Brine Disposal Options and Analytical Tools

Susan C. Paulsen, Ph.D., P.E.

Vice President and Senior Scientist, Flow Science
Incorporated

Brine disposal methods proposed by Cal Desal agencies

* Dedicated brine-only diffuser systems

* Co-disposal through existing POTW outfalls

Benefits of co-disposal

- * Can improve water quality characteristics of discharge
 - * Minimizes salinity difference between discharge and ambient ocean water
 - * Reduces potential for plume surfacing
 - * Reduces concentrations of some constituents in wastewater discharges (suspended solids, BOD, metals)
- Composition of combined discharge may vary with time

- * Diffuser models (e.g., Visual Plumes, Cormix)
 - * Single and merged submerged plumes
 - * Typically used to simulate near-field zone of initial dilution (ZID), with some far-field capability

Source: Model output from Visual Plumes Manual, 2003

* Analytical solutions for positively buoyant plumes

(e.g., Fischer et al., 1979)

Figure 9.32 Horizontal turbulent buoyant jet in a density-stratified environment. $R_0 = 0.036$, N = 0.56. [From Fan (1967).]

Figure 9.22 Mean dilution in round turbulent buoyant jets in a uniform crossflow (see Tables 9.4–9.7 for symbols).

(From Fischer et al., 1979)

* 3-D modeling approaches (e.g., Large-Eddy Simulations (LES))

* Analytical solutions for negatively buoyant plumes

(e.g., Roberts et al. 1997, Kikkert et al. 2007, Marti et al. 2011)

Fig. 1. Definition sketch for an inclined dense jet based on Roberts et al. (1997)

Existing diffusers can be modified to improve near-field dilution

Horizontal ports can be angled upward (typically 60°)

20
1816141210N
86420051015202530

X (ft)

Tideflex type valves can be added to increase port exit velocity

Far-field analytical methods

- * 3-D modeling techniques
 - Need good data (current, tides, winds)
 - * Advances in computational power make 3-D modeling feasible in wide range of situations
- * May be necessary to evaluate:
 - Far-field impacts of sinking plumes
 - * Impacts to sensitive areas (MLPAs, ASBS)
 - * Impacts of multiple discharges
 - * Effects of currents and tides

Negatively buoyant discharges and evaluation of sea floor impacts

- Sinking plumes will flow along the bottom
- * 3-D models can simulate these effects (need good bathymetry data!), or physical models

Use of probabilistic analyses

- Water quality criteria involve frequency, magnitude, duration
- * Probabilistic analyses can be used to establish how long, how often, and how much
 - * To develop appropriate effluent limitations
 - To assess likely toxicity
- * Permitting, monitoring and compliance approaches need to recognize these variables

Figure 4-4. Frequency of Occurrence of Concentrations in Receiving Waters and Recurrence Intervals Generated by a Continuous Simulation Model

Source: USEPA 1991 (TSD)

Conclusions

- * Significant dilution occurs in near-field with a well-designed discharge system
- * Confidence in analytical tools is warranted
- * Choice of analytical tools will be site- and situationspecific
- * Frequency, magnitude, and duration need to be considered explicitly

Conclusions, cont'd.

- * Co-disposal solutions need to consider full range of potential discharge conditions
 - Diurnal patterns in flows, blending, and concentrations
 - Potential future reuse of wastewater (long-term change in discharge composition)
 - * Addition of new flow streams (e.g., brine lines)
- Dilution analyses, permit requirements, monitoring requirements, and compliance determinations need to be consistent

Supplemental Information

Animation of dense plume from 3-D model (ELCOM)

