects biomonitoring

Biomonitoring of Environmental Status and Trends (BEST) Program: Large River Monitoring Network (LRMN)

Objective: Identify, monitor, and assess environmental contaminants and their effects in fish

Endpoints

- Contaminant concentrations (<u>PCBs, organochlorine pesticides</u>, <u>metals</u>, H4IIE bioassay)
- Fish health indicators (somatic indices, health assessment)
- Histopathology (general health, gonad)
- Reproductive biomarkers (vitellogenin, steroid hormones)
- Hepatic ethoxyresorufin O-deethylase (EROD) activity

Endpoints used by LRMN

LRMN Sampling Sites

BEST-LRMN Program

Many endpoint responses are species specific; therefore the program targets certain fish species

Predator: Largemouth Bass

Benthivore: Common carp

Endpoint data may be limited for certain species

Collection logistics of LRMN

Live fish Equipment Min. 2 person crew

Hepatic microsomal ethoxyresorufin *O*deethylase (EROD)

Factors to consider	Rating			
Cost				
Historical data				
Collection method				
Analytical method				
Interpretation				

Frequency distribution of EROD

EROD activity in green area are reference or background

Influencing factors: Species Gender Reproductive stage

Plasma vitellogenin and steroid hormones

Factors to consider	Rating
Cost	
Historical data	
Collection method	
Analytical method	
Interpretation	

Frequency distribution of Vtg concentrations

Conc. < detection limit: 13% of females 87% of males

Conc. >0.01 mg/mL in males is anomalous

Steroid hormones in female carp

- Reference condition difficult to determine
- Samples collected Aug-Oct to minimize stage effects
- 17β –estradiol conc. differed among sites – delayed maturation (as determined by histopathology) at 323, 324, and 325
- 11-ketotestosterone conc. also relatively low at 323 and 324
- Compare hormone ratios

Reproductive biomarkers in male LMB collected in the Mississippi River Basin - LRMN

- Identify average values for steroid hormones
- Identify abnormal values for each biomarker
- Inter-comparisons among reproductive biomarkers

Cumulative frequency distributions of reproductive biomarkers in fish from the BEST-LRMN

Fish Health Assessment Index (HAI)

External anomalies

Factors to consider	Rating		
Cost			
Historical data			
Collection method			
Analytical method			
Interpretation			

Internal anomalies

HAI scores and species differences

Age, length, weight, somatic indices

Otoliths

Enlarged spleen

Frequency distribution of hepatosomatic index in all LRMN fish

HSI = liver weight/(total body weight – gonad weight)*100

Histopathology

Testes with granulomas

Anterior kidney with thyroid follicles

Factors to consider	Rating
Cost	
Historical data	
Collection method	
Analytical method	
Interpretation	

Gonad Histopathology

Endocrine - sensitive tissues

Abnormalities associated with reproductive function

Variety of AOPs (Adverse Outcome Pathways)

Histologic Appearance of Intersex Fish

Immature oocytes within maturing testicular tissue

Low magnification showing extent of oocyte development within testicular tissue

Higher magnification

oocvtes

Sperm

Definition of Intersex

- An organism possessing both testicular and ovarian tissue simultaneously or sequentially (hermaphrodite)
- Or can be an organism possessing only male or female gonadal tissue, <u>but</u> also having secondary sexual characteristics, behavior, physiological characteristics, or sex chromosomes of the opposing sex

Normally Hermaphroditic Fishes:

- Aulopiformes grinners
- Atheriniformes silversides
- Cyprinodontiformes egg-laying tooth carps
- Myctophiformes –blackchins & lanternfishes
- Perciformes perch-like fishes
- Scorpaeniformes scorpionfishes & flatheads
- Stomiiformes lightfishes & dragonfishes
- Synbranchiformes spiny- & swamp-eels

Historical Accounts of Abnormal Hermaphroditism:

- Acipenseriformes sturgeons
- Clupeiformes herring
- Cypriniformes minnows
- Cyprinodontiformes tooth carps
- Gadiformes cods
- Gasterosteiformes sticklebacks
- Perciformes perches
- Pleuronectiformes flatfishes
- Salmoniformes trouts and salmons
- Siluriformes catfishes

Intersex in feral fish reported in the literature

	Gender	No. fish	Comments	Reference
Species, location		with		
		intersex/n		
White sucker				
Athabasca R., Alberta	Male	1/Uknown	Herm	Sikstrom et al., 1975
Boulder Creek, Colorado	Female	4/39	Ovaries with testicular	Woodling et al., 2006
			tissue	
South Platte R., Colorado	Male	4/20	ТО	Woodling et al., 2006
Boulder Creek, Colorado	M/F	11/57	TO/herm	Vajda et al., 2008
Largemouth bass				
Ridge Lake, Illinois	Herm	1/Unknown	Herm	James, 1946
Fort Lake, Illinois	Herm	Several	ТО	James, 1946
Hudson R., New York	Male	4/15	ТО	Baldigo et al., 2006
Smallmouth bass				
Kalamazoo River, Michigan	Male	15/15	ТО	Anderson et al., 2003
Hudson R., New York	Male	12/33	то	Baldigo et al., 2006
Potomac River drainages	Male	146/241	ТО	Blazer et al., 2007
VA/WV				
Common carp				
Ebro R., Spain	Male	1/6	ТО	Lavado et al., 2004
Hudson R., New York	Male	1/9	ТО	Baldigo et al., 2006
Northern pike				
Lake Oahe, South Dakota	Female	2/1936	Herm	June, 1977
Various rivers, United	Male	1/54	ТО	Vine et al., 2005
Kingdom				
Various rivers, United	Female	15/58	Male germ cells in ovary	Vine et al., 2005
Kingdom				
Striped bass				
Coos Bay, Oregon	Herm	11/42	Herm	Moser et al., 1983
Brown trout				
Unknown, Ireland	Herm	1/Unkown	Herm	O'Ferrall and Peirce ,
				1989
Three rivers in Switzerland	Female	27/121	Spermatogenic nests in	Korner et al., 2005

oocvtes

National Distribution of Intersex Fish

Intersex examples from Biomonitoring Environmental Status and Trends

Hinck et al. 2009

Occurrence of intersex in fish from the BEST-LRMN

Species	Female				Male			
	#/n (%) Sites (%)				#/n	(%)	Sites	(%)
LM Bass	0/426	0	0/55	0	70/390	18	23/52	44
SM Bass	0/90	0	0/15	0	23/70	33	7/16	44
C. Carp	1/798	0.1	1/89	1	0/774	0	0/89	0
C. Catfish	0/44	0	o/6	0	3/42	7	3/6	50

Intersex in male fish by site

Intersex condition by age

Intersex occurrence by river basin and species with related associations

Basin-species	# Fish	%	# Sites	%	Associations	
MRB-LMB	174	4	22	27	(-) Length, (-) MA	
MRB-SMB	27	41	5	80	(+) 17β-E2, (+) MA	
Columbia RB-LMB	34	0	7	0		
Columbia RB-SMB	24	21	8	25	(-) HAI, (+) MA	
RGB-LMB	29	35	4	75	None	
RGB-SMB	1	0	1	0		
CO RB-LMB	42	14	6	3	(-) EROD	
CO RB-SMB	18	39	2	50	(-) EROD, (+) Age/HAI/SSI/HSI	
Apalachicola RB-LMB	30	67	3	100	None	
Mobile RB-LMB	36	14	4	75	(+) HSI	
Pee Dee RB-LMB	25	80	3	100	(-) Age, (-) Stage	
Savannah RB-LMB	21	48	3	100	None	

Observations of Fish with Intersex Gonads Increasing

YEAR OF PUBLICATION

Occurrence and Severity of Intersex Gonads in SNS

- Missouri River research on sturgeon
- Monitor reproductive status of large numbers of shovelnose sturgeon
- Observations of intersex in different parts of the river
- Comparison with historical

Example: Shovelnose Sturgeon (SNS), Missouri River

EDCs induce intersex in fish

Controlled chemical exposures

- Ethinylestradiol (EE2)
- Methyl testosterone (MT)
- Trenbolone acetate
- Nonylphenol
- WWTP effluent
- Pulp & Paper Mill effluents

EDC action

Dose

- Can be extremely low and have effects.Timing
 - Critical in terms of development.
 - Critical in terms of reproductive cycle.

Non-chemical factors in gonad development and differentiation

- Age
- Genetic abnormalities
- Hybridization
- Radiation
- Diet
- Temperature
- Hypoxia

Intersex in fish

- Testicular oocyte are most common (feminized males)
- Wide geographic occurrence
- Apparent regional differences in severity (?)
- Multiple species of fish express intersex condition
- Temporal increases in incidence in sturgeon
 - Other species?

Summary of endpoint use in fish health assessment

Endpoint	Method	Interpretation	Overall Use
Age, length, weight, somatic indices Health Assessment Index			
EROD			
Vitellogenin			
Steroid hormones			
Pesticides, Inorganic contaminants Histopathology			

Biomonitoring Paradigm

- •Research provides foundation
- •Monitoring endpoint evaluation
- •Indicators provide an indication
- •Focused investigation direct management actions

•Focused investigations (field-lab based studies) serve to validate and refine models

Monitoring endpoints in fish health and ecosystem assessment

Short term effects

Molecular effects (gene expression, EROD)

Physiological effects (steroid hormones, Vtg)

Organismal effects (tumors, somatic indices)

Population effects (reduced/absence population)

Long term effects

Ecological Relevance

Understanding Toxicity Pathways and Complex Biological Processes

Summary/Conclusions

Standard ecological risk approaches will not suffice for PCPPs

Lacking TRVs and non-linear dose-responses

Biomonitoring for endocrine active substances requires biochemical, histological, and organism level responses

Current reproductive biomarkers appear to be useful

"normal" or baseline description is required

Development of "omics" will aide forensic/diagnostic sciences

Integrated lab-field studies help define utility of reproductive biomarkers

<u>Acknowledgements</u>

<u>USGS Columbia Environmental Research Center:</u> J.E. Hinck, D.M. Papoulias, C.J. Schmitt, K. Echols, S. Finger, T. May, D. Nicks, C. Orazio

<u>USGS Leetown Science Center</u>: V. Blazer

<u>USGS BEST Program</u>: T. Bartish, J. Coyle, P. Anderson

<u>University of Florida</u>: N. Denslow

<u>USFWS Environmental Contaminants Program</u>

Biomonitoring of Environmental Status and Trends (BEST) Program: Field Procedures for Assessing the Exposure of Fish to Environmental Contaminants

Biomonitoring of Environmental Status and Trends (BEST) Program: Selected Methods for Monitoring Chemical Contaminants and their Effects in Aquatic Ecosystems

<http://www.cerc.usgs.gov/pubs/pubs.htm>

Biomonitoring of Environmental Status and Trends (BEST) Program: Field **Procedures for Assessing the Exposure** of Fish to Environmental Contaminants

Information and Technology Report USGS/BRD/ITR--1999-0007

U.S. Department of the Interior eological Survey

Biomonitoring of Environmental Status and Trends

(BEST) Program: Environmental Contaminants and their Effects on Fish in the Mississippi River Basin

Biological Science Report USGS/BRD/BSR—2002-0004

<http://www.cerc.usgs.gov/pubs/pubs.htm>

Biomonitoring of Environmental Status and Trends (BEST) Program: Selected **Methods for Monitoring Chemical Contaminants and their Effects in Aquatic Ecosystems**

Toxicology

Critical Reviews in . . .

Volume 30 / Issue 4 / 2000