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EXECUTIVE SUMMARY 
• Stream management and regulatory decisions are typically applied to large reaches or 

whole watersheds. However, assessment of stream condition relative to management or 
regulatory targets is based on discrete sampling reaches that are sparsely distributed 
across a watershed. Therefore, there is a need to extrapolate measured variables, such as 
bioassessment scores, to unmeasured reaches, and to understand uncertainty inherent to 
extrapolations. 

• Spatial statistical network (SSNs) models allow estimation of bioassessment index scores 
at unsampled locations based on their proximity to sampled locations within a stream 
network. They facilitate the search for patterns at large spatial scales appropriate for 
biological indicators. 

• We developed SSNs for 6 watersheds in northern and southern California to explore their 
utility in extrapolating scores for the California Stream Condition Index (CSCI). 

• SSN models did not support a general distance limit to extrapolation that works in all 
settings (e.g., “a site score represents the condition of 800 m of a stream”), given the 
large variability observed among and within watersheds. On the contrary, the limits on 
extrapolation are more appropriately a site-specific determination.  

• SSN models varied greatly among watersheds due to differences in watershed properties, 
patterns of degradation, and distribution of sampling locations. Models built for one 
watershed may not generalize to other watersheds, even if they share many 
environmental characteristics. 

• SSN models offer a way to make site-specific and spatially explicit determinations by 
creating maps of extrapolated CSCI scores along a drainage network, that can support 
management decisions:  

o Maps may provide confidence in decisions about stream health, and whether they 
apply to upstream tributaries or downstream reaches. 

o Maps can identify regions where more sampling is required to improve 
confidence in estimates of condition.  

o Maps can be customized for diverse applications to reflect different levels of 
confidence they require. 

o Maps can be redrawn to incorporate new data as they become available.  

• The drawbacks of a map-based approach are that the models will need to be generated for 
each watershed. However, the process could be streamlined to reduce the resources 
required for routine applications.  

• Future efforts should explore the ability to create regional maps of similar watersheds to 
reduce effort and increase confidence in extrapolated scores. Models can and should be 
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developed for other management endpoints, such as algal indices of biotic integrity, 
hydromodification, and riparian wetland condition. 
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INTRODUCTION 
Biological indices such as the California Stream Condition Index (CSCI, Mazor et al. 2016) are 
increasingly being used in regulatory, management, and other monitoring programs focusing on 
stream health relative to beneficial use objectives. As the adoption of the CSCI in the regulatory 
and management environment expands in California, questions are increasingly arising over the 
best way to interpret scores. Among these questions is uncertainty about spatial 
representativeness. For example, how much distance along a reach does a score from a single site 
represent? Because bioassessment samples are typically collected from relatively short lengths of 
a stream (generally 150 m in California, Ode 2007) that are sparsely distributed throughout a 
watershed, there is often a need to extrapolate the results to adjacent reaches.  

The field of spatial statistics offers a way to extrapolate scores from a sampled location to an 
unsampled location. By estimating the variance in chemical, physical, or biological 
measurements as a function of distance between sampling locations, spatial statistical models can 
estimate variables at intervening unsampled locations. Spatial statistical network models (SSNs), 
recently developed by Ver Hoef et al. (2016), are appropriate for fluvial systems because they 
incorporate up- and down-stream flow connectivity in characterizing distance between sampling 
locations.  

Until recently, efforts to estimate biological condition at unsampled reaches made use of models 
based on land cover or other measured stressors (e.g., Carlisle et al. 2009, Falcone et al. 2010, 
May et al. 2015, Hill et al. in review). California has recently released statewide maps of 
estimated biological condition modeled from landuse and other stressors as part of its Healthy 
Watersheds Initiative 
(http://www.mywaterquality.ca.gov/monitoring_council/healthy_streams/index.html). Although 
these models are effective, they may be inappropriate for certain management applications, as 
they presuppose impacts from stressors without accounting for mitigating factors, such as habitat 
restoration or stormwater treatment. That is, these models use stressors as proxies for condition. 
In contrast, spatial statistical models make estimates from nearby sites with known conditions. 
Thus, they provide a different (and more direct) line of evidence about the condition of streams 
where bioassessment samples are lacking. 

Spatial statistical models are not a new discipline, and are widely used in mining and other 
geological applications (Cressie 1993). They take advantage of the fact that samples close 
together tend to be similar (i.e., they are autocorrelated). Thus, the condition of an unsampled 
site can be estimated if sites nearby are sampled and scored (and estimates will be better if the 
sampled sites are closer). However, spatial models that incorporate the unique features of stream 
network topology have only recently become available (Ver Hoef and Peterson 2010, Ver Hoef 
et al. 2014, Ver Hoef et al. 2016). Spatial statistical network (SSN) models can assess 
autocorrelation in upstream and downstream directions independently, as well as “overland” 
autocorrelation among adjacent tributaries. SSNs have been used to model physico-chemical 
parameters in streams, such as temperature (e.g., Steel et al. 2016). SSNs have also been used to 
estimate biological parameters, such as fish population density (Isaak et al. 2017), as well as 
benthic macroinvertebrates bioassessment indices (Frieden et al. 2014). 

We developed SSN models for 6 watersheds with at least 30 bioassessment sites in California to 
see if they could provide guidance on how to extrapolate CSCI scores to unsampled reaches. We 

http://www.mywaterquality.ca.gov/monitoring_council/healthy_streams/index.html
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developed models with both a “tail-up” (i.e., upstream) and “tail-down” (i.e., downstream) 
component, and evaluated the “ranges” (i.e., maximum distance of autocorrelation) for each. For 
one watershed (i.e., Alameda Creek), the influence of covariates was explored by adding 
developed land cover within a 500-m radius as a predictor in the model (this watershed was 
selected for exploring land cover covariates at random, prior to the development of models for 
any watershed). We subsequently applied the models to a dense array of prediction points in each 
watershed to generate maps of predicted condition at unsampled locations. We identified 
unsampled sites that could be designated with known confidence as either healthy or altered (i.e., 
sites whose prediction intervals were entirely above or below a threshold of biological 
condition). We then explored potential applications of SSNs and maps in different management 
scenarios. 

METHODS 
Sampling locations 

Bioassessment data were collected at 3254 unique sites in California under a variety of programs 
(Figure 1). Benthic macroinvertebrates were sampled according to Ode 2007, and scored with 
the California Stream Condition Index (CSCI) following Mazor et al. (2016). The CSCI is a 
predictive index that compares observed taxa and metrics to values expected under reference 
conditions based on site-specific environmental variables, such as watershed area, geology, and 
climate (Ode et al. 2016). CSCI scores were classified as indicating “intact” or “altered” 
condition, using the normal approximation of the 10th percentile of CSCI reference calibration 
scores as a threshold (i.e., a score of 0.79).  

 

 
Figure 1. Sampling locations (A), prediction points (B) from the National Stream Internet (NSI), and 
evaluation points (C) from probabilistic surveys. 
  

A B C 
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Stream network hydrography  

The National Stream Internet Hydrography Network (NSI, Isaak et al. 2013) was used as a 
stream network for all analyses. The NSI is derived from the widely used National Hydrography 
Network Plus (NHD-Plus Version 2, medium resolution), but has been modified to facilitate 
spatial network analyses. For example, discontinuities are removed, and complex multi-thread 
channels are replaced with a single line representing the predominant direction of flow (Figure 
2).  

 

 

 

Figure 2: A portion of the mainstem of the Santa Clara River, as represented in the NHD-Plus (red) 
and the NSI (blue) hydrography networks. Although identical in many areas (purple), the NSI has 
fewer flow discontinuities, and represents multi-thread channels as a single line, which is more 
appropriate for spatial analyses. 
 

Prediction points 

Unsampled points for predicting bioassessment scores were derived from two sources: 1) a set of 
134,696 points distributed as part of the NSI, specifically for use in spatial statistical network 
modeling; and 2) a set of 114,566 evaluation sites generated for probabilistic bioassessment 
surveys throughout the state, such as the statewide Perennial Streams Assessment, the 
Stormwater Monitoring Coalition in southern coastal California, and the Regional Monitoring 
Coalition in the Bay Area. The NSI prediction points are derived from the National Hydrography 
Dataset and have a density of approximately 1 site per stream-km in most regions of California. 
Because of the high number of surveys designed for southern California, the density of 
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evaluation sites is substantially greater than the density of NSI prediction points in this region. 
Hereafter, both sets of points are collectively referred to as “prediction points”. (Figure 1) 

Watersheds 

A number of watersheds from throughout the state were selected for inclusion in the study 
(Figure 3, Table 1): Feather River, Alameda Creek, Coyote Creek, Malibu Creek, Los Angeles 
River, and Santa Margarita River. Watersheds were selected if they contained at least 30 
bioassessment sites, and if a portion of the watershed was suspected to be affected by urban 
stormwater runoff. Notably, the watershed for Coyote Creek includes many hydrologically 
isolated creeks that drain directly to San Francisco Bay; other watersheds were largely comprised 
of single drainage networks with one outlet in each. In two watersheds (i.e., the Feather and 
Santa Margarita Rivers), the majority of sites had high CSCI scores (i.e., above the threshold of 
0.79), but in the others, scores were typically lower. 

 

 
Figure 3. The six watersheds included in the analysis. 
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Table 1. Watershed summaries. NSI: National Stream Internet (Isaak et al. 2013). n: Number of sites sampled 
 

  Watershed properties   Available data 

 Area 
(km2) 

Stream length 
in  NSI (km) 

% % % developed 
open space 

   
Mean CSCI % CSCI ≥ 0.79 Watershed urban agricultural Major cities   n 

Feather River 9389 7377 0.3 1 1 Yuba City, Marysville  68 0.95 82 
Alameda Creek 1638 1459 9 1 5 Pleasanton, Livermore  32 0.68 38 
Coyote Creek 2174 1486 33 1 9 San Jose  101 0.70 40 

Malibu Creek 285 260 12 2 13 
Thousand Oaks, Agoura 
Hills  56 0.61 9 

Los Angeles River 2160 1197 52 0 10 Los Angeles, Long Beach  91 0.63 31 
Santa Margarita River 1924 1535 8 5 8 Temecula, Oceanside   32 0.87 69 
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Data processing to create spatial statistical networks 

All methods follow Peterson (2015). The NSI layer was converted to a landscape spatial network 
(LSN) using the STARS package in ArcGIS (Peterson and Ver Hoef 2014). Network topology 
was checked for major errors (e.g., complex confluences or downstream divergences, as 
described in Peterson 2015), and corrected if any were found. Reach-contributing areas were 
created for each stream segment in the LSN, using NHD-Plus waterbodies to provide weights for 
additive function values (Ver Hoef and Peterson 2010). Sampling sites and prediction points 
were added to the LSN geodatabase, and all were exported as an R object for modeling. For one 
watershed (i.e., Alameda Creek), the area of developed land cover within a 500-m radius of the 
sampling or prediction point was also calculated for use as a covariate in models. 

Modeling CSCI scores for spatial networks 

The glmssn() function in the SSN package (Ver Hoef et al. 2014) was used to create generalized 
linear models that predict CSCI scores based on proximity to sampled locations. An SSN model 
can have up to three spatial autocorrelation components: a “tail-up” component (for 
autocorrelation in an upstream direction), a “tail-down” component (for autocorrelation in a 
downstream direction), and a Euclidean component (for autocorrelation over land, irrespective of 
the stream network). There are five types of functions that are appropriate for the tail-up and tail-
down components (i.e., spherical, exponential, linear-sill, Mariah, and Epanechnikov), and four 
for the Euclidean components (i.e., spherical, exponential, Cauchy, and Gaussian). For details on 
these functions, refer to Ver Hoef and Peterson (2010). In addition to the three spatial 
components, a “nugget” component, representing the variability of multiple samples taken at a 
single location, is included in all models. 

Because both up- and downstream autocorrelation may be important for extrapolating, we 
calibrated models for each watershed containing both a tail-up and a tail-down component (for 
all 25 possible combinations of correlation functions). We also calibrated three-component 
models containing Euclidean components (specifically, all-spherical and all-exponential) for 
comparison, but we did not consider a Euclidean component to be appropriate as it is more likely 
to reflect autocorrelation in land use rather than autocorrelation in biotic assemblages. Finally, 
we also calibrated a non-spatial model (also called “nugget-only” models), plus all one-
component tail-up and tail-down models for comparison. These 3-component, 1-component, and 
nugget-only models provide benchmarks against which the selected 2-component models were 
compared. The InfoCritCompare() function in the SSN package was used to calculate a variety 
of measures of model performance, including the Aikake Information Criterion (AIC) value. The 
two-component model with the lowest AIC value was selected and refit using restricted 
maximum likelihood (restricted maximum likelihood is superior to maximum likelihood, but 
AIC comparisons are only valid when maximum likelihood is used when fixed effects change in 
different models, Verbeke and Molenberghs 2000). For Alameda Creek, the selected model was 
also fit with a covariate (i.e., development within a 500-m radius of the point). Bias was 
estimated using leave-one-out cross validation, as implemented by the InfoCritCompare() 
function. 
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Creation of maps 

Selected models were used to predict CSCI scores at all prediction points in each watershed (up 
to 4277 sites in a single watershed). Because glmssn models also generate prediction standard 
errors (SE), prediction intervals could also be calculated. We calculated the percent of sites with 
small SE (i.e., SE ≤ 0.15) and medium SE (i.e., SE ≤ 0.2) for each watershed. The 75%, 90%, 
95%, and 99% prediction intervals were calculated as the predicted score, plus or minus the z-
score times the SE (e.g., 1.96 for the 95% prediction interval, 2.58 for the 99% prediction 
interval, etc.). Two types of maps were then created: One showing predicted CSCI score, and 
one highlighting sites where the prediction interval was above or below 0.79 (i.e., the threshold 
used to identify altered streams in recent condition assessments, e.g., Mazor 2015) for all 4 
prediction intervals. 

Results 

Model calibration and performance 
A total of 38 glmssn models were created for each watershed, in addition to two models that 
included land use covariates for Alameda Creek. One-component (i.e., tail-up or tail-down), two-
component (i.e., tail-up and tail-down), and three-component (i.e., tail-up, tail-down, and 
Euclidean) models were all superior to nugget-only (non-spatial) models in terms of having 
lower root-mean squared prediction errors (RMSPE). In two watersheds (Coyote and Los 
Angeles), the three-component models had substantially lower errors than all two-component 
models, but in the other 4 watersheds, the addition of a Euclidean component did not lead to a 
major improvement (Figure 4). Overall performance varied widely among the watersheds. The 
lowest errors were for the Malibu Creek model (RMSPE: 0.11), followed by the Santa Margarita 
and Alameda Creek models (RMSPEs: 0.14); the Feather and Los Angeles Rivers models had 
larger errors (RMSPEs: 0.17), followed by Coyote Creek (RSMPE: 0.20). 
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Figure 4. Root-mean squared prediction error versus the number of spatial components in glmssn 
models for each watershed. Each symbol represents a single model. Pink circles represent the 
selected two-component models with the lowest AIC. Blue triangles represent models with local 
landcover covariates (Alameda Creek alone). 0 component models: Nugget-only (nonspatial) models. 
1-component models: Tail-up or tail-down models. 2-component models: Tail-up and tail-down 
models. 3-component models: Tail-up, tail-down, and Euclidean component models. 
 

The selected models varied in terms of the importance of each spatial component, and the 
autocorrelation models they used. The taildown component was generally more important than 
the tailup component, although it was negligible (i.e., 0.01) for the Feather River, and less 
important than the tailup component  
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Table 2. Performance of selected models. n: Number of sites in model calibration. Pearson: Pearson correlation coefficient between 
observed values and values predicted by leave-one-out cross validation (LOOCV). GR2: Generalized R-squared of covariates. RMSPE: 
Root-mean squared prediction error. TU: Tailup. TD: Taildown. NU: Nugget. COV: Land-cover covariate. Sph: Spherical model. Lin: 
Linear-with-sill model. Epa: Epanechnikov model. Exp: Exponential model. --: Not applicable. 

 

            
Correlation 

function   Range (km)   Partial sill   Variance component 

Model n 
O vs. E 

r GR2 RMSPE TU TD   TU TD   NU TU TD   COV NU TU TD 
Two-component models                 
    Feather 68 0.64 -- 0.17 Sph Lin  1602 761  0.011 0.032 0  -- 0.26 0.73 0.01 

 Alameda 32 0.87 -- 0.14 Sph Epa  2 36  0.009 0 0.054  -- 0.15 0 0.85 

 Coyote 101 0.03 -- 0.20 Exp Epa  0 28  0 0.018 0.083  -- 0 0.18 0.82 

 Malibu 56 0.78 -- 0.10 Epa Lin  30 15  0.007 0 0.039  -- 0.16 0 0.84 

 Los Angeles 91 0.34 -- 0.17 Epa Epa  140 56  0.015 0.020 0.056  -- 0.16 0.22 0.62 

 Santa Margarita 32 0.61 -- 0.14 Epa Epa  287 39  0.010 0.019 0.009  -- 0.26 0.51 0.23 
Alameda models with land use covariate               
 Spatial 32 0.86 0.01 0.15 Sph Epa  3 429  0.011 0 0.594  0.01 0.02 0 0.97 
  Nonspatial 32 0.68 0.52 0.21 -- --   -- --   0.044 -- --   0.52 0.48 -- -- 
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The ranges of the models were often very large in at least one direction, frequently indicating 
that spatial autocorrelation could be detected throughout the entire drainage network. That is, the 
ranges were often close to or larger than the maximum distance between two flow-connected 
sites in the watershed (Table 2). For example, the tailup range for Malibu Creek was 30 km, 
while the maximum flow-connected distance was 37 km. However, despite the large ranges, the 
partial sills were small (i.e., <0.1), suggesting that spatial autocorrelation can be detected at great 
distances, although the effect of autocorrelation may be weak.  

For most watersheds (with the exception of Coyote Creek, and to a lesser extent, the Los Angeles 
River), predicted values along the drainage network were close to observed values. For example, 
the Pearson’s correlation coefficient between observed and cross-validated prediction values 
ranged from 0.34 (for the Los Angeles River) to 0.87 (for Alameda Creek). In contrast, Pearson’s 
correlation coefficient was only 0.03 for Coyote Creek, meaning that the spatial models were 
effectively predicting the average CSCI score for all sites in the watershed (Figure 5, Table 2). 
Models were unbiased for four watersheds, but showed fairly strong bias for Coyote Creek and 
the Los Angeles River, where the model under-predicted high-scoring sites and over-predicted 
low-scoring sites (Figure 6). 

 
Figure 5. Predicted versus observed CSCI scores in each watershed. Numbers indicate Pearson’s r-
squared values. Black dots represent the prediction for each site, and the vertical gray lines 
represent the 95% prediction interval. Dashed lines represent the 0.79 threshold. The solid blue line 
represents a linear fit between observed and predicted values, and the gray band represents the 95% 
confidence interval of the fit. The dotted line represents perfect predictions. 
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Figure 6. Differences between observed and predicted values versus predicted values. Black dots 
represent the prediction for each site. The solid blue line represents a linear fit between the 
difference and predicted values, and the gray band represents the 95% confidence interval of the fit. 
The dotted line represents perfect predictions. 
 

Inclusion of a local landcover covariate had a negligible impact on the one spatial-only model 
where this effect was evaluated (i.e., the model for Alameda Creek). For example, the RMSPE 
was similar for both the spatial-only (0.14) and the spatial + covariate (0.15) models (Table 2). 
The generalized R-squared of the land use variable was only 0.01 in the spatial + covariate 
model, but 0.52 in the nonspatial model. Therefore, although local landcover could predict CSCI 
scores, it did not improve predictions based on spatial autocorrelation with nearby sampled sites. 
Notably, the Alameda Creek spatial-only model was the best of the 6 watersheds that were 
evaluated, likely limiting the potential for improvement. 

Application to unsampled sites 
The models were used to predict CSCI scores at all prediction points in each of the 6 watersheds 
(Figures 7A-7F). The majority of sites in three watersheds (Feather, Alameda, and Santa 
Margarita) were estimated to have CSCI scores above the 0.79 threshold, but less than half the 
sites in Coyote Creek and the Los Angeles River watersheds—and only 7% of sites in Malibu 
Creek—were estimated to have scores this high (Table 3).  



12 

 
Figure 7A. Predicted CSCI scores for sites in the Feather River watershed. Large circles are more 
confidently estimated than small circles. Color indicates predicted score. Triangles indicate 
sampling locations, with color indicating observed score. SE: Prediction standard error. 
 

  



13 

 

 

Figure 7B. Predicted CSCI scores for sites in the Alameda Creek watershed. Large circles are more 
confidently estimated than small circles. Color indicates predicted score. Triangles indicate 
sampling locations, with color indicating observed score. SE: Prediction standard error. 
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Figure 7C. Predicted CSCI scores for sites in the Coyote Creek watershed. Large circles are more 
confidently estimated than small circles. Color indicates predicted score. Triangles indicate 
sampling locations, with color indicating observed score. SE: Prediction standard error. 
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Figure 7D. Predicted CSCI scores for sites in the Malibu Creek watershed. Large circles are more 
confidently estimated than small circles. Color indicates predicted score. Triangles indicate 
sampling locations, with color indicating observed score. SE: Prediction standard error. 
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Figure 7E. Predicted CSCI scores for sites in the Los Angeles River watershed. Large circles are 
more confidently estimated than small circles. Color indicates predicted score. Triangles indicate 
sampling locations, with color indicating observed score. SE: Prediction standard error. 
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Figure 7F. Predicted CSCI scores for sites in the Santa Margarita River watershed. Large circles are 
more confidently estimated than small circles. Color indicates predicted score. Triangles indicate 
sampling locations, with color indicating observed score. SE: Prediction standard error. 
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Table 3. CSCI scores and prediction intervals (PI) at prediction points in each watershed. SD: standard deviation. SE: prediction 
standard error. 

 

  
# Prediction points 

CSCI 
Score ≥ 0.79 

  % sites with SE ≤   % Sites with PI ≥ 0.79   % Sites with PI < 0.79 
Watershed Mean SD   0.15 0.20   0.99 0.95 0.9 0.75   0.99 0.95 0.9 0.75 
Feather 4277 0.97 0.09 4062   21% 54%   0% 2% 3% 13%   0% 1% 2% 2% 
Alameda 817 0.82 0.17 558  4% 44%  1% 3% 8% 19%  4% 6% 9% 12% 
Coyote 755 0.75 0.17 307  12% 26%  0% 1% 3% 9%  1% 3% 5% 11% 
Malibu 142 0.62 0.12 10  17% 50%  1% 1% 4% 5%  10% 25% 39% 57% 
Los Angeles 541 0.74 0.22 242  55% 78%  0% 1% 3% 7%  4% 8% 13% 24% 
Santa Margarita 748 0.81 0.06 545   13% 72%   0% 1% 2% 3%   0% 0% 0% 1% 
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Precision of the predictions also varied among watersheds. For example, only 4% of prediction 
points in Alameda Creek had SE < 0.15, as opposed to 55% of sites in the Los Angeles River 
(Table 3). The best precision was for watersheds with a high density of samples per stream-km 
(e.g., Los Angeles River, Malibu Creek), or low variability in CSCI scores at sampled sites (e.g., 
Feather River, Santa Margarita). The number of sites whose prediction intervals were above or 
below the 0.79 threshold varied by watershed. For example, for the 75% prediction interval, 62% 
of the sites in Malibu Creek could be confidently designated as having scores above or (far more 
frequently) below the 0.79 threshold. In contrast, 96% of the Santa Margarita sites had a 75% 
prediction interval that straddled the threshold, meaning that only 4% could be confidently 
designated (Table 3, Figures 8A-F).  

As the prediction intervals increased in size, the number of sites with confident designations 
decreased, as expected. At the highest level of confidence analyzed (i.e., 99% prediction 
interval), 1% or fewer sites were designated as healthy in any watershed, and only 10% were 
designated as altered in the Malibu watershed, where 90% of samples had CSCI scores below 
0.79.  
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Figure 8A. Predicted CSCI scores in the Feather River watershed. Outlined circles represent sites 
whose prediction intervals are above or below the 0.79 threshold. The number above the panel 
indicates the prediction interval (i.e., 0.75, 0.90, 0.95, and 0.99). Triangles represent sampling 
locations. 
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Figure 8B. Predicted CSCI scores in the Alameda Creek watershed. Outlined circles represent sites 
whose prediction intervals are above or below the 0.79 threshold. The number above the panel 
indicates the prediction interval (i.e., 0.75, 0.90, 0.95, and 0.99). Triangles represent sampling 
locations. 
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Figure 8C. Predicted CSCI scores in the Coyote Creek watershed. Outlined circles represent sites 
whose prediction intervals are above or below the 0.79 threshold. The number above the panel 
indicates the prediction interval (i.e., 0.75, 0.90, 0.95, and 0.99). Triangles represent sampling 
locations. 
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Figure 8D. Predicted CSCI scores in the Malibu Creek watershed. Outlined circles represent sites 
whose prediction intervals are above or below the 0.79 threshold. The number above the panel 
indicates the prediction interval (i.e., 0.75, 0.90, 0.95, and 0.99). Triangles represent sampling 
locations. 
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Figure 8E. Predicted CSCI scores in the Los Angeles River watershed. Outlined circles represent 
sites whose prediction intervals are above or below the 0.79 threshold. The number above the panel 
indicates the prediction interval (i.e., 0.75, 0.90, 0.95, and 0.99). Triangles represent sampling 
locations. 
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Figure 8F. Predicted CSCI scores in the Santa Margarita River watershed. Outlined circles represent 
sites whose prediction intervals are above or below the 0.79 threshold. The number above the panel 
indicates the prediction interval (i.e., 0.75, 0.90, 0.95, and 0.99). Triangles represent sampling 
locations. 
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DISCUSSION 
Factors affecting model performance 

SSN models were effective at estimating CSCI scores at unsampled sites. Across the 6 
watersheds, SSN models were able to estimate CSCI scores at 53% of prediction points with a 
SE of 0.2 or smaller. Furthermore, 11% of all evaluated prediction points across the 6 watersheds 
could be designated as healthy or altered relative to a threshold of 0.79, based on the 75% 
prediction interval. Some models, like Malibu creek and Alameda, were better than others, and 
the model for Coyote Creek was particularly ineffective. A high sampling density in a watershed 
with relatively homogenous CSCI scores is likely to contribute to successful predictions, as was 
the case in Malibu Creek. Although many sites were sampled throughout Coyote Creek, the 
spatial model was poor because most of the sites are not truly connected in a hydrologic sense. 
That is, most samples were on small isolated creeks draining directly to San Francisco Bay. In 
contrast, the other watersheds in the study were, with minor exceptions, true “watersheds” with 
many sites hydrologically connected to each other. In hydrologically connected watersheds, a 
purely spatial SSN approach works well to predict scores at unsampled sites (and better than a 
traditional non-spatial model based on surrounding land cover in the case of Alameda Creek, 
Table 2). In hydrologically disconnected locations (like Coyote Creek), predictions from purely 
spatial models that lack a Euclidean component are no better than a simple average watershed 
score.  

Many of the models had a large tail-down component and a small or negligible tail-up 
component, although the reverse was true in the Feather River and the Santa Margarita (where, 
unlike in other watersheds, the majority of observed CSCI scores were in good condition; Table 
1). This pattern is consistent with the way bioassessment scores are often informally interpreted 
to represent streams: high scores indicate that upstream conditions are also good, and poor scores 
indicate that downstream conditions are also poor. Although not evident in the data sets in the 
study, downstream recovery from impacts is possible (e.g., Rehn 2008). Therefore, the models 
may be reflecting the specific pattern of disturbance in a watershed and the representation of this 
pattern in sampled data, rather than the influence of intrinsic watershed properties on spatial 
autocorrelations of bioassessment scores, or properties of stream networks in general. The results 
of a model made for one watershed may not generalize to others, even if they have very similar 
catchment properties. 

Applications to decision-making and monitoring design 

Spatial models are an effective way to extrapolate scores to unsampled reaches. However, they 
do not directly provide general guidance on extrapolating scores that can be applied broadly. 
More specifically, the ranges of the tail-up or tail-down components should not be interpreted as 
limits on extrapolating scores. The SSN models in this study were strictly spatial, and (with the 
exception of Alameda Creek) did not account for covariates, such as land use, stream 
temperature, or perennial flow status. Including appropriate covariates in SSN models (such as 
temperature, habitat, or more meaningful measurements of contributing land cover) could 
decrease the amount of detectable spatial autocorrelation (D. Isaaks, personal communication). 
But even then, it may not be appropriate to interpret the ranges of these as limits for 
extrapolating bioassessment scores to unsampled reaches, because large ranges may not reflect 
the small (yet detectable) autocorrelation between sites separated by large distances. However, it 
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may be possible to derive a general limit by estimating the maximum distance from a sampled 
location that a prediction point has an acceptably small SE. 

Maps based on SSNs offer an alternative way for evaluating limits, and have the advantage of 
illustrating these limits in a site-specific and spatially explicit manner. Managers seeking to 
evaluate stream condition can identify with known confidence intervals where reaches are likely 
above or below thresholds of interest. For example, maps of the Malibu Creek watershed 
indicated that a large extent of this watershed is largely in poor condition, including areas far 
from sampled sites (e.g., Potrero Valley); however, confidence in the condition estimates for 
these remote tributaries is low. Moreover, certain portions of the watershed estimated with high 
confidence to be in good condition (e.g., Cold Creek). Maps like the ones shown in Figure 8D 
can support discussions among regulators and stakeholders when deciding how to designate an 
impaired waterbody, or identifying regions where confirmatory sampling is needed to support a 
designation. Additionally, they can easily be modified to reflect thresholds and prediction 
intervals (based on desired levels of confidence) that are appropriate to the questions at hand. 
This spatially explicit approach is an alternative to the traditional practice of watershed-wide 
classifications of good or bad condition. 

A drawback of a map-based approach is that models require calibration for each relevant 
application, and they must be recalibrated to accommodate new data. This approach is 
considerably more complex than a simple limit that could be applied universally to all streams in 
California. But this complexity affords more flexibility, like the ability to incorporate new data, 
or to provide limits that are specific to individual reaches. The toolkits required to create the 
models are not simple (Peterson 2015, Ver Hoef et al. 2014), but routine application is feasible if 
the process is streamlined and automated, and training is provided to agency staff. 

A watershed-by-watershed approach will work well in regions with ongoing bioassessment 
surveys (e.g., the Stormwater Monitoring Coalition in Southern California, or the Regional 
Monitoring Program in the Bay Area), and major watersheds in these regions are well suited for 
spatial modeling. Other parts of California may face greater challenges because few watersheds 
have the sampling density to make effective models (e.g., 30 sites per watershed in the present 
study). In these situations, it may be more efficient to develop models covering multiple 
watersheds in larger regions. Additionally, incorporating landcover (or similar) covariates into 
SSN models will likely yield more meaningful estimates of condition in watersheds with few to 
no existing samples.  

Currently, watershed managers are pressed to extrapolate results from limited sampling locations 
to make decisions about larger reaches, or about entire catchments. Maps based on SSN models 
offer a way to support these inferences in a transparent and objective manner. Although maps 
and statistical models cannot substitute professional judgment or preempt local expertise, they 
provide a good foundation for stakeholders and regulators to evaluate available bioassessment 
data in a spatially explicit manner.  
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APPENDIX 

 
Appendix Figure 1: Model performance and selection criteria for each watershed. TU: Tail-up. TD: 
Tail-down. EU: Euclidean. neg2LogL: -2 log-likelihood; low values are best. AIC: Aikake Information 
Criterion; low values are best. bias: mean of differences between observed and predicted values 
from leave-one-out-cross-validation (LOOCV); values close to zero are best. std.bias: standardized 
bias, calculated as the mean difference between observed and predicted values, divided by the 
prediction standard error from LOOCV; values close to zero are best. RMSPE: Root-mean-squared 
prediction error; low values are best. RAV: root-average variance, calculated as the square root of 
the mean of squared prediction errors; values close to RSMPE are best. std.MSPE: Standardized 
mean-squared prediction error; values close to 1 are best. cov.80: Number of times the predicted 
value was in the 80th percentile prediction interval; values close to 0.8 are best. cov.90: Number of 
times the predicted value was in the 90th percentile prediction interval; values close to 0.9 are best. 
cov.95: Number of times the predicted value was in the 95th percentile prediction interval; values 
close to 0.95 are best. Exp: Exponential autocorrelation model. Sph: Spherical autorelation  model. 
Epa: Epanechnikov autocorrelation model. Lin: Linear-with-sill correlation model. Mar: Mariah 
correlation model. Asterisks (*) indicates selected models. 
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Appendix Table 1A. Model performance and selection criteria for the Feather River. 

Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

3 Exp Exp Exp -33.6 -17.6 -0.0038 -0.0068 0.178 0.182 0.973 0.84 0.88 0.96 

3 Sph Sph Sph -34.0 -18.0 -0.0058 -0.0105 0.174 0.181 0.957 0.85 0.88 0.94 

2 Epa Epa None -34.0 -22.0 -0.0058 -0.0105 0.174 0.182 0.953 0.84 0.88 0.94 

2 Epa Exp None -34.0 -22.0 -0.0053 -0.0094 0.175 0.181 0.974 0.84 0.88 0.93 

2 Epa Lin None -34.1 -22.1 -0.0059 -0.0106 0.173 0.182 0.950 0.85 0.88 0.94 

2 Epa Mar None -34.1 -22.1 -0.0056 -0.0101 0.174 0.181 0.962 0.84 0.88 0.94 

2 Epa Sph None -34.1 -22.1 -0.0056 -0.0101 0.174 0.181 0.959 0.85 0.88 0.94 

2 Exp Epa None -33.8 -21.8 -0.0056 -0.0101 0.174 0.182 0.960 0.84 0.88 0.94 

2 Exp Exp None -34.1 -22.1 -0.0052 -0.0094 0.175 0.181 0.964 0.85 0.88 0.96 

2 Exp Lin None -33.8 -21.8 -0.0056 -0.0101 0.174 0.181 0.965 0.84 0.88 0.94 

2 Exp Mar None -33.7 -21.7 -0.0054 -0.0096 0.175 0.185 0.939 0.84 0.88 0.96 

2 Exp Sph None -33.8 -21.8 -0.0056 -0.0101 0.174 0.181 0.961 0.84 0.88 0.94 

2 Lin Epa None -34.0 -22.0 -0.0056 -0.0101 0.174 0.181 0.960 0.85 0.88 0.94 

2 Lin Exp None -34.1 -22.1 -0.0056 -0.0103 0.174 0.180 0.955 0.85 0.88 0.94 

2 Lin Lin None -34.1 -22.1 -0.0059 -0.0106 0.173 0.181 0.953 0.85 0.88 0.94 

2 Lin Mar None -34.1 -22.1 -0.0056 -0.0101 0.174 0.181 0.965 0.84 0.88 0.94 

2 Lin Sph None -34.0 -22.0 -0.0057 -0.0103 0.174 0.181 0.964 0.85 0.88 0.94 

2 Mar Epa None -30.3 -18.3 -0.0037 -0.0066 0.185 0.188 0.985 0.84 0.90 0.96 

2 Mar Exp None -29.7 -17.7 -0.0032 -0.0056 0.187 0.190 0.988 0.82 0.90 0.96 

2 Mar Lin None -30.3 -18.3 -0.0039 -0.0069 0.184 0.187 0.986 0.82 0.90 0.94 

2 Mar Mar None -30.4 -18.4 -0.0040 -0.0072 0.184 0.187 0.992 0.84 0.88 0.94 

2 Mar Sph None -30.4 -18.4 -0.0040 -0.0071 0.184 0.187 0.990 0.84 0.88 0.94 

2 Sph Epa None -34.0 -22.0 -0.0058 -0.0104 0.174 0.181 0.956 0.85 0.88 0.94 

2 Sph Exp None -34.0 -22.0 -0.0056 -0.0101 0.174 0.182 0.956 0.85 0.88 0.94 
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Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

*2 Sph Lin None -34.4 -22.4 -0.0053 -0.0094 0.174 0.187 0.910 0.85 0.91 0.96 

2 Sph Mar None -34.1 -22.1 -0.0059 -0.0106 0.174 0.181 0.962 0.85 0.88 0.94 

2 Sph Sph None -34.0 -22.0 -0.0058 -0.0104 0.174 0.181 0.955 0.85 0.88 0.94 

0 None None None -9.8 -5.8 0.0000 0.0000 0.228 0.227 1.015 0.85 0.90 0.93 
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Appendix Table 1B. Model performance and selection criteria for Alameda Creek. 

Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

3 Exp Exp Exp -27.0 -11.0 0.0053 0.0088 0.142 0.139 1.017 0.75 0.94 1.00 

3 Sph Sph Sph -28.9 -12.9 0.0048 0.0081 0.136 0.137 1.001 0.72 0.94 1.00 

2 Epa Epa None -26.5 -14.5 0.0032 0.0043 0.143 0.142 1.016 0.78 0.94 1.00 

2 Epa Exp None -25.2 -13.2 -0.0003 -0.0022 0.146 0.144 1.024 0.78 0.91 1.00 

2 Epa Lin None -25.6 -13.6 0.0016 0.0017 0.140 0.144 0.992 0.78 0.94 1.00 

2 Epa Mar None -20.8 -8.8 -0.0020 -0.0038 0.149 0.156 0.953 0.81 0.94 0.97 

2 Epa Sph None -25.6 -13.6 0.0021 0.0024 0.145 0.145 1.019 0.81 0.94 1.00 

2 Exp Epa None -26.5 -14.5 0.0032 0.0043 0.143 0.142 1.016 0.78 0.94 1.00 

2 Exp Exp None -25.2 -13.2 -0.0003 -0.0022 0.146 0.144 1.024 0.78 0.91 1.00 

2 Exp Lin None -25.6 -13.6 0.0016 0.0017 0.140 0.144 0.992 0.78 0.94 1.00 

2 Exp Mar None -21.8 -9.8 -0.0033 -0.0066 0.147 0.154 0.965 0.81 0.94 0.97 

2 Exp Sph None -25.6 -13.6 0.0021 0.0024 0.145 0.145 1.019 0.81 0.94 1.00 

2 Lin Epa None -26.5 -14.5 0.0032 0.0043 0.143 0.142 1.016 0.78 0.94 1.00 

2 Lin Exp None -25.2 -13.2 -0.0003 -0.0022 0.146 0.144 1.024 0.78 0.91 1.00 

2 Lin Lin None -25.6 -13.6 0.0016 0.0017 0.140 0.144 0.992 0.78 0.94 1.00 

2 Lin Mar None -20.8 -8.8 -0.0020 -0.0038 0.149 0.156 0.953 0.81 0.94 0.97 

2 Lin Sph None -25.6 -13.6 0.0021 0.0024 0.145 0.145 1.019 0.81 0.94 1.00 

2 Mar Epa None -26.5 -14.5 0.0032 0.0043 0.143 0.142 1.016 0.78 0.94 1.00 

2 Mar Exp None -25.2 -13.2 -0.0003 -0.0022 0.146 0.144 1.025 0.78 0.91 1.00 

2 Mar Lin None -25.6 -13.6 0.0016 0.0017 0.140 0.144 0.992 0.78 0.94 1.00 

2 Mar Mar None -21.8 -9.8 -0.0033 -0.0066 0.147 0.154 0.966 0.81 0.94 0.97 

2 Mar Sph None -25.6 -13.6 0.0021 0.0024 0.145 0.145 1.019 0.81 0.94 1.00 

2 Sph Epa None -26.5 -14.5 0.0032 0.0043 0.143 0.142 1.016 0.78 0.94 1.00 

*2 Sph Exp None -25.2 -13.2 -0.0003 -0.0022 0.146 0.144 1.024 0.78 0.91 1.00 

2 Sph Lin None -25.6 -13.6 0.0016 0.0017 0.140 0.144 0.992 0.78 0.94 1.00 
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Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

2 Sph Mar None -21.8 -9.8 -0.0033 -0.0066 0.147 0.154 0.965 0.81 0.94 0.97 

2 Sph Sph None -25.6 -13.6 0.0021 0.0024 0.145 0.145 1.019 0.81 0.94 1.00 

0 None None None 11.9 15.9 0.0000 0.0000 0.301 0.296 1.032 0.78 0.97 0.97 
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Appendix Table 1C. Model performance and selection criteria for Coyote Creek. 

Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

3 Exp Exp Exp -36.9 
-

20.9 0.0005 0.0007 0.178 0.180 0.999 0.82 0.93 0.96 

3 Sph Sph Sph -39.9 
-

23.9 0.0003 0.0004 0.177 0.178 1.002 0.81 0.93 0.96 

2 Epa Epa None -18.4 -6.4 0.0057 0.0093 0.198 0.194 1.016 0.80 0.91 0.96 

2 Epa Exp None -14.6 -2.6 0.0052 0.0083 0.201 0.200 1.003 0.82 0.90 0.97 

2 Epa Lin None -18.2 -6.2 0.0063 0.0106 0.199 0.194 1.019 0.80 0.92 0.96 

2 Epa Mar None -5.6 6.4 0.0015 0.0020 0.228 0.218 1.038 0.77 0.91 0.96 

2 Epa Sph None -17.7 -5.7 0.0057 0.0092 0.199 0.196 1.013 0.82 0.91 0.95 

*2 Exp Epa None -19.6 -7.6 0.0059 0.0097 0.198 0.193 1.017 0.81 0.91 0.96 

2 Exp Exp None -14.6 -2.6 0.0052 0.0083 0.201 0.200 1.003 0.82 0.90 0.97 

2 Exp Lin None -18.1 -6.1 0.0065 0.0109 0.199 0.194 1.022 0.81 0.92 0.95 

2 Exp Mar None -3.2 8.8 0.0015 0.0020 0.230 0.221 1.031 0.78 0.89 0.97 

2 Exp Sph None -18.7 -6.7 0.0058 0.0094 0.199 0.195 1.011 0.81 0.92 0.96 

2 Lin Epa None -18.5 -6.5 0.0057 0.0093 0.198 0.194 1.016 0.79 0.91 0.96 

2 Lin Exp None -14.6 -2.6 0.0052 0.0083 0.201 0.200 1.003 0.82 0.90 0.97 

2 Lin Lin None -18.2 -6.2 0.0063 0.0105 0.199 0.194 1.018 0.80 0.92 0.96 

2 Lin Mar None -5.8 6.2 0.0014 0.0019 0.227 0.217 1.037 0.77 0.90 0.96 

2 Lin Sph None -17.7 -5.7 0.0057 0.0092 0.199 0.196 1.013 0.82 0.91 0.95 

2 Mar Epa None -19.0 -7.0 0.0059 0.0096 0.198 0.194 1.018 0.81 0.92 0.96 

2 Mar Exp None -14.8 -2.8 0.0052 0.0083 0.202 0.200 1.003 0.81 0.90 0.97 

2 Mar Lin None -18.7 -6.7 0.0066 0.0111 0.199 0.194 1.026 0.81 0.92 0.95 

2 Mar Mar None -8.2 3.8 0.0037 0.0059 0.208 0.206 0.999 0.80 0.90 0.97 

2 Mar Sph None -18.1 -6.1 0.0057 0.0093 0.199 0.196 1.014 0.79 0.91 0.96 

2 Sph Epa None -18.5 -6.5 0.0058 0.0094 0.198 0.194 1.016 0.82 0.92 0.96 

2 Sph Exp None -14.7 -2.7 0.0050 0.0080 0.202 0.202 0.979 0.82 0.91 0.97 

2 Sph Lin None -18.2 -6.2 0.0064 0.0106 0.199 0.194 1.020 0.80 0.92 0.96 
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Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

2 Sph Mar None -5.1 6.9 0.0015 0.0020 0.228 0.219 1.034 0.77 0.90 0.97 

2 Sph Sph None -17.7 -5.7 0.0057 0.0092 0.199 0.196 1.013 0.82 0.91 0.95 

0 None None None 29.8 33.8 0.0000 0.0000 0.283 0.282 1.010 0.79 0.90 0.97 
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Appendix Table 1D. Model performance and selection criteria for Malibu Creek. 

Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

3 Exp Exp Exp -76.7 -60.7 -0.0020 -0.0046 0.107 0.108 0.995 0.80 0.95 0.95 

3 Sph Sph Sph -77.8 -61.8 -0.0021 -0.0050 0.105 0.109 0.974 0.80 0.95 0.95 

2 Epa Epa None -78.4 -66.4 -0.0024 -0.0054 0.105 0.107 0.991 0.86 0.93 0.95 

2 Epa Exp None -76.8 -64.8 -0.0023 -0.0052 0.106 0.108 0.988 0.80 0.95 0.95 

2 Epa Lin None -79.2 -67.2 -0.0017 -0.0039 0.103 0.106 0.979 0.82 0.95 0.95 

2 Epa Mar None -74.1 -62.1 -0.0041 -0.0092 0.106 0.110 0.983 0.84 0.95 0.95 

2 Epa Sph None -77.7 -65.7 -0.0021 -0.0049 0.106 0.108 0.985 0.80 0.93 0.95 

2 Exp Epa None -78.2 -66.2 -0.0024 -0.0054 0.105 0.106 1.013 0.84 0.91 0.95 

2 Exp Exp None -76.7 -64.7 -0.0022 -0.0051 0.106 0.109 0.985 0.80 0.95 0.95 

*2 Exp Lin None -79.1 -67.1 -0.0016 -0.0038 0.103 0.106 0.983 0.82 0.95 0.95 

2 Exp Mar None -74.0 -62.0 -0.0038 -0.0084 0.106 0.110 0.985 0.84 0.95 0.95 

2 Exp Sph None -77.7 -65.7 -0.0023 -0.0052 0.105 0.108 0.984 0.80 0.95 0.95 

2 Lin Epa None -78.1 -66.1 -0.0017 -0.0041 0.106 0.107 0.990 0.82 0.93 0.95 

2 Lin Exp None -76.8 -64.8 -0.0023 -0.0054 0.106 0.108 0.984 0.82 0.95 0.95 

2 Lin Lin None -78.5 -66.5 -0.0018 -0.0042 0.105 0.107 0.989 0.82 0.93 0.95 

2 Lin Mar None -73.9 -61.9 -0.0038 -0.0084 0.106 0.110 0.986 0.84 0.95 0.95 

2 Lin Sph None -77.7 -65.7 -0.0022 -0.0051 0.105 0.108 0.989 0.80 0.93 0.95 

2 Mar Epa None -78.7 -66.7 -0.0022 -0.0053 0.106 0.107 1.010 0.84 0.93 0.95 

2 Mar Exp None -77.3 -65.3 -0.0028 -0.0067 0.107 0.108 1.004 0.79 0.95 0.96 

2 Mar Lin None -79.1 -67.1 -0.0016 -0.0040 0.105 0.105 1.019 0.77 0.95 0.96 

2 Mar Mar None -73.2 -61.2 -0.0039 -0.0090 0.109 0.111 1.010 0.82 0.93 0.96 

2 Mar Sph None -78.2 -66.2 -0.0027 -0.0064 0.106 0.107 1.005 0.79 0.95 0.96 

2 Sph Epa None -78.2 -66.2 -0.0021 -0.0050 0.105 0.105 1.040 0.84 0.91 0.95 

2 Sph Exp None -76.7 -64.7 -0.0023 -0.0053 0.106 0.108 0.987 0.80 0.95 0.95 

2 Sph Lin None -78.6 -66.6 -0.0017 -0.0040 0.105 0.106 0.999 0.82 0.93 0.95 
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Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

2 Sph Mar None -74.0 -62.0 -0.0038 -0.0085 0.106 0.110 0.986 0.84 0.95 0.95 

2 Sph Sph None -77.6 -65.6 -0.0020 -0.0047 0.106 0.109 0.966 0.80 0.95 0.95 

0 None None None -39.6 -35.6 0.0000 0.0000 0.173 0.171 1.018 0.89 0.93 0.95 
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Appendix Table 1E. Model performance and selection criteria for the Los Angeles River. 

Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

3 Exp Exp Exp -51.2 -35.2 -0.0028 -0.0051 0.161 0.166 0.972 0.84 0.91 0.97 

3 Sph Sph Sph -52.7 -36.7 -0.0022 -0.0041 0.161 0.165 0.978 0.84 0.91 0.97 

*2 Epa Epa None -48.0 -36.0 -0.0060 -0.0100 0.171 0.173 0.983 0.80 0.91 0.97 

2 Epa Exp None -44.8 -32.8 -0.0069 -0.0118 0.174 0.176 0.979 0.82 0.90 0.97 

2 Epa Lin None -47.8 -35.8 -0.0054 -0.0091 0.172 0.172 0.991 0.82 0.90 0.96 

2 Epa Mar None -39.7 -27.7 -0.0070 -0.0121 0.177 0.186 0.936 0.81 0.91 0.98 

2 Epa Sph None -47.0 -35.0 -0.0065 -0.0109 0.171 0.174 0.978 0.81 0.91 0.97 

2 Exp Epa None -47.9 -35.9 -0.0060 -0.0100 0.171 0.172 0.986 0.80 0.91 0.97 

2 Exp Exp None -44.7 -32.7 -0.0070 -0.0119 0.174 0.177 0.975 0.82 0.90 0.97 

2 Exp Lin None -47.7 -35.7 -0.0054 -0.0091 0.172 0.172 0.995 0.81 0.90 0.96 

2 Exp Mar None -39.1 -27.1 -0.0080 -0.0140 0.178 0.184 0.960 0.82 0.91 0.98 

2 Exp Sph None -46.8 -34.8 -0.0065 -0.0110 0.171 0.174 0.980 0.81 0.91 0.97 

2 Lin Epa None -47.9 -35.9 -0.0060 -0.0100 0.171 0.173 0.983 0.81 0.91 0.97 

2 Lin Exp None -44.8 -32.8 -0.0070 -0.0119 0.174 0.176 0.980 0.82 0.90 0.97 

2 Lin Lin None -47.8 -35.8 -0.0054 -0.0091 0.172 0.172 0.991 0.81 0.90 0.96 

2 Lin Mar None -39.1 -27.1 -0.0065 -0.0114 0.178 0.180 0.984 0.80 0.90 0.98 

2 Lin Sph None -46.8 -34.8 -0.0064 -0.0109 0.171 0.174 0.979 0.84 0.91 0.97 

2 Mar Epa None -46.0 -34.0 -0.0069 -0.0117 0.172 0.173 0.995 0.85 0.92 0.96 

2 Mar Exp None -42.7 -30.7 -0.0081 -0.0139 0.176 0.177 0.988 0.84 0.91 0.97 

2 Mar Lin None -46.1 -34.1 -0.0058 -0.0101 0.173 0.169 1.025 0.82 0.90 0.95 

2 Mar Mar None -36.8 -24.8 -0.0092 -0.0160 0.180 0.186 0.934 0.82 0.92 0.97 

2 Mar Sph None -44.6 -32.6 -0.0073 -0.0124 0.173 0.176 0.965 0.85 0.92 0.96 

2 Sph Epa None -47.9 -35.9 -0.0060 -0.0100 0.171 0.173 0.983 0.81 0.91 0.97 

2 Sph Exp None -44.8 -32.8 -0.0070 -0.0119 0.174 0.176 0.980 0.82 0.90 0.97 

2 Sph Lin None -47.7 -35.7 -0.0054 -0.0091 0.172 0.172 0.990 0.81 0.90 0.96 



40 

Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

2 Sph Mar None -38.6 -26.6 -0.0064 -0.0109 0.178 0.189 0.873 0.84 0.95 0.98 

2 Sph Sph None -46.9 -34.9 -0.0065 -0.0110 0.171 0.174 0.978 0.81 0.91 0.97 

0 None None None 21.6 25.6 0.0000 0.0000 0.275 0.274 1.011 0.77 0.91 0.97 
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Appendix Table 1F. Model performance and selection criteria for the Santa Margarita River. 

Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

3 Exp Exp Exp -32.1 -16.1 0.0141 0.0271 0.140 0.140 1.005 0.81 0.84 0.91 

3 Sph Sph Sph -32.3 -16.3 0.0155 0.0296 0.142 0.141 0.993 0.81 0.88 0.88 

*2 Epa Epa None -32.7 -20.7 0.0155 0.0300 0.139 0.138 1.008 0.81 0.84 0.88 

2 Epa Exp None -32.5 -20.5 0.0149 0.0287 0.139 0.140 0.979 0.81 0.84 0.91 

2 Epa Lin None -32.7 -20.7 0.0146 0.0281 0.140 0.140 0.987 0.81 0.88 0.88 

2 Epa Mar None -32.5 -20.5 0.0138 0.0264 0.138 0.139 0.990 0.81 0.84 0.94 

2 Epa Sph None -32.7 -20.7 0.0150 0.0290 0.140 0.138 1.008 0.81 0.88 0.88 

2 Exp Epa None -31.9 -19.9 0.0134 0.0261 0.143 0.137 1.013 0.81 0.84 0.91 

2 Exp Exp None -31.9 -19.9 0.0153 0.0293 0.141 0.141 1.000 0.81 0.88 0.88 

2 Exp Lin None -31.9 -19.9 0.0153 0.0291 0.143 0.143 0.960 0.84 0.84 0.94 

2 Exp Mar None -32.2 -20.2 0.0129 0.0244 0.139 0.139 0.997 0.81 0.84 0.91 

2 Exp Sph None -32.2 -20.2 0.0147 0.0283 0.141 0.140 0.997 0.81 0.88 0.88 

2 Lin Epa None -32.7 -20.7 0.0156 0.0303 0.140 0.137 1.024 0.81 0.84 0.88 

2 Lin Exp None -32.6 -20.6 0.0150 0.0291 0.139 0.139 1.004 0.81 0.84 0.88 

2 Lin Lin None -32.7 -20.7 0.0151 0.0294 0.139 0.136 1.039 0.81 0.84 0.88 

2 Lin Mar None -32.5 -20.5 0.0138 0.0264 0.138 0.139 0.992 0.81 0.84 0.94 

2 Lin Sph None -32.5 -20.5 0.0145 0.0282 0.139 0.139 1.006 0.81 0.84 0.94 

2 Mar Epa None -30.5 -18.5 0.0150 0.0285 0.146 0.140 1.029 0.84 0.88 0.91 

2 Mar Exp None -30.0 -18.0 0.0146 0.0276 0.147 0.142 1.022 0.84 0.84 0.91 

2 Mar Lin None -30.5 -18.5 0.0138 0.0261 0.145 0.141 1.004 0.84 0.84 0.91 

2 Mar Mar None -29.1 -17.1 0.0137 0.0259 0.147 0.140 1.064 0.84 0.84 0.91 

2 Mar Sph None -30.3 -18.3 0.0152 0.0287 0.147 0.140 1.037 0.84 0.88 0.91 

2 Sph Epa None -32.6 -20.6 0.0148 0.0288 0.140 0.138 1.013 0.81 0.88 0.88 

2 Sph Exp None -32.5 -20.5 0.0149 0.0288 0.140 0.139 1.006 0.81 0.84 0.88 

2 Sph Lin None -32.6 -20.6 0.0143 0.0278 0.140 0.138 1.011 0.81 0.88 0.88 
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Components TU TD EU neg2LogL AIC bias std.bias RMSPE RAV std.MSPE cov.80 cov.90 cov.95 

2 Sph Mar None -32.4 -20.4 0.0142 0.0273 0.139 0.140 1.001 0.81 0.84 0.94 

2 Sph Sph None -32.4 -20.4 0.0142 0.0275 0.139 0.140 1.003 0.81 0.88 0.94 

0 None None None -20.0 -16.0 0.0000 0.0000 0.183 0.180 1.032 0.88 0.91 0.94 
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