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EXECUTIVE SUMMARY 
Changes to instream flow are known to be one of the major factors that affect the health of 
biological communities. Regulatory, monitoring, and management programs are increasingly 
using biological community composition, particularly benthic invertebrates, as one measure of 
instream conditions, stormwater project performance, or regulatory compliance with NPDES or 
other requirements and regulations. Understanding the relationship between changes in flow and 
changes in benthic invertebrate communities is, therefore, critical to informing decisions about 
ecosystem vulnerability, causes of stream and watershed degradation, and priorities for future 
watershed management. 

There are many approaches to developing flow-ecology relationships that relate hydrologic 
change to responses in instream biological communities that can be used to establish 
management targets. The Ecological Limits of Hydrologic Alteration (ELOHA) framework (Poff 
et al. 2010) provides a way to assess the effect of flow alteration on the condition of biological 
communities (vs. individual taxa) on a regional basis. Consequently, it is a useful approach for 
setting targets across a wide range of geographies and stream types where comprehensive 
detailed site-specific investigations are not practical. The framework includes elements of stream 
classification, estimation of flow alteration and development of flow ecology relationships based 
on the response of biological communities to changes in flow. 

In this project, we applied to the ELOHA framework to develop regional flow-ecology 
relationships and targets based on responses in the benthic macroinvertebrate community. Our 
objectives were: 1) Develop a recommended set of flow targets for southern California streams 
that would maximize the likelihood of maintaining healthy biological communities as indicated 
by the California Stream Condition Index (CSCI) for benthic invertebrates.  2) Produce a set of 

Figure ES-1.  General steps used to develop flow-ecology relationships based on the ELOHA 
framework 
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tools that can be readily applied to future sites to estimate hydrologic alteration relative to 
biologically-define targets.  

Development of the regional flow-ecology relationships relied on an ensemble of hydrologic 
models to estimate flow alteration at ungauged sites, and took advantage of a regional 
bioassessment data that allowed us to assess flow-ecology relationships at broad spatial scales. 
Our general approach involved developing a hydrologic classification for the entire State of 
California, calibrating and validating watershed models for the stream classes present in southern 
California, using the models to assess hydrologic change at 572 bioassessment sites, relating 
hydrologic change to biological responses, setting targets based on likelihood of biological 
response associated with changes in key flow metrics, applying the flow-ecology tools to assess 
regional hydrologic condition, and prioritizing sites for various management actions based on 
their response relative to the established flow targets (along with information on presence of 
other stressors; Figure ES-1). 

Hydrologic Classification 

Application of the ELOHA framework begins with stream classification. This is particularly 
important in places like California which have extreme climatic, altitudinal, and geologic 
gradients which affect stream morphology, flow patterns, and biological communities. This 
complexity, combined with spatially variable patterns of land use (e.g. urban, agricultural, 
timber, hydropower) produces highly variable flow responses in streams that must be accounted 
for during development of flow management targets. We developed a statewide classification 
system using a two-step approach: First, we classified stream reaches according to watershed 
characteristics. Streams were clustered into 7 classes based on differences in winter precipitation, 
geology, soil characteristics, and mean watershed elevation (Figure ES-2). Second, we used flow 
data from a subset of streams with gauge information to test and refine the stream classes and 
determine which hydrologic variables best separate streams into their respective classes. Most of 
the hydrologic variables that best discriminated between-stream typology classes were indicative 
of high flows, mean or median flows, or flow timing. 
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Figure ES-2.  Maps showing the distribution of each stream class in the state.   The Perennial Stream Assessment (PSA) regions are 
defined in panel A, with each of the 7 classes shown in panels B-I. Stream segments assigned to each class are represented by the blue 
lines. 
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Assessing Hydrologic Alteration 

We modeled hydrologic alteration at 572 ungauged bioassessment sites in Southern California 
using a two-step approach.  First, we developed an ensemble of 26 calibrated and validated 
watershed models applicable to all 572 sites. One of the 26 models was assigned to each of the 
572 ungauged sites based on similarities in catchment properties.  Second, we used the models to 
generate hourly flows for both current and reference conditions at each site and used the flow 
data to calculate a suite of flow metrics that represent different hydrograph components (e.g. 
magnitude, duration, frequency). Reference conditions were simulated by adjusting the current 
models to reflect pre-urbanization conditions by setting imperviousness to zero to mimic no 
urban land use, and by increasing initial losses to account for greater land availability. 

Using a suite of over 100 flow metrics, we estimate that approximately 79% of the region shows 
some degree of hydrologic alteration, and approximately 40% of the sites can be considered 
severely altered with at least 10 metrics exhibiting severe hydrologic alteration. Among the five 
metric categories (timing, frequency, magnitude, duration and variability), the most common 
alteration was an augmentation of the magnitude metrics. In general, hydrologic alteration is 
pervasive in catchments with total impervious cover higher than 2% (Figure ES-3). 

 

 

 

 

 

 

 

 

 

 

Figure ES-3. Hydrologic alteration for three selected flow metrics LowDur (duration), Qmean 
(magnitude), and QmaxIDR (variability) at various levels of total impervious cover.  
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Establishing Flow-Ecology Targets and Evaluating Regional Condition 

We developed recommendations for flow-ecology targets by estimating the probability of 
healthy biological condition, based on the California Stream Condition Index (CSCI), as a 
function of different levels of hydrologic alteration. Targets were set at the level of hydrologic 
alteration corresponding to a 50% decrease in the probability of healthy biological conditions.  
We prioritized a subset of seven flow metrics based on the strength of their relationship with 
changes in the biological community composition, as well as the following criteria (Table ES-1):  

• Ability to differentiate reference sites and non-reference sites  
• Strong relationship to biological condition based on boosted regression tree analysis and 

can produce a hypothesized ecological response  
• Ability to be modeled under both current and reference conditions with a high level of 

confidence  
• Amenability to management actions, with predictable responses to changes in flow 

conditions 
• Representation of different components of the hydrograph (e.g. magnitude vs. duration) 
• Minimal redundancy with other metrics 

The seven priority flow metrics were aggregated into an overall hydrologic alteration index and 
applied to the regional bioassessment data set. This index indicates where hydrology is altered to 
a level associated with undesirable changes in the instream biological community (as indicated 
by composition of benthic macroinvertebrates). Approximately two-thirds of stream-kms were 
considered minimally altered based on our criteria (i.e., hydrologic alteration index score of 
zero). Where alteration occurred, it was most extensive in urban streams (91%), followed by 
agricultural streams (80%).  Alteration was limited to only 11% of stream-kms draining 
undeveloped catchments (Figure ES-4). Magnitude metrics (particularly those associated with 
high flows) and variability metrics showed the greatest influence on biological response 
variables. In contrast, timing metrics had relatively little influence on biological response. 
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Figure ES-4. 
Hydrologic 
alteration scores at 
sites in the Southern 
California region. 
Urban areas are 
represented as dark 
gray. Boundaries of 
major hydrologic 
regions are shown. 
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Table ES-1. Priority hydrologic metrics and associated thresholds used in the regional flow-ecology relationships.  Metrics are grouped 
the hydrograph component they represent. Thresholds are expressed as the change in metric value associated with poor biologic 
condition (CSCI <0.79). Thresholds can be based on increasing or decreasing flows.  Metric effects on biology were typically strongest 
during either average, wet, or dry rainfall years, or all years combined (overall). NT= no threshold established. 

Hydrograph 
Component 

Metric Metric Definition Critical precipitation  
condition 

Decreasing 
Threshold 

Increasing 
Threshold 

Duration NoDisturb 
(days) 

median annual longest number of 
consecutive days that flow is between the 
low and high flow threshold 

Average -64 NT 

 
HighDur 
(days/event) 

median annual longest number of 
consecutive days that flow was greater 
than the high flow threshold 

Wet -3 24 

Magnitude MaxMonthQ 
(m3/s) 

Maximum mean monthly streamflow Wet NT 1.5 

 
Q99 (m3/s) streamflow exceeded 99% of the time Wet -0.01 32 

Variability RBI (unitless) Richards-Baker index of stream flashiness Dry NT 0.25 

 QmaxIDR 
(m3/s) 

Interdecile range of flow Overall -5 2.5 

Frequency HighNum 
(events/year) 

median annual number of events that flow 
was greater than high flow threshold 

Dry NT 3 
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By applying a regionally applicable ensemble of hydrologic models to a large bioassessment data 
set, we were able to model biological responses across a wide range of range of conditions, and 
derive flow targets that can be applied to sites throughout the region. Furthermore, because these 
targets are based on probabilities of biologic response to varying degrees of hydrologic alteration 
(vs. static targets) managers can adjust the targets according to their tolerance for risk or based 
on the importance of competing water demands. Development of regionally applicable flow 
targets allows application to any bioassessment site and reduces the need to develop local flow–
ecology relationships for every stream of interest, as is the case in more traditional instream flow 
methods. This provides a mechanism for prioritizing management actions based on consistent 
flow-ecology relationships. The tools developed through this project are readily transferable for 
local stakeholders to produce measures of hydrologic change for any location of interest, and to 
explore how those values would change under different land-use or management scenarios. 
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1.0 INTRODUCTION  
Flow regime has been shown to affect a broad suite of ecological processes and biological 
communities (Bunn and Arthington 2002, Naiman et al. 2002, Poff et al. 1997, Poff and 
Zimmerman 2010, Novak et al. 2015). Many studies have demonstrated that alterations of flow 
regime can be associated with changes in macroinvertebrate assemblages, which are used as key 
bioindicators for many regulatory and management programs globally (Pringle et al. 2000, Miller 
et al. 2007, DeGasperi et al. 2009, Poff & Zimmerman 2010). Although a basic understanding of 
the relationship between flow alteration and ecological response exists (Poff et al. 2010), few 
studies have demonstrated how to develop regulatory or management objectives (or targets) 
based on these relationships. Establishing quantitative and predictive relationships between 
change in flow and change in biological community composition is a critical step in 
understanding factors that contribute to reduced biological and condition and to using 
bioassessment indicators to establish measures of project performance or regulatory compliance. 

Various approaches have been used to develop relationships between flow characteristics and 
biological response. Examples include use of habitat suitability models that relate flow change to 
requisite habitats for target taxa (e.g., MesoHABSIM, Parasiewicz 2009; and PHABSIM, 
Beecher et al. 2010); establishment of functional flow regimes to support species of management 
concern (McClain et al. 2014, Yarnell et al. 2015); and use of statistical ranges of sustainability 
based on unaltered hydrographs (Richter et al. 2011). Concepts from several of these approaches 
have been organized into the Ecological Limits of Hydrologic Alteration (ELOHA) framework 
(Poff et al. 2010). The ELOHA framework uses a variety of hydrologic and biologic tools to 
determine and implement environmental flows at the regional scale. Results of the ELOHA 
analysis can inform management decisions, such as release rates from dams, reservoirs or basins, 
diversion volumes for irrigation or water re-use, or flows associated with stream restoration. 
Because the ELOHA framework provides a way to assess the effect of flow alteration on the 
condition of biological communities (vs. individual taxa) on a regional basis, it is a useful 
approach for setting targets across a wide range of geographies and stream types where 
comprehensive detailed site-specific investigations are not practical.  

The ELOHA framework establishes targets by comparing changes in hydrology (based on 
specific flow metrics) to changes in biology (based on the composition of target biological 
communities). The framework includes elements of stream classification, estimation of flow 
alteration (termed “delta H”) and development of flow ecology relationships based on the 
relationship between delta H and changes in the biological community (“delta B”). Implementing 
the ELOHA framework involves addressing the following technical challenges:  

1. California is a complex state with continental-scale variability in natural conditions.  
Streams are expected to respond differently to flow alteration as a function of their setting 
and underlying hydrological processes. Grouping sites into similar categories based on 
their native properties can reduce “noise” in the flow-ecology relationships associated 
with this natural variability 

2. Development of regional targets requires having many sites with data of both biological 
and hydrological alteration. Fortunately, California’s robust regional monitoring 
programs and use of predictive indices of condition provide thousands of sites with data 
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on biological alteration. Estimating hydrologic alteration for each of these sites requires 
development of tools or models that can readily be applied to large numbers of sites in an 
efficient manner. 

3. There are hundreds of potential flow metrics that can be calculated and numerous ways 
that thresholds of response can be determined. Ultimately, a subset of metrics and 
thresholds should be selected based on considerations of ecological relevance, relevance 
to management actions, and parsimony. A robust metric screening process can help 
develop a recommended set of metrics and thresholds that can be used to produce 
effective and efficient flow targets. 

In this project, we developed approaches to address each of the above challenges for stream in 
Southern California. Our objectives were: 1) Develop a recommended set of flow targets for 
southern California streams that would maximize the likelihood of maintaining healthy 
biological communities as indicated by the California Stream Condition Index (CSCI) for 
benthic invertebrates. 2) Produce a set of tools that can be readily applied to future sites to 
estimate hydrologic alteration relative to biologically-define targets. 3) Demonstrate application 
of the tools in a specific location to assess condition and evaluate management scenarios. Our 
general approach involved a sequence of steps designed to meet the study objectives at different 
scales ranging from statewide for the hydrologic classification, to regional for assessing 
hydrologic alteration and establishing putative flow recommendations necessary to protect 
stream health, to watershed-scale for the demonstration case study (Figure 1-1). 

In this report we summarize three major products that were developed to address the technical 
challenges listed above and our overall project objectives:  1) a classification system aimed at 
reducing “noise” in flow-ecology relationships associated with natural variability between stream 
sites, 2) a hydrologic modeling framework and tools that can be used to assess degree of 
hydrologic alteration at any site in southern California and predict likely future hydrologic 
changes associated with management actions, and 3) a set of priority flow metrics and thresholds 
that are associated with reduced biological condition as indicated by CSCI.  Results of the 
demonstration case study are provided in a companion technical report (SCCWRP TR # 948). 

In addition to this summary, the following data products have been produced as part of this 
project: 

1. Statewide hydrologic classification system – GIS layer attributed to NHD 
2. Ensemble of 26 watershed models 
3. Estimates of hydrologic alteration for ca. 800 bioassessment sites in S. Ca. based on ca. 

40 flow metrics – this includes estimates of current and historical/natural flow values for 
all metrics 

4. Logistic regression outputs that related CSCI and component metrics to each flow metric. 
5. Ratings for each S. Ca. bioassessment site in relative to established flow targets 
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Figure 1-1.  General steps used to develop flow-ecology relationships based on the ELOHA 
framework 
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2.0  STATEWIDE HYDROLOGIC CLASSIFICATION 

2.1 Background 

Classifying streams into relatively homogenous groups based on their hydrology and 
geomorphology is a foundational step in the ELOHA framework. Geomorphic and hydrological 
classification is important for ecological flow assessments because it provides a spatially explicit 
understanding of flow regime variation among rivers and regions and how a stream's natural 
characteristics and setting influence the relationship between flow and biology (Kennard et al., 
2010, Poff et al., 2010). Different stream types may be expected to respond differently to flow 
alteration (i.e. may be more or less sensitive to different alterations). Robust classification will 
improve the development of flow-ecology relationships by reducing some of the noise in 
relational models associated with normal landscape variability (Brown et al. 2014).  

Hundreds of flow classification studies have been completed over the past 30 years using a 
variety of approaches (Belmar et al. 2011). Olden et al. (2012) reviewed more than two dozen 
recent approaches to hydrologic classification and divided the approaches broadly into 1) 
deductive approaches that classify streams based on physical and environmental factors such as 
catchment properties and rainfall patterns, and 2) inductive approaches that classify flow regimes 
based on analysis of stream gauge networks and other flow data. Olden et al. (2012) recommend 
that deductive approaches should be used when the goal is to provide a general description of 
hydrologic patterns based on first principles and/or when streamflow data are limited. This 
approach is also geographically independent, classifying streams based on similar environmental 
conditions regardless of location. 

We employed a hybrid deductive-inductive approach to classify all stream reaches in the State of 
California.  Our goal is to produce a comprehensive hydrologic classification that groups streams 
into similar inherent flow properties across California’s climatically and geologically diverse 
landscape. We start with a deductive classification, followed by an inductive approach using the 
statewide stream gauge network to validate and refine class membership and to identify 
hydrologic variables that best differentiate basins with minimal anthropogenic disturbance 
(hereafter designated as “reference” streams or sites) from streams altered by anthropogenic 
disturbances such as alterations to the natural hydrological regime, land use changes, or pollution 
(hereafter designated as “non-reference”). This approach will support regional flow-ecology 
analysis by helping to identify a priority set of flow variables that should be prioritized for 
subsequent analysis of relationships to biological endpoints, per the ELOHA approach.  
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2.2 Methods 

2.2.1 Classification analysis (deductive analysis) 
All stream reaches (i.e., segments from the National Hydrography Dataset (NHD)) for California 
served as the base layer for classification modeling (ca. 135,000 segments; 1:100,000-scale 
NHDPlus v.1; Figure 2-1). Statistical models of monthly flows are being developed for 
California streams for an unrelated project (Carlisle et al. In Review), and provided insight into 
the selection of physical attributes that may affect streamflow patterns. Each stream segment was 
attributed with approximately 150 physical characteristics assigned at the drainage area scale. 
These characteristics included topography, geology, soil type, and long-term (1950-2000) 
average precipitation and other climatic attributes. The physical characteristics most influential 
to streamflows (Table 2-1) were selected from the larger set based on examination of relevant 
literature and the application of first principles of watershed hydrology (i.e. flow is affected by 
watershed size, slope, maximum elevation, annual precipitation, etc.) during the hydrologic 
modeling work in Carlisle et al. (in review). Classification of segments was then performed on 
the selected subset of physical characteristics. Unsupervised Bayesian mixture modeling (BMM) 
was used to perform the classification of each stream segment based on physical attributes of the 
watershed. BMM has several advantages for hydrological classification (Webb et al., 2007; 
Kennard et al. 2010), with the number of classes being determined objectively and each 
individual segment may have membership in each class with known probability. This ability to 
classify observations into multiple groups better reflects the natural world, because there are 
many streams that may be transitional from one distinct type (e.g., snow melt perennial) to 
another (e.g., snow melt-winter rain perennial). The procedure iteratively modeled the 
probability that the observations belong to pre-defined probability distributions of the 
explanatory variables (i.e., physical watershed attributes) and then selected the most 
parsimonious solution. Calculations were carried out in AutoClass@IJM (Achcar et al., 2009). 
One distinct disadvantage using an objective classification technique is that it often produces a 
number of classes so large that they would be difficult to implement into ecosystem management 
applications. To further reduce the number of classes produced by the BMM, we further grouped 
our classes into meta-classes following an approach similar to that taken by Brown et al. (2014). 
The aggregation involved calculating the mean value of each watershed attribute variable across 
sites within each of the BMM classes. For each stream class, we correlated the mean and median 
values of each environmental variable. The correlations were all >0.9, which suggests that the 
distribution of data were not highly skewed and that the mean is an adequate measure of central 
tendency in each class. A hierarchical classification (Ward’s linkage on Euclidean distances) was 
conducted on the BMM classes based on mean values for watershed attributes. To determine the 
number of final classes in the hierarchical clustering, we calculated Van Sickle and Hughes 
(2000) classification strength for 2-13 classes and subjectively evaluated the classes across the 
Californian landscape from a potential managerial perspective. The use of an additional 
classification technique does add additional noise, but allowed us to reduce our number of 
classes to a number that could be applied to stream management decisions.  
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Figure 2-1. Flow diagram showing the type of datasets, explanatory variables, important 
questions, and statistical analyses used in this paper. The datasets and variables are represented 
by rectangles with rounded corners while the analyses are represented by the rectangles with 
square corners. 
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Table 2-1. Climatic and physical attributes of watersheds used to classify stream segments in 
California (after Falcone, 2012). 

Variable Description Data source 

ElevW mean elevation of watershed (m) National Elevation Dataset (NED) 

ElevC mean elevation of reach catchment (m) NED 

Elevdiff difference in mean elevation between catchment and 
watershed (m) NED 

SlopeW mean slope of watershed (%) NED 

SlopeC mean slope of reach catchment (%) NED 

DrainA delimited area of watershed (km2) NED 

WinPrcpW mean precipitation of the watershed in October-
March (cm) 

Parameter elevation Regression on 
Independent Slopes Model (PRISM) 

WinPrcpC mean winter precipitation of the reach catchment PRISM 

WinPrcpR Ratio of mean winter precipitation of the reach 
catchment to watershed PRISM 

SumPrcp  percent of annual precipitation falling in June-
September PRISM 

Evapo mean evapotranspiration within watershed 
(mm/year) PRISM 

Dunne percent of streamflow composed of overland flow NED, U.S. General Soil Map 
(STATSGO) 

Horton percent of streamflow composed of Horton flow NED, STATSGO 

TopoWet index of topographic wetness (ln(m)) NED, STATSGO 

ConTime subsurface flow contact time (days) NED, STATSGO 

BaseFlow percent of streamflow composed of groundwater  

SoilB soil hydrologic group B (%) STATSGO 

SoilC soil hydrological group C (%) STATSGO 

SoilCap soil water capacity (unitless) STATSGO 

SoilPerm soil permeability (in/hour) STATSGO 

SoilDen soil bulk density (g/cm3) STATSGO 

SoilThick Mean total soil thickness examined (in2) STATSGO 
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OrgMatter Soil with organic matter content (%) STATSGO 

RockStr rock compressive strength (MPa) (Olson and Hawkins, 2012) 

Sedi percent of watershed composed of sedimentary 
bedrock (Reed and Bush, 2005) 

Ultra percent of watershed composed of ultramafic 
bedrock (Reed and Bush, 2005) 

Volc percent of watershed composed of volcanic bedrock (Reed and Bush, 2005) 

Glacial percent of surficial rock composed of mountain 
glacial deposits (Reed and Bush, 2005) 
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We tested the validity of our stream classes using two statistical techniques. First we used 
permutation-based analysis of variance (PERMANOVA) to determine if our stream typology 
classes were significantly different from each other using the physical and climate characteristics 
of watersheds. Second, we used random forests to determine which physical and climatic 
characteristics best explain the difference between groups for each split in the hierarchical 
clustering process. PERMANOVA is a non-parametric, multivariate analysis of variance that 
tests for differences between groups using a similarity measure (e.g., Euclidean distance) 
between groups and constructs a p-value by randomly permuting group values (Anderson 2001; 
Anderson and Walsh 2013). The PERMANOVA analysis is robust, but is sensitive to 
heterogeneity of variances between groups if groups varied in size. We developed a balanced 
design approach where an equal number of sites were selected from each group. PERMANOVA 
is also computationally intensive, and we could not perform the analysis with all ~135,000 sites. 
Instead, we randomly selected 1000 sites from each class for this analysis. We performed a 
global and then pairwise PERMANOVAs for all classes using the ‘vegan’ package (Oksanen et 
al. 2016) in R (R Core Team 2016) with 999 permutations. 

Random forest is a powerful tool in determining which variables best account for differences 
between groups (McCune and Grace 2002). Random forests are an ensemble of classification 
and regression tree analyses (CART) using a bootstrap technique, where 70% of the observations 
are randomly assigned to each CART tree and results from each tree are averaged (Breiman, 
2001). CART is a nonparametric technique that uses explanatory variable values to 
dichotomously partition sites into increasing homogenous groups, forming a tree-like sequence 
of partitions (McCune and Grace 2002). The accuracy of the random forest analysis was 
measured by the out-of-bag error rate (OOB). The OOB is calculated for each tree by measuring 
the misclassification of the 30% of sites not included in the bootstrap sample (Breiman 2001). 
Additionally, the importance of each explanatory variable can be estimated using the mean 
decrease of accuracy, where each variable is permuted and OOB re-estimated (Cafri 2013). 
Explanatory variables with high positive importance notably reduce OOB, while some variables 
can have a negative mean decrease of accuracy, meaning that the inclusion of the variable 
produces higher error rates than by chance alone. We sequentially removed all explanatory 
variables from the analysis that produced negative importance values by removing variable with 
the largest negative value and rerunning the analysis. We did this until no negative importance 
value remained.  

Random forest (RF) is a robust, non-parametric classification technique, but some biases can be 
incorporated into the model design. First, if a dataset is unbalanced, with one class having a 
substantially greater number of sites, then RF will bias correct classifications towards the class 
with greater numbers (non-reference sites in our case). The effectiveness of RF is assessed using 
misclassification rates and if a dataset is unbalanced, then RF can classify most sites into the 
largest class and still keep the misclassification rate low. To counter this bias, we selected a 
random sample of non-reference sites equal to the number of reference sites for each tree. 
Another issue with RF is that an explanatory variable’s importance is inflated if it is correlated 
with other explanatory variables (Strobl et al. 2009, Cafri 2013). One solution was to use a 
conditional permutation importance measure (Strobl et al. 2009), but this method consumes 
massive amounts of computing memory and can only be implemented with a few explanatory 
variables. An alternative method was to increase the number of explanatory variables sampled 
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for each split in each tree. This increased the chance that the best variable will be selected versus 
a correlated, yet inferior variable. This method also increased the misclassification rate (Cafri 
2013), so we performed our analyses with a low sampling number (5) and a high sampling 
number (all explanatory variables) and found that a higher sampling number increased the 
misclassification error by only 1-2%, which we found to be acceptable. We should also note that 
this increase in number of variables sampled per split means that the variation between trees in 
the RF is mostly due to bootstrap sampling of sites for each tree (Cafri 2013). We performed this 
balanced design, large split-sample RF analysis using the ‘randomForest’ package (Liaw and 
Wiener 2002) in R with 5001 trees.  

2.2.2 Determination of reference vs non-reference status 
The hydrologic validation of our classes (step 2) required reaches with hydrologic data and a 
known reference/non-reference status for the watershed of each reach. We computed hydrologic 
metrics for reaches with USGS gauges, but the reference/non-reference status of many gauges 
are unknown, so we developed a random forest model to predict the reference/non-reference 
status of the unknown gauges. We began with a data set consisting of 1305 U.S. Geological 
Survey stream gauges across California. Within this data set 600 gauges had been previously 
identified as non-reference and 154 identified as reference using 4 criteria: 1) geospatial 
measures of watershed-scale disturbance (Figure 2-2), 2) visual screening of topographic maps 
for stream alteration, 3) local expert judgment, and 4) detection of water extraction using ≥20 
years of daily discharge data (Falcone et al. 2010).  The remaining 551 gauges had not been 
previously classified by Falcone et al. due to a lack of sufficient discharge data or lack of local 
reports on discharge regulation and diversion. For these gauges, we classified them as reference 
or non-reference by calibrating a random forest classification model using the sites with known 
reference/non-reference status and estimating the status for the unknown sites. Specifically, we 
1) derived various disturbance variables (Table 2-2), including most disturbance metrics used by 
Falcone et al. (2010), for all gauges via a geographic information system (GIS; ArcMAPTM 
10.2.2, ESRI, Redlands, CA), 2) calibrated a random forest classification tree analysis using the 
600 known reference/non-reference sites, with reference status as the classification and the 
disturbance variables as the explanatory variables and 3) predicted the reference/non-reference 
status of the unknown gauges by entering their disturbance variable values into the calibrated 
random forest model. We performed this analysis using the balanced design, large split-sample 
RF analysis described above. 
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Table 2-2.  Watershed-scale disturbance variables used to distinguish reference and non-
reference gage sites. 

Variable Description Unit Data source 

WAreaa Watershed area km2 
NHD plus (v. 1), GAGESII, or derived 
from 1-arcsecond DEMs 

PerrStream Perennial streams km/km2 NHD plus (v. 1) 

Imp Mean impervious land area % 
National land cover database (NLCD), 
2011 

PopDens Population density #/km2 US Census Bureau, 2010 

RoadDens Total road Length % US Census Bureau, 2009 

IrrAg Irrigated agriculture land use % USGS, 2012 

Crops Crops land use % NLCD, 2011 

Pasture Pasture land use % NLCD, 2011 

Devl Developed land use % NLCD, 2011 

HDevl High intensity developed land use % NLCD, 2011 

Shrub Shrub land use % NLCD, 2011 

Grass Grassland land use % NLCD, 2011 

Forest Forest land use % NLCD, 2011 

BLMGraz BLM grazing allotments % BLM 

ProtectLand 
Federal, state, and non-profit 
lands with land use restrictions % 

States of California, Oregon, Nevada; 
NPS, BLM, FWS, FS 

Mine Mine and mineral plants  #/km2 USGS: mineral resources, 2003 
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NPDES 
Pollutant discharge (NPDES) 
sites  #/km2 EPA: geospatial data access, 2009 

Dam Number of dams #/km2 USACE: national inv. of dams, 2009 

DamVol Total dam volume Acre-feet/km2 USACE: national inv. of dams, 2009 

Canal Canals km/km2 NHD plus (v. 1) 

Pipes Pipelines km/km2 NHD plus (v. 1) 

StrmRdInter Road-stream intersections #/km2 NHD plus (v. 1), US Census Bureau 

FrshWith Freshwater withdrawals Mgal/day/km2 USGS: water use in US, 2010 

aWatershed area (WArea) is not a direct measure of disturbance, but can have an effect on the spatial arrangement and influence of 
disturbance (King et al., 2005) 

2.2.3 Hydrologic validation of class membership (inductive analysis) 
A series of flow variables with presumed ecological relevance were calculated for all gaged 
stream segments in California (Table 2-3). Konrad et al. (2008) found that variables of 
streamflow variation at daily to inter-annual scales were among the most common characteristics 
associated with limits on invertebrate assemblages. Flow variables were selected based on four 
criteria: 1) capacity to capture the range of natural hydrologic variability, 2) known ecological 
relevance and sensitivity to regional styles of flow alteration, 3) prediction accuracy (confidence) 
of models for a given variable, and 4) interpretability and utility in a management context. We 
included raw variables and also included streamflow metrics (m3/s) that had been standardized 
according to watershed area. Flow variables were calculated for gauges with at least 5 years of 
flow data in the last 15 years (2000-2014). The use of only 5 years of flow data represents a 
distinct tradeoff between the ability to include more sites, particularly reference-condition sites, 
versus increased power to detect variation in hydrology metrics between classes with greater 
year of flow. We felt that the need for more sites, particularly in classes with few reference 
condition reaches, superseded the increased power. 
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Table 2-3. Flow Variables used to validate stream class membership and separate reference from 
non-reference streams in each class. 

Variable Description 

Qmean mean streamflow for the period of analysis (m3/sec) 

Qmedian median annual mean streamflow (m3/sec) 

QmeanIDR 90th percentile of annual mean streamflow - 10th percentile of annual mean 
streamflow)/50th percentile of median annual mean streamflow 

Qmed median daily streamflow (m3/sec) 

Qmax  median annual maximum daily streamflow (m3/sec) 

QmaxIDR 90th percentile of annual maximum streamflow - 10th percentile of annual 
maximum streamflow)/50th percentile of annual maximum streamflow 

HighNum 
median annual number of events that flow was greater than high flow threshold, 
an event is a continuous period when daily flow exceeds the threshold 
(events/year) 

HighDur  median annual longest number of consecutive days that flow was greater than 
the high flow threshold (days/event) 

Qmin median annual minimum daily streamflow (m3/sec) 

QminIDR  90th percentile of annual maximum streamflow - 10th percentile of annual 
maximum streamflow)/50th percentile of annual maximum streamflow 

LowNum 
median annual number of events that flow was less than or equal to the low flow 
threshold, an event is a continuous period when daily flow was less than or equal 
to the threshold (events/year) 

LowDur median annual longest number of consecutive days that flow was less than or 
equal to the low flow threshold (days/event) 

NoDisturb median annual longest number of consecutive days that flow between the low 
and high flow threshold (days) 

Hydroperiod fraction of period of analysis with flows 

FrYrNoFlow fraction of years with at least one no-flow day 

MdNoFlwDay  median annual number of no-flow days (days/year) 

Less1CFS  Fraction of time period with flows less than 1 ft3/sec (0.0283 m3/sec) 

RBI 
Richards-Baker flashiness index, a measure of abrupt changes in flow over short 
periods of time (i.e., flashiness). The absolute values of daily flow differences 
divided the yearly sum of daily flows (%) 

PDC50  median percent daily change in streamflow, no flow days are not included (0.01 
= 1%); (%) 
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Variable Description 

SFR the 90th percentile of percent daily change in streamflow on days when 
streamflow is receding (a measure of storm-flow recession; %) 

BFR the 50th percentile of percent daily change in streamflow on days when 
streamflow is receding (a measure of base-flow recession; %) 

MaxMonth month of maximum mean monthly streamflow 

MxMnthQ maximum mean monthly streamflow (m3/sec) 

MinMonth month of minimum mean monthly streamflow 

MnMnthQ minimum mean monthly streamflow (m3/sec) 

Q01, Q05, ...,Q95,Q99 streamflow exceeded 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99% of the 
time  (m3/sec) 

S_Qmean, 
S_Qmedian,…,S_Q99 

The following flow variables were also standardized by their watershed area and 
included in the dataset: Qmean, Qmedian, Qmed, Qmax, Qmin, MxMnthQ, 
MnMnthQ, and Q01-Q99 (m3/sec/km2) 

 

The hydrology metrics were used to validate and refine the stream typology classes in two ways. 
First, we compared the ability of the hydrology metrics to differentiate the watershed typology 
classes. We were limited in this analysis to the 139 reference-condition, gaged reaches. We used 
balanced-design pairwise PERMANOVAs, with the number of sites selected for both classes 
equal to the number of reference sites in the smaller class, to determine if hydrology metrics can 
significantly differentiate classes. We followed with pairwise RF analyses to determine which 
hydrology variables best differentiate classes. Second, we used the PERMANOVA and RF 
analyses to determine if hydrology variables can significantly separate reference condition 
streams from non-reference condition streams in each of the stream classes and determine which 
hydrology metric best differentiate reference from non-reference streams in each class. For this 
analysis we included the 138 reference sites plus 479 non-reference sites. We could not include 
gauges from class 7 due to only one reference condition site in that class. 
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2.3 Results 

2.3.1 Identification of stream typology for California 
The unsupervised classification model produced 109 statistically distinct classes among the 
~135,000 stream segments. Because this was too many to interpret, we used the secondary 
hierarchical classification to aggregate these 109 classes into seven meta-classes that were most 
similar with respect to physical watershed attributes (Figure 2-2). These seven groups were 
defined as the major stream classes (i.e. meta-classes) and carried forward for subsequent 
analyses. Classes 2 and 4 contain the most stream segments, accounting for approximately 55% 
of total linear distance mapped. Classes 3, 6, and 7 each contain less than 10% of the distance 
mapped. The global PERMANOVA of all 7 classes showed a significant difference between at 
least one class (pseudo-F6,6993 = 775.12, p<0.001). Further pairwise comparisons showed that all 
7 classes were significantly different from other classes (Table 2-4). 
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Figure 2-2. Cluster dendrogram showing aggregation of the 109 originally identified stream 
segment classes into seven proposed major stream meta-classes. The bar graphs between each 
split in the dendrogram show the three variables that the random forest analysis indicated as the 
most important in differentiating the two groups produced by the split. The values on both sides 
of each bar graph are each group’s mean of the most important variable (with standard error in 
parentheses).  
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Random forest analysis separated the seven aggregated classes according to differences in winter 
precipitation, geology, soil characteristics, and mean watershed elevation (Table 2-5, Figure 2-2), 
with extremely low OOB misclassification rates of <4%. Class 1 streams (Figure 2-3a) are 
located in the drier mountainous regions of the state, but also found in the foothills of the 
southern Sierra Nevada Mountains and the mountains surrounding Scott Valley in northern 
California. Class 2 streams (Figure 2-3b) are mostly located in the Chaparral region, comprising 
streams located in the foothills surrounding the Central Valley and the hills and valleys west of 
the Central Valley, as well as in plains of the South Coast. Class 3 streams (Figure 2-3c) are 
consists of streams in the drier, volcanic Modoc Plateau in northeastern California and northern 
Sierra Nevada Mountains, although some large river segments of the Central Valley and 
southwestern deserts fall into this group. Class 4 streams (Figure 2-3d) are mostly distributed 
amongst the wetter North Coast, northern Sierra Nevada and northern Chaparral. Class 5 streams 
(Figure 2-3e) are almost exclusively located in dry southwestern desert. Class 6 streams (Figure 
2-3f) are almost exclusively glaciated Sierra Nevada region. Finally, class 7 stream segments 
(Figure 2-3g) are located in the Central Valley and surrounding Chaparral foothills. 
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Figure 2-3.  Maps showing the distribution of each stream class in the state.   The Perennial Stream Assessment (PSA) regions are 
defined in panel A, with each of the 7 classes shown in panels B-I. Each stream segment assigned to each class is represented by the 
blue lines. 
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Table 2-4. The results of the pairwise PERMANOVAs of 7 classes using watershed climate and 
physical variables. One thousand stream reaches were randomly selected from each class for the 
analysis. 

Class comparison Pseudo-F1,1998 p-value 

One vs Two 451.81 <0.001 

One vs Three 385.78 <0.001 

One vs Four 427.46 <0.001 

One vs Five 488.71 <0.001 

One vs Six 783.44 <0.001 

One vs Seven 1099.68 <0.001 

Two vs Three 584.56 <0.001 

Two vs Four 347.35 <0.001 

Two vs Five 803.07 <0.001 

Two vs Six 1630.07 <0.001 

Two vs Seven 553.92 <0.001 

Three vs Four 422.51 <0.001 

Three vs Five 484.47 <0.001 

Three vs Six 741.20 <0.001 

Three vs Seven 682.48 <0.001 

Four vs Five 942.68 <0.001 

Four vs Six 774.61 <0.001 

Four vs Seven 791.24 <0.001 

Five vs Six 1220.81 <0.001 

Five vs Seven 897.97 <0.001 

Six vs Seven 2014.93 <0.001 
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Table 2-5. The general climatic, geologic, soil, and physiographic characteristics of each class 
and the proportion of each class located in each of California’s Perennial Stream Assessment 
(PSA) regions. The regions are as follows: C = Chaparral, CV = Central Valley, SC = Southern 
Coast, S = Sierra Nevada, D-M = Desert-modoc, and NC = North Coast 

Class 
Winter 
precipitation Geology Elevation Soils C CV SC SN D-M NC 

One Intermediate No 
sedimentary  Moderate 

organic 0.16 0.01 0.27 0.13 0.4 0.03 

Two Intermediate Sedimentary  Low 
thickness 0.73 0.13 0.12 0 0.01 0.01 

Three Intermediate High volcanic High High 
organic 0.06 0.1 0 0.21 0.58 0.04 

Four Very high Variable Intermediate  0.25 0.03 0.02 0.25 0.03 0.41 

Five Low Little 
sedimentary Intermediate Little 

organic 0.03 0.02 0.02 0.03 0.91 0 

Six High 

No 
sedimentary 

Glaciated 

Very high  0.01 0 0.04 0.9 0.04 0 

Seven Intermediate  Very low  0.32 0.65 0.02 0 0 0 
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2.3.2 Determination of reference vs non-reference conditions 
The RF analysis had an OOB of 14.19% for both reference and non-reference classes, with 88 
non-reference sites being misclassified as reference (out of 600) and 19 reference sites being 
classified as non-reference (out of 154). The most important variable in separating reference 
from non-reference sites was the total volume of reservoirs in the watershed, with a mean 
decrease of accuracy of 185.9, which was more than 4 times more important than next important 
variables: mean impervious cover (43.0), proportion of freshwater withdrawals (39.9), proportion 
of high intensity developed land use (34.4), proportion of cropland (34.3), and population density 
(29.8). Five variables, watershed area, proportion of shrublands, proportion of mines, proportion 
of NPDES polluters, and proportion of canals, had negative importance values, implying that 
their inclusion decreased model accuracy, and were removed from the analysis. Once we 
calibrated our RF model using known reference/non-reference sites, we classified gauges with 
unknown reference status as reference or non-reference, with 280 gauges designated as non-
reference gauges and 271 designated as reference.  

2.3.3 Hydrologic validation of class membership 
The pairwise PERMANOVAs showed that hydrology data effectively separated most classes, 
with the exception of classes 3, 4, and 6, which were not significantly (i.e., p-value <0.05) 
distinguished from each other (Table 2-6). These three classes contain streams with the highest 
maximum, mean, and minimum flows in the state. Additionally, the hydrological comparison of 
class 1 to class 5 was marginally significant at p=0.065. The random forest analyses had 
relatively low misclassification error rates for most pairwise comparisons (< 18%), except for the 
non-significant comparisons and the class 1 vs. class 2 comparison (Table 2-6).  Most of the 
hydrologic variables that best discriminated between-stream typology classes were indicative of 
high flows, mean or median flows, or flow timing (Table 2-6). The mostly desert class 5, not 
surprisingly, had lower maximum, mean or median flows in relation to watershed area than 
streams in all other classes. Class 1 also had lower maximum, mean or median flows than 
streams than classes 2, 3, 4, and 6. The chaparral hills and valley streams of class 2 had a greater 
occurrence of extremely low flows than class 3 and lower maximum or mid-flows than class 4. 
The mostly Sierra Nevada Class 6 differed from classes 1, 2, and 4 by the month of maximum 
flow, with the latter having maximum flows during early summer and the former having 
maximum flows during winter months, an indication of snowmelt streams in class 6 and the 
Mediterranean and humid streams in classes 1, 2, and 4. Class 6 streams were also less stable 
than classes 2 and 4. Although the relationships were not significant, the five reference streams 
in class 3 had greater periods of time between low and high flow events compared to the humid 4 
and mountainous class 6.   
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Table 2-6. The results of the pairwise PERMANOVAs and random forests of 6 classes using 
hydrology data from reference condition streams. DF = degrees of freedom; F = pseudo-F; OOB = 
out-of-bag error rate (i.e., misclassification rate); MDoA = mean decrease of accuracy. 

    PERMANOVA   Random forest 

Class 
comparison 

Number 
of Sites DF F p-value   OOB 

Error 
Important  
variables MDoA 

Variable 
mean per 
class 

One vs 
Two 26 vs 30 1, 50 4.04 0.009  23.00% S_Qmax 43.83 0.11 vs 0.4 

     
 

 
S_Q99 32.26 0.1 vs 0.32 

     
 

 
QmeanIDR 22.12 0.4 vs 1.74 

One vs 
Three 26 vs 5 1, 8 4.84 0.013  0.00% Qmed 16.14 0.05 vs 3.13 

     
 

 
Q50 15.88 0.05 vs 3.03 

     
 

 
Q25 15.63 0.02 vs 1.82 

One vs 
Four 26 vs 61 1, 50 12.75 0.001  17.00% S_Qmean 30.84 0.01 vs 0.06 

     
 

 

S_Qmedian 27.59 <0.01 vs 
0.06 

     
 

 
S_Q99 22.18 0.1 vs 0.6 

One vs 
Five 26 vs 6 1, 10 3.59 0.065  16.00% S_Qmax 25.33 0.11 vs 

<0.01 

     
 

 

S_Qmean 21.62 0.01 vs 
<0.01 

     
 

 
S_Q99 18.82 0.1 vs <0.01 

One vs Six 26 vs 10 1, 18 7.47 0.002  11.00% MaxMonth 73.04 2.81 vs 4.9 

     
 

 

S_Qmedian 14.31 <0.01  vs 
0.04 

     
 

 
S_Q95 13.43 0.03 vs 0.23 

Two vs 
Three 30 vs 5 1, 8 4.35 0.024  9.00% Less1CFS 26.23 89.17 vs 

16.38 

     
 

 
Q50 18.69 0.14 vs 3.03 

     
 

 
Qmed 18.67 0.14 vs 3.13 
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    PERMANOVA   Random forest 

Class 
comparison 

Number 
of Sites DF F p-value   OOB 

Error 
Important  
variables MDoA 

Variable 
mean per 
class 

Two vs 
Four 30 vs 61 1, 58 9.67 0.001  16.00% S_Q75 41.96 0.01 vs 0.06 

     
 

 
S_MxMnthQ 36.65 0.03 vs 0.13 

     
 

 
Q50 27.25 0.14 vs 2.91 

Two vs 
Five 30 vs 6 1, 10 4.94 0.023  6.00% S_Qmean 20.46 0.02 vs 

<0.01 

     
 

 

S_Q99 19.16 0.32 vs 
<0.01 

     
 

 

S_MxMnthQ 18.69 0.03 vs 
<0.01 

Two vs Six 30 vs 10 1, 18 5.34 0.005  3.00% RBI 60.24 0.5 vs 0.14 

     
 

 
MaxMonth 59.53 2.3 vs 4.9 

     
 

 
S_MxMnthQ 9.62 0.03 vs 0.16 

Three vs 
Four 5 vs 61 1, 8 2.09 0.206  11.00% NoDisturb 26.28 219 vs 

152.95 

     
 

 
QminIDR 10.94 0.94 vs 0.37 

     
 

 

Less1CFS 10.6 16.38 vs 
60.3 

Three vs 
Five 5 vs 6 1, 8 5.86 0.009  0.00% S_MxMnthQ 10.68 0.04 vs 

<0.01 

     
 

 

Less1CFS 10.64 16.38 vs 
99.85 

     
 

 

MxMnthQ 10.55 11.02 vs 
0.02 

Three vs 
Six 5 vs 10 1, 8 2.72 0.095  20.00% S_MxMnthQ 16.32 0.04 vs 0.16 

     
 

 

NoDisturb 15.5 219 vs 
162.65 

     
 

 
S_Q95 13.67 0.08 vs 0.23 
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    PERMANOVA   Random forest 

Class 
comparison 

Number 
of Sites DF F p-value   OOB 

Error 
Important  
variables MDoA 

Variable 
mean per 
class 

Four vs 
Five 61 vs 6 1, 10 5.72 0.007  4.00% S_Qmean 14.09 0.06 vs 

<0.01 

     
 

 

S_MxMnthQ 14.02 0.13 vs 
<0.01 

     
 

 
S_Q99 13.61 0.6 vs <0.01 

Four vs Six 61 vs 10 1, 18 1.7 0.189  20.00% MaxMonth 51.19 2.8 vs 4.9 

     
 

 
RBI 22.51 0.33 vs 0.14 

     
 

 
HighNum 15.89 5.52 vs 3.2 

Five vs Six 6 vs 10 1, 10 6.79 0.007  13.00% S_Qmean 14.56 <0.01  vs 
0.05 

     
 

 

S_Q90 14.53 <0.01  vs 
0.15 

     
 

 

S_Q50 14.4 <0.01  vs 
0.01 
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Hydrologic differences between reference and non-reference gauges were not always detectable 
(Table 2-7). Our results may not represent all of the hydrologic distinctions between classes 
because of uncertainty in the estimates of flow metrics for sites with relatively short periods of 
records that include unusually wet or dry years. Despite the reduction in explanatory power, the 
most important hydrologic variables differentiating at least some reference from non-reference 
streams were distinct from those differentiating reference streams among stream typology 
classes. Many of the variables that distinguish reference from non-reference sites within stream 
classes are associated with low flow conditions, flashiness, or streamflow recession rates, while 
maximum and mean or median flow was often most important in differentiating among the 
natural stream typology classes (Table 2-7). Storm-flow recession (SFR) is higher in non-
reference sites in the chaparral-dominated classes 1 and 2, while non-reference sites have a 
greater number and intensity of high flows in class 1 and are flashier in class 2. Mean and 
median flows are important in class 3, with non-reference sites having greater flows. Disturbed 
gauges in class 4 are distinguished by extremes, i.e. a greater number of short duration low-flow 
events and lower high flows). The distinction between reference and non-reference gauges in 
class 5 is significant and dominated by low flows and the number of high flow events. Reference 
streams in class 5 have extremely long periods of low flows and relatively few high flow events 
compared to non-reference streams. Non-reference gauges in class 6 have lower base-flow 
recession rates, reduced daily changes in streamflow, reduced maximum flows, and greater 
durations of low flows. The variables highlighted from the random forest analysis are sensitive to 
anthropogenic alterations and provide some compelling insights to regional disturbance. The lack 
of significance in most of the PERMANOVAs indicated a need for further analysis in subsequent 
studies, including the exploration relationships of these hydrology metrics with instream biology. 
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Table 2-7. The results of the pairwise PERMANOVAs and random forests comparing reference 
condition reaches to non-reference condition reaches for 6 classes using hydrology data. DF = 
degrees of freedom; F = pseudo-F; OOB = out-of-bag error rate (i.e., misclassification rate); MDoA 
= mean decrease of accuracy. 

   PERMANOVA   Random forest   

Class # ref 
 

# non- 
  

DF F p-value  OOB 
 

Important  
 

MDoA Ref mean Non-ref 
 

One 26 59 1, 50 1.64 0.287  24.00% SFR 38.61 -1.6 -2.15 

        Q99 35.66 2.56 11.44 

        HighNum 31 3.13 4.58 

Two 30 82 1, 58 1.33 0.332  23.00% RBI 33.43 0.5 0.67 

        SFR 33.22 -0.42 -1.56 

        S_Q90 21.97 0.04 0.02 

Three 5 52 1, 8 1.98 0.26  21.00% QmeanIDR 16.79 7.1 38.05 

        Q75 13.45 6.16 26.72 

        Q95 12.82 19.95 85.53 

Four 61 226 1, 120 2.25 0.199  17.00% LowNum 43.37 1.4 2.55 

        S_Q75 29.33 0.06 0.03 

        LowDur 27.42 37.33 29.81 

Five 6 4 1, 6 4.09 0.041  40.00% HighNum 19.15 1.5 9.13 

        LowDur 17.82 528.5 7.88 

        MaxMonth 9.12 1.33 2.25 

Six 10 56 1, 18 1.75 0.279  24.00% BFR 31.35 -0.05 -0.02 

        S_MxMnthQ 22.09 0.16 0.06 

        PDC50 20.85 0.07 0.03 
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2.4 Discussion 

Our use of a combined deductive-inductive approach to classify streams provides some distinct 
advantages over the single-track (i.e., deductive or inductive only) classifications. The inductive 
classification approach requires an extensive array of reference condition gauges spanning 
environmental gradients sufficient to capture the natural variation in streams (Olden et al. 2012). 
California streams, like most developed regions, are extensively hydrologically altered and 
regulated (Carlisle et al. In Review) and an inductive approach, relying solely on reference 
condition gauges, may bias the classifications towards small unregulated streams in mountainous 
or protected areas. A disadvantage of the deductive approach is rooted in the assumption that 
variation in stream hydrologic regimes is driven by the environmental variables used in the 
analysis (Olden et al. 2012). Although this is generally true, input data sets used to develop the 
deductive classification may not be available at a fine enough resolution to capture more 
localized factors that influence hydrologic regime at the sub-basin scale (Brown et al. 2014). 
Important hydrological variation in streams, such as perennialism versus intermittency, is not 
easily discerned using climate, geology, and geomorphology variables. A combined deductive-
inductive approach allows us to provide universal stream classification regardless of availability 
of reference streams, while validating our classes using known hydrologic variables from 
reference gauges. We can then estimate the hydrologic differences between classes and assess 
how anthropogenic hydrologic alteration influences flow characteristics. Furthermore, the 
combined/hybrid approach allows us to estimate flow under “minimally disturbed conditions” 
based on the deductive analysis and compare to actual flow based on the inductive analysis in 
order to estimate hydrologic change. 

Our classifications are similar to classifications developed of the United States using a deductive 
approach, classifying watersheds according to environmental characteristics. Wolock et al. 
(2004) classified all ~200 km2 watersheds in the United States using environmental variables 
they selected a priori as important factors driving hydrological variation in streams and rivers: 
elevation, bedrock and soil permeability, and the amount of precipitation minus potential 
evapotranspiration. The most important variables driving our classifications, elevation, winter 
precipitation and proportion of sedimentary bedrock, are very similar to their selected variables, 
indicating our classification technique also highlights environmental drivers important in 
regulating hydrological variability. Wolock et al. classified most of California into semiarid 
mountains with impermeable bedrock (their classes 17 and 18), arid playas with permeable soils 
(class 14), arid plains with permeable soils (class 5), and humid mountains with permeable soils, 
but impermeable bedrock (class 16). The distribution of some of our classes corresponds fairly 
well with theirs, with our Class 6 lying within their semiarid mountain, impermeable bedrock, 
and permeable soil class, our Class 5 lying within their arid playa class, and our Class 7 lying 
almost within their arid plains class. However, our classification provided additional resolution, 
particularly among semi-arid regions in southern vs. northeastern California (classes 1 and 3) and 
different temperate regions (e.g. classes 2 and 4). This likely reflects the increased sensitivity of 
local scale models to subtle landscape properties, which are often aggregated for continental 
scale mapping. 

Lane et al. (in press) recently classified California streams using a similar inductive-deductive 
approach, classifying according to streamflow data and validating using environmental variables. 
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They partitioned reference condition streams into 7 classes defined according to the primary 
drivers of hydrological variation in streams: snowmelt, rain, groundwater, ephemeral streams, 
and multiple transitional classes. While their classifications focused on various aspects of 
streamflow variation and ours focused on environmental drivers of hydrological variation, there 
was some overlap between classes. For example, stream reaches they defined as snowmelt were 
partitioned among our 3 classes with the highest elevations (1, 3, and 6), their snowmelt and rain 
gauges were found almost entirely within our Class 2 streams segments located along western 
edge of the Sierra Nevada Mountains, and their groundwater, transitional snowmelt, and rain-
driven gauges mostly occur in our Class 4 stream segments. These relationships between the two 
classes highlight the differences between classifying stream segments on streamflow versus 
environmental setting. Their classes emphasized hydrological variation and seasonality while our 
divisions emphasize differences in the magnitude of streamflow, particularly the influence of 
high and low flow events. Both classifications can be helpful to stream managers in California, if 
managers’ primary concern is the disruption of stream seasonality and variability or the 
magnitude of mean flow and/or high and low flow events. One stark difference between our 
classification and Lane et al.’s (in press) is the dearth of reference stream gauges found in our 
classes 3, 5, and 7. These three classes are either found in relatively arid or heavily agricultural 
regions. The lack of reliable, undisturbed streamflow data will result in an inadequate or 
inappropriate development of flow-based stream classes for these regions, while our 
environment-based classes provide such coverage. Further research is underway to reconcile 
both classifications based on the strengths and weaknesses of each classification. 

Inductive approaches classify streams using flow data from gauges to create classes 
distinguished by hydrological variation (Poff and Ward; 1989, Poff, 1996; Kennard et al. 2010; 
Liermann et al. 2012). These approaches produce classes such as stable groundwater, snow-melt 
or rain driven. One distinct advantage of an inductive technique is the ability to distinguish 
intermittent streams from perennial streams. For example, Kennard et al.’s (2010) classification 
of streams in Australia resulted in 12 classifications, 8 of which were intermittent and were 
further classified by precipitation seasonality and consistency. Our classification technique does 
not inherently separate intermittent from perennial streams, but does differentiate climactic, 
geomorphological, and geological drivers that make a stream more likely to be intermittent, 
which may be important for future assessment of hydrologic alteration. Additionally, one 
inherent weakness associated with using reference gauges to classify streams may be the fact that 
some regions or stream types are under-represented in the analysis, particularly dry or largely 
agricultural areas (Liermann et al. 2012) or large rivers (Kennard et al. 2010), all present in 
California. Initial classification based on environmental variables ensures representation of all 
stream segments when reference conditions are not present (Olden et al. 2012). 

The hybrid approach used in this study also reveals unique interactions among climate, physical 
setting and anthropogenic disturbance in shaping stream flow characteristics across California. 
Our analysis shows that stream typology is shaped mainly by patterns of large flow events as 
influenced by major features of the landscape such as, elevation, slope and geology. In contrast, 
deviation from reference is largely defined by changes in low flow variables, average daily flow, 
duration of flow, and timing of low and high flow events.  This is consistent with observations 
that changes in land use have a substantially greater effect on annual peak flows compared to 
infrequent floods (Hollis 1975). For example, annual flow events (1 year recurrence interval) 
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may change more than 10-fold with less than 5% increase in urbanization, whereas large storm 
events may only double with more than 30% increase in urbanization (Hollis 1975). 

Comprehensive stream classification provides the foundation for establishing desired flow 
regimes necessary to support biological communities and ecological functions of management 
importance (Poff et al. 1997). Application of flow-ecology management using the ELOHA 
framework begins with stream classification. This is particularly important in places like 
California which have extreme climatic, altitudinal, and geologic gradients which affect stream 
morphology and flow patterns. This complexity, combined with spatially variable patterns of 
land use (e.g. urban, agricultural, timber, hydropower) produces highly variable flow responses 
in streams that must be accounted for during development of flow management targets. For 
example, disturbance of dry mountainous streams with a propensity for low flows (Class 1), will 
rapidly exacerbate high flow events, and subsequent geomorphic alternation such as avulsion or 
incision. In contrast, anthropogenic changes in catchments of non-sedimentary, semi-arid low 
mountain streams (Class 3) tend to change storage properties (based on high soil permeability), 
which likely makes these stream susceptible to changes in mean and median flows. The 
importance of climatic gradients to stream classification is seen in the non-sedimentary, arid 
streams (Class 5).  These desert streams are naturally dry and have been shown to respond with 
dramatic increases in intensity and duration of flow following land use alteration (Schriever et al 
2015). Finally, the natural flow variability in wet, humid high mountain streams (Class 6) tend to 
be muted indicating the importance of the water withdrawals and dams associated with disturbed 
streams in the Sierra Nevada Mountains. The time scale of our variables may not be able to 
address sub-daily alteration of flow associated with hydropower, a main disturbance in the region  

The comprehensive classification derived from the deductive portion of our analysis will allow 
application of the ELOHA analysis throughout the entire state of California. By not relying 
solely on an inductive classification, we avoid the limitation of areas with few or no reference 
condition gauges available, leading to classes that are biased towards small streams in 
uninhabited areas. Our deductive-inductive approach provides an alternative classification 
technique that creates hydrologically discriminant classes for all stream segments. This will 
allow us to partition the statewide analysis into relatively homogenous subgroups thereby 
increasing the ability to develop meaningful relationships between hydrologic variables and 
biological response metrics.  The inductive portion of the analysis provides important insight into 
which of the hundreds of available hydrologic variables are most likely to produce meaningful 
flow-ecology relationships.  For example, low flow and flow duration variables were important 
determinants of reference condition in several classes. Past work in Mediterranean and dry 
climates has shown that changes in the duration of wet vs. dry periods and flow intermittence are 
key determinants of invertebrate community composition (Datry 2012). Ultimately, if these 
variables produce strong explanatory relationships with biological variables that are also 
indicative of deviation from reference, they will be good candidates for development of flow 
targets for future watershed management. Classification allows such relationships to be “tuned” 
to regional flow patterns and to focus on the aspects of flow-modification that are most critical 
for each specific stream class. 
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3.0 ASSESSMENT OF HYDROLOGIC ALTERATION 

3.1 Background 

Assessing hydrologic alteration at all sites of biological interest is critical to establishing flow-
ecology relationships. Unfortunately, relying on empirical flow data from available gauges to 
understand the regional extent of alteration or develop regional flow-ecology relationships 
presents a serious constraint as long-term flow data is often limited (Puckridge et al. 1998; Poff 
et al. 2006). Additionally, the extent of hydrologic alteration should be based on a comparison of 
contemporary conditions to reference conditions prior to watershed development. This is also 
extremely hard to quantify since flow records that date back to pre-disturbance period are rare at 
gauged sites and nonexistent at ungauged sites (Carlisle et al 2010).  

Modeling provides an alternative for estimating both current and reference streamflows at 
gauged and ungauged locations as a foundation for developing regional flow-ecology 
relationships (Poff 2009). Typical approaches for predicting streamflow in ungauged basins are 
based on transferring gauged data at drainage basin scales (Sivapalan et al. 2003). This transfer is 
usually done by either establishing regression relationships between the different flow metrics or 
components of the hydrograph and the basin characteristics, or by estimating model parameters 
values from the gauged basin and inputting into hydrologic models applied to ungauged sites 
(Post and Jakeman 1999: Sivapalan et al. 2003: Wagener and Wheater 2006; Sanborn and 
Bledsoe 2006; Yadav et al. 2007; Wagener and Montanari 2011; Parajka et al. 2013; Buchanan 
et al. 2013). Reference condition is estimated by developing models at gauges in relatively 
unaltered settings in a space for time substitution. This concept of regionalization or using 
gauged basin behavior to predict flows at ungauged basins has been explored in many studies, 
but with limited success (Kokkonen et al. 2003; Moretti and Montanari 2008; Samaniego et al. 
2010) given that flow regimes are inherently variable, dictated by geography, climatic patterns, 
and catchment properties (Poff and Zimmerman 2010). Though regression models and 
hydrological model performance can be comparable in terms of predicting daily flows, and flow 
metrics, regression models can be restrictive for exploring management scenarios, such as 
evaluating the impact of stormwater capture on streamflow in a watershed. Complex 
hydrological models can require significant effort during calibration and do not transfer easily to 
other sites at regional scales (Sivapalan et al., 2003). Simple yet representative hydrological 
models can be easily transferred to any stream reach of interest and, therefore, provide a viable 
approach for developing flow data necessary for regional flow-ecology relationships.  

Our goal is to estimate hydrologic alteration at ungauged stream reaches in Southern California 
where we have bioassessment data. We developed an ensemble of simple, yet regionally 
representative hydrological models that can be easily transferred to any ungauged location in the 
region. We evaluate the ability of these models to estimate current and reference condition flows 
at ungauged stream reaches, estimate biologically relevant flow metrics and provide a regional 
understanding of hydrological alteration in southern California.  
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3.2 Methods  

Regional hydrological alteration was estimated using an ensemble of models calibrated and 
validated to represent watershed conditions in the southern California study area.  Models were 
developed for 32 gauged catchments with sufficient data availability and that represented the 
range of physical watershed characteristics observed in the region. Calibration was based on 
biologically relevant flow properties in addition to traditional hydrograph fitting. Random forest 
modeling was used to assign one of the 32 calibrated and validated models to 799 ungauged 
bioassessment sites in the study area. Current and historical flows were modeled for each 
bioassessment site using a standard precipitation time series. The difference in flow was used to 
estimate the extent of hydrologic alteration across the region using a selected set of commonly 
used flow metrics.  

3.2.1 Hydrology, precipitation, and GIS data 
We selected 32 USGS gauges with available hourly flow records and hourly precipitation data 
for development of the model ensemble (Figure 3-1a). The flow and precipitation data at these 
gauges overlapped for at least a three-year period representing dry, wet and average years in 
California. These gauges were selected to represent a range of watershed conditions (for 
example, imperviousness, landuse, groundwater storage) found in Southern California. Basic 
catchment properties for each station were compiled in GIS for use in model parameterization. 
Hourly precipitation data was sourced from national databases (Figure 3-1b): National Oceanic 
and Atmospheric Administration (NOAA), National Weather Service Automated Local 
Evaluation in Real Time (ALERT), state database: California Irrigation Management 
Information System (CIMIS) and California Data Exchange Center (CDEC) and local 
databasees: San Diego Regional (SDRCD), Ventura County Watershed Protection District 
(VCWPD). 
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Figure 3-1. Four panel map showing 32 gauged catchments for model ensemble (1-A, black dots 
for 26 gauges finally selected), 296 precipitation gauges used in the study (1-B, the white dots are 
cutoff at 1% and grey dots at 45%), 799 ‘ungauged’ bioassessment sites (1-C, black dots where we 
were able to predict precipitation), 15 ‘ungauged sites with flow data used for validation (1-D).   
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3.2.2 Model Calibration 
We used the HEC-HMS rainfall-runoff modeling platform to simulate flows at the 

ungauged sites. HEC-HMS can represent most of the critical hydrologic processes of a watershed 
system with a parsimonious set of model parameters, making it a good choice for development of 
the regional model ensemble. We chose HEC-HMS over more detailed models such as 
Hydrological Simulation Program-Fortran (HSPF) or Gridded Surface Subsurface Hydrologic 
Analysis (GSSHA) to avoid the need for an intensive calibration process involving a large 
parameter set when applying to high numbers of ungauged basins (Sivapalan et al 2003).  The 
HEC-HMS models were developed for 2005, 2006, and 2007, representing wet, normal and dry 
years respectively. The models were parameterized to account for infiltration losses, 
transformation of excess precipitation to runoff, and baseflow contribution to subbasin outflow 
using the input data shown in Table 3-1.  

 

Table 3-1:  Parameters used to develop HEC-HMS models for application to the ungauged sites. 
Parameters in bold were measured or estimated, remaining parameters were calibrated. In case of 
application to ungauged site, the observed flow column is left empty. 

  Parameters 

Measured or Estimated 

Area  
Imperviousness 
Observed flow 
Observed precipitation 
Time of concentration 
Initial Loss  

Calibrated  

Maximum Storage (in) 
Initial Storage (%) 
Maximum Storage (in) 
Initial Storage (%) 
Initial Deficit (in) 
Maximum Deficit (in) 
Constant Rate (in/hr) 
Ground Water (GW) 1 Initial Discharge (cfs) 
GW 1 Storage Coefficient (hr) 
Number of GW 1 Reservoirs 
GW 2 Initial Discharge (cfs) 
GW 2 Storage Coefficient (in) 
Number of GW 2 Reservoirs 

 

 

 



 

34 

 

Drainage area of the streamflow gauges was delineated in ArcGIS 10.1 using National Elevation 
Dataset (NED) 10 m DEM (Gesch et al. 2002). Total imperviousness was computed for each 
basin by clipping 2006 NLCD data (Fry et al. 2011) in ArcGIS. Time of concentration (TOC) 
was calculated using the Kirpich Method (Kirpich, 1940) and data obtained from the 10 m DEM 
ArcGIS delineations. The Clark Unit Hydrograph storage coefficient was calculated using 
Equation 1):  

 

𝑅𝑅 = 0.37 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇1.11 ∗ 𝐿𝐿0.80 ∗ 𝐴𝐴−0.57                                                  [3-1] 

 

Where R is the storage coefficient in hours, TOC is the time of concentration in hours, L is the 
channel flow length in mi and A is the basin area.  Initial losses were estimated using a Soil 
Conservation Service (SCS) curve number to reflect losses associated with different landuses in 
the watershed. The initial loss in HEC-HMS is estimated as an initial abstraction of 0.2S, where 
S is the area weighted ultimate soil storage potential based on the composite SCS Curve Number 
in that watershed. Simple canopy, simple surface, and constant loss methods were used to 
simulate infiltration losses, while the linear reservoir method with two layers was used to 
represent baseflow contributions. 

The HEC-HMS models were calibrated sequentially for four separate criteria. Two criteria 
emphasized overall fit: 1) Visual hydrograph matching and 2) Nash-Sutcliffe overall efficiency 
(NSE), and two emphasized metrics with relevance to instream biological communities (Gasith 
and Resh, 1999, Konrad et al. 2005, Morley and Karr 2002): 3) Extremely low flow periods 
indicative of stream drying (< 1cfs) and 4) Richard Baker Index (RBI) for flashiness (Konrad et 
al. 2008). Visual comparison was used as a baseline for further overall fit calibration using NSE, 
which is a measure of best overall fit and determines the accuracy of each model relative to the 
observed mean flow. Because it is calculated with respect to mean flow, NSE tends to be biased 
towards high flows (Jain and Sudheer, 2008) therefore tuning models for NSE alone may not 
accurately model streamflow flashiness and drying which are known to strongly influence stream 
biota in the region. To address this bias, we added a low-flow percent error (LFE) calibration to 
minimize the percent errors of time with flow less than 0.03 cms and a RBI percent error 
calibration to minimize the percent error between the observed and the predicted flashiness as 
measured by the index. Three separate calibrated parameter sets unique to each model for the 
NSE, LFE, and RBI criteria were compared, and a final set of optimal models was produced 
based on overall performance of these three quantitative calibration criteria. Table 3.2 lists the 26 
gauged stations.  
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Table 3-2. List of sites used for the final ensemble, associated characteristics (size, 
imperviousness, and elevation) and flow and precipitation gauges used to calibrate the HEC-HMS 
models. 

Site Name Size (mi2) Impervious Elevation (ft) USGS Gauge Precipitation 
Gauges 

Andreas 8.65 0 800 10259000 CDEC, CIMIS, 
NOAA 

Arroyo Seco 16 0.46 1398 11098000 CDEC , CIMIS, 
NOAA 

Arroyo Trabuco 54.12 19.06 80 11047300 CDEC, CIMIS, 
NOAA 

Campo 84.11 0.55 2179 11012500 CDEC, 
SDCFCD 

Carpinteria 13.1 0.1 130 11119500 VCWPD 254 
DeLuz 33 0.32 270 11044800 ALERT , CDEC, 

CIMIS , NOAA 
Sweetwater 45.4 0.28 3269 11015000 CDEC, NOAA, 

SDCFCD 
Devil Canyon 5.49 0.74 2080 11063680 CIMIS 
East Twin 8.8 0.64 1590 11058500 CIMIS 
Jamul 70.11 0.54 512 11014000 CDEC, CIMIS,  

SDCFCD 
Los Angeles 158 27.34 663 11092450 CDEC , CIMIS , 

NOAA, VCWPD 
Los Coches 12.17 9.39 560 11022200 ALERT, CDEC 
Poway 42.44 20.66 300 11023340 CIMIS  

SDCFCD 
Lytle 46.6 0.33 2380 11062000 CDEC 
Matilija 47.8 0.01 1380 11114495 NOAA, VCWPD 
Mission 8.38 4.77 140 11119750 CIMIS 
Rainbow 10.21 3.7 500 11044250 ALERT, CDEC, 

CIMIS 
San Jose 5.51 0.4 96 11120500 CIMIS 
San Mateo 80.8 0.13 405 11046300 ALERT , CDEC, 

CIMIS, NOAA 
Santa Maria 57.6 2.52 1294 11028500 CIMIS 
Santa Paula 38.4 0.14 619 11113500 VCWPD 

Santa Ysabel 111.43 0.1 848 11025500 
CDEC CIMIS , 
NOAA, 
SDCFCD 

Santiago 12.5 0.21 1340 11075800 CIMIS 
Sespe Fillmore 252 0.05 565 11113000 VCWPD 
Sespe Wheeler 
S i  

49.5 0.09 3500 11111500 VCWPD 

Sandia 19.67 1.27 380 11044350 ALERT, CDEC , 
CIMIS , NOAA 
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Temporal validation was conducted at 10 of the gauged watersheds out of the ensemble of 26 
watersheds using data from periods outside of the three-year calibration run. No model 
parameters were changed during temporal validation, only precipitation data from the validation 
period was input into the model. To test the transferability of the models to other sites (spatial 
validation), a resampling technique (Jack-knifing) that leaves out the ‘jackknife estimator’ or in 
our case one gauged site from the dataset and uses the remaining (N-1) sample size to predict 
values was applied. The models were adjusted for same four parameters described in the methods 
section from the ‘jackknife estimator’ site and simulated over the three-year period (2005-2007).  

3.2.3 Assigning a novel site to a gauged HEC-HMS model  
We used a large bioassessment data set, consisting of 799 sites (Figure 3-1c) sampled under a 
variety of regional surveys to develop regional estimates of extent of hydrologic alteration. We 
focused on bioassessment sites as a precursor to a companion study aimed to establish 
biologically relevant regional flow targets (Mazor et al, in review).  

To assign a HEC-HMS model to the 799 ungauged sites, calibration gauges were first clustered 
using a flexible beta, which is a hierarchical clustering method based on hydrologic similarity. A 
suite of 32 metrics (bold in Table 3-3) that represent different components of the hydrographs 
were estimated for the gauged sites using custom scripts in R (C. Konrad, personal 
communication). The metrics were rank-transformed to improve comparability of metrics across 
different scales. A principal components analysis of the rank-transformed metrics was used to 
combine redundant metrics into independent synthetic gradients using the prcomp function in R 
(The R Core Team 2016). The first eight components (i.e., the number required to capture 95% 
of the variance in the flow metrics) were used as the basis for clustering. Hydrologic 
dissimilarity among gauges was calculated as standardized Euclidean distance using the daisy 
function in the cluster package in R (Maechler et at. 2015). A dendogram was created using 
flexible-beta (beta: -0.25) based on this dissimilarity matrix to visually define groups of gauges 
with similar flow metrics. 

We developed a random forest model to assign cluster membership for calibration gauges based 
on watershed characteristics measured in GIS. Twenty-seven candidate predictor variables were 
evaluated for this model, representing both natural (e.g., climate, geology, elevation) and 
anthropogenic (e.g., road density, percent impervious) gradients. Recursive feature elimination 
(RFE function, Caret package, Kuhn et al 2012) was used to select the variables that were most 
useful in predicting cluster membership. RFE attempts to find the simplest model whose 
accuracy was with 1% of the most accurate model. The selected variables were used to calibrate 
the final 1000-tree assignment model using the random Forest package in R (Liaw and Wiener 
2002).  
 
To assign a HEC-HMS model to an ungauged test site, the random forest model was run with a 
single test site and calibration site data simultaneously. Proximity was then calculated as the 
frequency that the test site was assigned to the same group as a calibration gauge. The HEC-
HMS model based on the most proximal gauge was then assigned to the ungauged site. This 
assignment was repeated for each of the 799 bioassessment sites.  
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3.2.4 Estimating hourly precipitation at the ungauged sites 
A primary input to the HEC-HMS models at the ungauged site is hourly precipitation data for the 
period selected for estimating flows. Precipitation gauges are limited in the region, therefore we 
used an inverse distance weighting (IDW) interpolation method to predict hourly precipitation at 
the 799 sites using measured precipitation data from 206 precipitation gauge network in 
Southern California. For each ungauged location (Pa), we used a network of N (206) gauge 
stations Pi (i = 1,…N): 

 

Pa = ∑ 𝑤𝑤𝑎𝑎,𝑥𝑥·𝑃𝑃𝑖𝑖𝑁𝑁
𝑖𝑖=1
∑ 𝑤𝑤𝑎𝑎,𝑖𝑖
𝑁𝑁
𝑖𝑖=1

                                                                                                             Eqn 3-2 

 

where 𝑤𝑤𝑎𝑎,𝑖𝑖 = 1
(𝐷𝐷𝑎𝑎,𝑖𝑖)𝑝𝑝

 is a weighting function, a denotes an interpolated (assessment) point, i is an 
interpolating (known) point, D is the distance (metric operator) from the known point i to the 
unknown point a, N is the total number of known points used in interpolation.  

The IDW method was validated by randomly holding back 10 precipitation gauges and 
predicting precipitation by interpolating the rest of the dataset. This was repeated 20 times, and 
in case of repeat predictions, the results were averaged.  

For each of the 799 sites, the IDW prediction accuracy was tested by comparing the predicted 
annual aggregated values to observed aggregated values sourced from each county. Anomalously 
large or small values of precipitation, usually resulting from bad measured data used in the 
model were eliminated by setting upper and lower bounds using the measured maximum and 
minimum precipitation values (rounded to the nearest inch/year) by elevation for each county. 
For each year where modeled precipitation fell outside the multi-county measured range the site 
was removed from the analysis. This process yielded 572 sites, where we could reliably predict 
precipitation.  

3.2.5 Estimating flows under current and reference conditions, and hydrologic 
alterations 
The HEC-HMS models matched to the ungauged sites were simulated to predict continuous 
hourly flows for 1990-2013 (current conditions) at each of the 572 sites. This 23-year period 
overlaps with the biological data collected at these sites. At each of the 572 ungauged sites the 
assigned HEC-HMS model was adjusted to each site by inputting site specific basin area, 
imperviousness, time of concentration, Clark Unit Hydrograph storage coefficient, and hourly 
precipitation data. We then selected a subset of 6 years that include two wet, two dry, and two 
average precipitation years for these sites. Dry years were defined as below the 30th percentile, 
average years between the 30th and 60th percentiles and wet years exceeding the 60th percentile of 
the total annual precipitation.   In cases where more than two quality years existed, two were 
selected randomly from within the category. Model performance was validated using the limited 
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measured flow data available at a subset of the 572 sites (N=15). Validation at each of the 15 
sites was done for multiple years generating 67 combinations of sites and years.  

Reference condition at ungauged sites were simulated by adjusting the current models to reflect 
pre-urbanization conditions: by setting imperviousness to zero to mimic no urban landuse, and 
by increasing initial losses to account for greater land availability. The same precipitation data 
used to estimate current flows were used to estimate historic flows to ensure compatibility during 
estimation of delta hydrological metrics. 

A suite of 39 flow metrics was calculated for 4 climate regimes (average rainfall, wet, dry, and 
overall, the three IDR metrics were estimated for just the overall conditions).  Average, wet and 
dry are based on precipitation conditions for 2 years each, whereas the overall metrics are 
estimated based on 6 years. This produced a total of 147 flow-precipitation condition 
combinations used to estimate hydrologic alteration (as the difference in metric values between 
current and historic conditions). The flow metrics are grouped into duration (n= 5), frequency 
(n= 4), magnitude (n= 16), timing (n= 7), and variability (n=7).   

Estimated values of flow metrics were validated by correlating predicted values against values 
observed at 41 sites, including 26 gauged sites used for HEC-HMS ensemble and 15 validation 
gauges. Coefficient of determination r2>0.25 were considered acceptable performance for the 
metric validation. Any metric with r2 values lower than 0.25 were not considered acceptable, and 
were eliminated due to poor performance. 

Hydrologic alteration was characterized as the difference in metric values between current and 
historic conditions. Magnitude metrics were further normalized by dividing by the historic metric 
value (or 1cfs or 0.03 cms, whichever was larger). Estimation of hydrologic alteration for 
duration and frequency flow metrics is complicated by the fact these metrics are based on 
comparison with benchmark high or low flow event (e.g. low flows are identified as flow below 
the 10th percentile), and this benchmark can change between historic and current conditions (e.g. 
the 10th percentile may decrease as a watershed undergoes urbanization). To deal with this 
changing baseline effect we applied an alternative approach of using the benchmark derived for 
historic conditions to calculate hydrologic alterations for duration and frequency metrics rather 
than independently estimating the metric value for historic vs current conditions, metrics for 
which we used this alternative approach are marked with an asterisk in Table 3-3).  

Sites sampled as part of an ongoing regional ambient monitoring program that uses a 
probabilistic survey design were used to estimate the extent of hydrologically altered streams. 
The extent of regional alteration was estimated as the percent of stream-kms exhibiting an 
increase, decrease, or no change in the metric values. Extents were estimated for three land use 
classes (agricultural, undeveloped and urban), and three of the common stream classes in the 
regional data set (1, 2 and 4, Pyne et al. 2017). The extent of alteration (increasing or decreasing 
category) was estimated based on the percent of the stream kms assigned with no associated 
threshold. This contrasts with the alteration presented in Mazor et al. (this issue), which assesses 
alteration based on biological thresholds. Because sites were sampled under multiple surveys, 
weights were recalculated through post-stratification. These weights were used to estimate extent 
and magnitude using the Horvitz-Thompson estimator (Horvitz-Thompson 1952). Confidence 
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intervals were based on local neighborhood variance estimators (Stevens and Olsen 2004). All 
calculations were conducted using the spsurvey package (Kincaid et al. 2013) in R (R Core Team 
2012). Additional details about weight adjustments, land use classifications, and extent estimates 
are provided in Mazor (2015). 
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Table 3-3. Flow metrics (N=39) by the categories. Precipitation conditions are indicated by 
columns marked O (overall), W (wet), A (average), and D (dry). NA: Metric-precipitation condition 
combination not analyzed. Bold metrics (32) used for clustering. * Metric calculated using 
benchmarks derived from estimates of reference conditions 

 

 



 

41 

 

3.3 Results 

3.3.1 Performance of model ensemble 
The optimized ensemble of 26 models have NSE values ranging from 0.40-0.95, with an average 
value of 0.67 (Table 3-4). The NSE values for 22 of the 26 models are higher than 0.50. Percent 
LFE ranges from 0-59.50%, with a low value for this calibration criteria indicating good 
performance. The average value of the LFE is around 10%, and approximately 24 of the 26 
models have less than 25% error. The RBI percent error is in the range of 0.1-55.3%, with 18 of 
the 26 models registering less than 25% error. Some of the best performing models are Los 
Angeles, DeLuz, Poway, and San Jose. Campo, and Sespe Wheeler Springs were the worst 
performing models.  

Table 3-4. Model performance for the ensemble by sequential calibration (all values are of 
cumulative performance). Site names list the final set of 26 model sites, the remaining three 
column show sequential calibration for 1) Nash Sutcliffe Efficiency (NSE), Percent Low Flow Error, 
and Percent Richard Baker Index Error. 
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3.3.2 Spatial, and temporal validation at gauged sites.  
Temporal validation was conducted at 10 of the 26 gauges and results varied among them 
(Figure 3-2). Sites were validated for 2007-2010, which has two drought years, and one very wet 
year. At four of the gauges (Los Angeles, Arroyo Trabuco, Sandia, and Santa Paula), the 
performance remains comparable to the calibration period. However, the validation is poor at 
three sites (Campo, Santiago, and Arroyo Seco). Topography, and climatic factors, such as 
precipitation, strongly control the model performance. For example, Los Angeles, and Arroyo 
Trabuco are coastal watersheds with regulated flows, and little orographic control on 
precipitation. These models validate well, whereas, Arroyo Seco, located at the base of the San 
Gabriel Mountains with no flow regulations, steep terrain, and orographic control, validates 
poorly.  

 

 

Figure 3-2. Temporal validation for 10 gauged models out of the ensemble of 26 models. The 
models were calibrated for 2005-2007 and the validation period varies for the sites. Typically for 
most sites data from 2007-2010 was used for validation.  

 

Spatial validation using jack-knifing for the 26 gauged HEC-HMS models showed that 75% of 
the sites had a matched model that predicted flows at the site with NSE value >0.50 (Figure 3-3). 
The average NSE for validation was only 0.06 less than for calibration when the three poorly 
performing gauges (Campo, Lytle, and Devil Canyon) were excluded. Certain model parameters 
transferred better and produced the high NSE values for the ungauged sites. Models that calibrate 
poorly (for example, Campo: NSE =0.49, LFE=7.4, RBI =55.3; Lytle: NSE =0.44, LFE=18.9, 
RBI =6.3) also perform poorly during the jack-knifing (i.e. Campo parameters did not transfer 
well to other sites, and the performance at Campo using other model parameters remains low).  
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Figure 3-3. Jack-knife validation for 26 sites, y-axis shows the site treated as ungauged, and x-axis 
is for model parameters. Each row shows model performance fitted to 25 model parameters for a 
given ungauged site with green lined boxes highlighting the best performance based on NSE.  
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3.3.3 Cluster analysis and model assignment 
Cluster analysis of calibration gauges yielded 8 groups, ranging in size from 3 to 5 gauges each. 
Generally, these groups did not show strong geographic clustering, as even the small groups 
included gauges that were spatially dispersed. Of the 29 candidate predictor variables, seven 
ranked highest in predicting group membership, with all but one (i.e., soil erodibility) variable 
representing anthropogenic factors (Figure 3-4).  

 

 

Figure 3-4. Cluster analysis showing 8 groups of hydrologically similar calibration gauges from 
the ensemble. Subsequently, a random forest model was developed to predict cluster 
membership of novel sites based on watershed characteristics. This random forest model was 
used to estimate the statistical proximity between an ungauged site and each calibration gauge. 
The most proximal gauge was then assigned to an ungauged site.  
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Gauged models from the ensemble were best matched with between 1 and 64 ungauged sites, 
with the top five models in the ensemble being matched to 46% of the 572 ungauged sites (Table 
3-5). These five gauged models are representative of a wide range of watershed area and 
imperviousness. Campo, Lytle and Devil Canyon, which were poorly performing during 
calibration and validation, were assigned a total of 26 ungauged sites, which comprised only 4% 
of the total ungauged sites (n= 572).  

Table 3-5. Number of ungauged sites assigned to each gauged model 

Site Name NSE Percent Error 
LF 

Percent Error RBI 
Andreas 0.58 5.3 8.1 
Arroyo Seco 0.42 19.4 5.2 
Arroyo Trabuco 0.73 15.7 33.2 
Campo 0.49 7.4 55.3 
Carpinteria 0.83 0.3 0.1 
DeLuz 0.9 6.4 8.3 
Sweetwater 0.57 2.9 71 
Devil Canyon 0.57 59.5 27.8 
East Twin 0.4 33.4 4.9 
Jamul 0.46 15.8 13.8 
Los Angeles 0.95 0 23.1 
Los Coches 0.79 4.5 22.2 
Poway 0.91 18.8 20.7 
Lytle 0.44 18.9 6.3 
Matilija 0.84 16.7 18.8 
Mission 0.83 8 26.6 
Rainbow 0.73 10.7 8.3 
San Jose 0.81 5.5 25 
San Mateo 0.75 2.5 50.7 
Santa Maria 0.73 1.3 23.4 
Santa Paula 0.53 0 17.8 
Santa Ysabel 0.72 3.4 16 
Santiago 0.58 0.1 27.6 
Sespe Fillmore 0.61 0 22.6 
Sespe Wheeler Springs 0.58 5.2 47.2 
Sandia 0.63 0 24 
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3.3.4 Ability to predict flows at ungauged sites  
Flow predictions at ungauged sites generally validated well, with the average r2 flow prediction 
at the 15 validation around 0.45, and for 57% of the validation combination, the r2 values are 
greater than 0.40. The performance of the HEC-HMS models was primarily dictated by three 
factors, the quality of the precipitation estimates, model parameters assigned, and presence of 
flow control or diversion structures. The impact of precipitation on model performance is 
observed in the interannual variation at a given site (Table 3-6), i.e., for the site 1, the worst year 
(1996) has a 0 fit, but the best year (1998) has a 0.96 fit. There is some bias in the prediction, 
with the predicted values tending to be higher than the observed for sites where bias is observed 
(Figure 3-5, for site 14, best prediction r2 = 0.63, and slope = 13.92).  

 

Figure 3-5. Predicted versus observed flows for site 14, matched to Los Angeles model parameter. 
Predictions are for the year 1993, where the dashed line is 1:1 ratio. 
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Table 3-6. R-squared (annual) values for validation gauges, the table shows worst, best, and 
average r2 values, along with p-value and slope. Values highlighted in green have good 
performance.  

Validation Sites Worst Year Rsq Slope Best Year 
Rsq Slope Average 

Rsq 

Site 1 0 0.21 0.96 1.62 0.21 

Site 2 0 0 0.08 0.07 0.03 

Site 3 0.14 0.49 0.50 0.42 0.32 

Site 4 0.29 -0.12 0.73 1.6 0.49 

Site 5 0.37 0.24 0.95 0.61 0.72 

Site 6 0.03 0.08 0.52 0 0.14 

Site 7 0.02 0.16 0.52 0.49 0.24 

Site 8 0.01 0.02 0.81 0.78 0.52 

Site 9 0.03 0.09 0.44 0.51 0.21 

Site 10 0.12 0.19 0.16 0.22 0.14 

Site 11 0.49 0.7 0.71 0.25 0.61 

Site 12 0.54 1.14 0.91 1.62 0.67 

Site 13 0.64 0.47 0.86 0.29 0.77 

Site 14 0.08 1.98 0.63 13.92 0.31 

Site 15 0.27 0.01 0.95 0.01 0.62 
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3.3.5 Ability to predict metrics  
In general, the metrics calibrated and validated well, but the validation results varied by metric 
category (Table 3-7) for the four precipitation conditions (overall, dry, wet, and average). 
Metric-precipitation combinations that validated poorly (i.e., r2 < 0.25) at the calibration sites 
were excluded from further analysis. Magnitude metrics tended to calibrate and validate the best, 
with r2 values are high as 0.99. There was a drop in the performance between the calibration 
gauges and the validation gauges for timing metrics. For the 7 timing metrics, there were 23 
metric:precipitation combinations out of 27 possible combinations with r2values higher than 
0.25. However, for the validation gauges, only 4 combinations out of a possible 28 had an r2 

value higher than 0.25. For all metric:precipitation combinations, the models tended to predict 
dry year metrics better than the overall, wet or average years.  
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Table 3-7. Metric validation by category at the calibration gauges (N=26) and validation gauges (N= 
15). There are five main categories of metrics, under each category metric in were removed from 
further analysis due to poor performance. The metrics with asterisks have dual flow threshold 
issue.  Values of r2 < 0.25 are highlighted. 
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3.3.6 Regional Alteration 
The influence of anthropogenic actions on flow alteration varies by metric category (Table 3-8).  
Magnitude metrics tend to increase in response to urban and agricultural land uses, whereas the 
timing and duration metrics are mostly unchanged.  We observed a decrease in the duration 
metrics under agricultural and urban land use, especially the number of no disturbance days and 
percent low flow days. Duration metrics are mostly unchanged in the streams in undeveloped 
areas. Agricultural and urban land use causes a decrease in the timing metrics. Alteration in the 
streams in the three main stream classes (1, 2 and 4) are mixed. For stream class 4, which 
comprises of Southern California’s large, lowland rivers, most magnitude metrics increase, 
especially the high flows, and most stream kms are relatively unchanged for the duration and 
timing metrics.  For stream class 1, representative of the high elevation mountain streams the 
receives snowmelt, majority of the stream kms show an either an increase or no change in the 
magnitude metrics. Similarly, for the timing and duration metrics, the stream kms in class 1 are 
relatively unchanged. Finally, class 2, which represents lower elevation stream driven mostly by 
rainfall and groundwater, most stream kms show an increase in the magnitude metrics, and no 
change for the timing and duration metric categories.                                       
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Table 3-8. Increasing and decreasing trends in 5 categories of regional metrics, by land use 
(agriculture, undeveloped and urban), and by major stream class in the region (classes 1,2 and 4). 

 

  

Metric Dec NC Inc  Dec NC Inc Dec NC Inc Dec NC Inc   Dec NC Inc Dec NC Inc Dec NC Inc
Duration

HighDur 30 43 27 45 20 36 10 57 33 72 5 22 15 49 36 33 52 15 33 31 36
Hydroperiod 1 71 27 5 52 44 1 78 22 1 46 53 0 83 16 2 68 29 0 67 33
LowDur 18 62 19 18 45 37 10 78 11 31 20 49 21 73 7 20 56 24 17 65 18
NoDisturb 55 35 10 89 8 3 37 44 18 91 5 3 44 32 24 56 39 5 64 27 8
Per_LowFlow 42 47 10 86 10 4 34 62 3 68 18 15 30 59 11 44 48 8 53 43 4

Frequency
HighNum 0 56 44 2 6 92 0 79 21 0 4 96 0 69 31 0 61 39 0 39 61
MedianNoFlowDays 22 78 0 22 78 0 15 85 0 38 62 0 12 88 0 27 73 0 21 79 0

Magnitude
MaxMonthQ 5 3 91 1 3 96 15 7 78 0 0 100 13 3 84 4 2 95 1 6 93
MinMonthQ 36 23 41 27 6 67 44 27 29 34 12 54 40 33 27 41 10 49 18 37 46
Q01 32 57 11 36 31 33 32 52 16 51 44 6 18 65 17 38 54 8 39 55 6
Q05 20 47 34 16 38 46 17 55 28 40 47 13 9 66 25 20 33 47 17 53 30
Q10 31 47 22 35 53 12 32 39 28 51 38 10 16 48 35 38 47 14 34 53 13
Q25 38 32 30 34 21 45 35 33 33 51 23 26 19 45 37 58 21 22 24 35 42
Q50 29 22 49 12 5 83 25 24 51 37 6 56 16 46 38 43 7 50 14 30 56
Q75 47 17 36 32 6 62 40 27 33 43 4 53 27 29 44 66 7 27 26 29 45
Q90 38 11 51 33 5 63 39 19 42 22 4 74 34 16 50 53 5 42 20 26 55
Q95 32 15 54 22 3 76 39 25 36 7 2 92 20 39 41 46 6 49 20 12 68
Q99 20 20 60 8 3 89 40 26 34 1 6 94 24 40 36 26 6 69 14 23 63
Qmax 3 2 95 10 3 88 8 5 86 0 0 99 7 2 91 2 2 97 2 5 94
Qmean 2 0 98 0 3 97 7 1 92 0 0 100 4 0 95 2 0 98 0 1 99
QmeanMEDIAN 59 2 39 35 3 63 74 3 24 11 4 85 75 2 22 55 1 44 58 3 39
Qmed 49 2 49 56 4 40 36 4 60 63 6 32 24 2 73 66 2 32 38 4 58
Qmin 58 12 29 44 12 44 35 11 54 74 19 7 44 12 44 66 11 22 49 15 36

Timing
C_C 35 58 7   63 29 8 17 71 12 92 7 2   18 75 7 36 59 5 40 54 6
C_CP 42 52 7 65 22 13 20 63 17 94 4 2 25 66 9 46 51 3 43 48 8
C_M 8 53 38 41 20 40 16 68 16 5 6 89 10 68 22 3 54 43 10 48 41
C_MP 7 51 42 15 20 65 18 62 20 2 5 93 10 65 25 3 51 45 8 48 45
C_P 21 67 12 40 45 15 7 90 3 59 16 25 7 86 7 24 65 11 20 63 16
MaxMonth 7 86 7 8 78 15 0 92 8 22 68 10 1 93 5 5 91 4 9 85 6
MinMonth 12 79 8 5 90 5 2 97 2 30 45 26 3 94 3 15 75 10 16 76 8

Variability
QmaxIDR 9 5 86 24 3 73 13 6 81 13 0 86 19 11 70 6 2 92 7 6 87
QmeanIDR 26 0 74 5 3 93 19 1 80 3 0 97 27 1 71 31 0 69 22 0 77
QminIDR 67 26 6 62 34 4 52 31 17 78 17 5 55 40 6 77 15 8 60 34 6
RBI 19 3 78 4 3 93 28 4 68 0 4 96 40 4 56 7 1 92 29 4 67
SFR 75 20 6 94 6 0 57 21 22 93 6 1 54 36 10 90 6 4 67 27 6

Class 2 Class 4
Hydrologic ClassRegion Land Use

Agricultural Undeveloped Urban Class 1
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3.4 Discussion 

Approximately 79% of the region shows some degree of hydrologic alteration, and 
approximately 40% of the sites can be considered severely altered with at least 10 metrics in the 
top fourth quartile of hydrologic alteration (Figure 3-6). Among the five metric categories 
(timing, frequency, magnitude, duration and variability), the magnitude metrics are usually the 
most altered at the severely altered sites (number of altered metrics in the top 25th quartile > 10). 
This is comparable to Carlisle et al (2010) which found that 86% of the assessed streams in 
conterminous United States were altered for magnitude metrics. Contrary to Carlisle et al. (2010) 
we see an inflation or overall increase in the high flow metrics (Q99) under wet and average 
conditions. This effect could be regional and connected to higher imperviousness in the 
catchments. 

 

Figure 3-6.  Number of severely altered metrics by number of sites with delta H values in the top 
quartile. At 572 ungauged sites, delta H for the 36 metrics was estimated and grouped into 
quartiles. At each site the number of metrics that show alteration in the top quartile are counted 
and presented on the x-axis. The count of number of sites are presented on the y-axis.  

 

The degree of hydrologic alteration varies between the wet, dry and average years, with higher 
degree of alteration in the average or the dry years compared to wetter years for 35 of the 36 
metrics. This variation can have management implications, for example, a site could be 
considered hydrologically altered in the dry years but not in the wet years. This interannual 
variability may partially mask patterns in overall alteration and suggests that management 
actions should be tailored based on climatic conditions.  
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Patterns of increased magnitude metrics and decreased duration and timing metrics associated 
with anthropogenic land use are consistently observed throughout the region. This effect of 
increasing streamflow due to agricultural practices has been reported in other studies (Raymond 
et al 2008), and for other land use (Stohlgren et al. 1998, Yan et al 2013). Further analysis of the 
effect of increasing imperviousness on the metrics shows the imperviousness is positively 
correlated with increasing alteration. Comparing the degree of alteration for three representative 
metrics, LowDur (duration), Qmean (magnitude) and QmaxIDR (variability) shows that 
hydrologic alteration is pervasive in catchments (48% of sites) with impervious cover higher 
than 5% (Figure 3-7). Hydrologic responses and biological responses at such low levels of 
imperviousness is unusual compared to thresholds of around 8-10% observed in other studies 
(Wang) with changing imperviousness at the 584 sites.  

 

Figure 3-7. Delta H for three selected metrics LowDur (duration), Qmean (magnitude), and 
QmaxIDR (variability) with changing imperviousness at the 572 sites. Horizontal box lines, from 
lower to upper, represent 25th, 50th and 75th percentiles.  Whiskers lengths are 1.5 multiplied by 
the Interquartile range.  
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3.4.1 Advantage of mechanistic approach for estimating flow metrics at ungauged sites  
Application of a mechanistic model ensemble to predict regional hydrologic alteration provides 
some advantages over statistical methods that are typically applied at the regional scale.  Because 
this approach is based on physical processes it allows for consideration of a broad suite of flow 
metrics that are derived from hourly flow data and represent all aspects of the hydrograph. For 
example, our model ensemble produced metrics that validated well for four of the broad flow 
categories: duration, frequency, magnitude, and variability. Statistical methods such as 
regression based models (Carlisle 2010), neural networks (Besaw et al. 2010), and flow duration 
curves (Holmes et al. 2002), provide a static flow characterization at ungauged sites for a pre-
determined set of flow metrics (i.e. whatever is modeled). The mechanistic approach generates 
continuous granular flow data (hourly time step) at the ungauged locations allowing for 
consideration of metrics that may be applicable to a variety of ecological endpoints (e.g. fish vs. 
invertebrates), different life history requirements (e.g. breeding vs. migrations), and 
consideration of a range of management tradeoffs (e.g. diversions or discharges). Moreover, once 
the models are established, they can be applied to new management questions or locations in a 
straightforward manner. The sub-daily flow data can be useful in managing flow regimes to 
maintain ecological function (Richter et al., 1997, 2003; Poff et al., 2003), especially in arid 
regions such as Southern California, where precipitation patterns are extremely variable with 
short rainstorm events lasting a couple hours, typically during the winter season (Gasith and 
Resh 1999, Nezlin and Stein 2005). The regional ensemble allows for rapid application to new 
sites of interest with minimal effort on model parameterization and no additional calibration or 
validation requirements. This approach can allow managers to explore the impact of land use 
conversion in a part of the catchment on the receiving waters. Similarly, these models can be 
easily adapted to site best management practices to manage alteration on an ongoing basis  

3.4.2 Lessons learned 
The three calibration criteria selected in this study emphasize different components of the flow 
regime, especially low flow frequency and flashiness. Relying on a simple overall fit, as depicted 
by NSE is insufficient for representing low flow periods, intermittency and flashiness in these 
Southern California streams, for example, the models calibrated for only NSE tend to have high 
error for low flow days. However, multi-objective calibration comes with its set of caveats (Price 
et al. 2012), and can result in a decrease in the NSE values. For example, at the Lytle Creek site, 
the NSE value decreases from 0.78 (single objective calibration for NSE) to 0.42 in the multi-
objective calibration model. However, the lower overall NSE is likely reflective of our level of 
confidence in model performance of a range of ecologically relevant flow conditions. 

The performance of the HEC-HMS models was primarily dictated by the quality of precipitation 
estimates, precipitation patterns, model parameters assigned, and presence of flow control or 
diversion structures. As expected, the model predictions were better for years with good 
precipitation data inputs compared to years with missing data. The predictions were also affected 
at sites with extreme topography and large orographic effects. Challenges of predicting flow in 
relatively steep streams with fast rising hydrographs can be addressed by selecting a different 
routing method, such as the Muskingum-Cunge in HEC-HMS. However, we chose not to do so 
since there is a possibility that these gauged models will get assigned to an ungauged site which 
is perhaps located in milder topography. In the future, this can be addressed by weighting the 



 

55 

 

slope higher during the clustering and model assignment process. Finally, watersheds with flow 
diversion or other hydrologic control require additional adjustments, such as changing baseflow 
or losses to the assigned HEC-HMS models.  

The mechanistic model ensemble provides a calibrated template that represents hydrological 
processes in different catchments within a region. Therefore, we based the model assignment 
process on similarities in hydrologic properties between the gauged and the ungauged sites. We 
believe this approach is reasonable and parsimonious for regional application.  However, 
alternative approaches are possible (or have been used by others) and should be evaluated in 
future studies.  Our approach represents a deviation from other model assignments which rely on 
the similarities in the physical properties of the catchments. An alternate approach of assigning a 
gauged model from the ensemble to an ungauged site could be by clustering the gauged models 
based on the errors from the jack-knife validation exercise, where the error matrix is used as a 
dissimilarity matrix in cluster analysis rather than clustering them based on observed flow 
metrics. This approach may be better at identifying mutually transferable pairs of models, rather 
than hydrologically similar models. Additionally, the model assignment was largely based on 
stressor gradients, even though variables related to natural factors had a chance for selection. 
Given that our goal was to use these models to simulate both current and historic conditions, it 
may be reasonable to restrict model selection to natural factors. Finally, we selected just a single 
HEC-HMS model, rather than a combination of several models, perhaps weighting by proximity. 
These alternative approaches to model extrapolation should be explored through future studies to 
determine if adding complexity provide measurable benefit in model performance at assigned 
ungauged sites.    

This study discovered and addressed difficulties with using duration metrics which may involve 
a shifting baseline, e.g. high duration, low duration, number of no disturbance flows, and number 
of high flow events. These metrics are based on benchmark discharge values used to identify 
high- or low-flow events (typically, the 90th or 10th percentile). Comparisons between historic 
and current conditions can be complicated and counter-intuitive when this benchmark changes 
dramatically (e.g. under certain conditions, large reductions of flow may appear to increase the 
frequency and duration of high-flow events). An example is illustrated in Figure 3-8, where the 
Highdur values estimated for historic conditions is 16 days. When the Highdur values are 
estimated for current conditions using the new Q90 (current) threshold the number of days 
reduces to 15. This indicates that the high flow days are lower under the current conditions even 
though the catchment has undergone landuse change; a finding that seems counter-intuitive. 
When Highdur is estimated for current conditions using the Q90 historic threshold, the number 
of days with high flow increases to approximately 38. Therefore, management planning based on 
metrics estimated using moving thresholds can be misleading. This issue may not have been 
apparent in past use of similar flow metrics because those studies were not attempting to 
simulate historic conditions or were relying on more punctuated alterations, such as construction 
of a dam, where this difference may be less apparent.  To the best of our knowledge no other 
study has reported issues with shifting benchmarks, and we propose that the alternative approach 
applied in this study of using single historic benchmark for both current and historic condition 
metric estimation balances out the ‘changing baseline’ issue.  
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Figure 3-8.  Comparison of current and reference flow for a sample bioassessment site showing 
the effect of use of different thresholds. Conclusions about changes in duration of high flow 
events would vary dramatically if only a single threshold based on reference is issued vs. different 
thresholds were used for current and reference conditions.  

 

3.4.3 Conclusion and future work 
Our goal was to provide a regional understanding of the hydrologic alteration, and to combine 
this understanding with multiple robust biological datasets to develop a broad suite of flow 
ecology relationships to support management decisions. The modeling approach we described 
successfully predicted the flows, and a range of flow metrics at many sites spread over a wide 
geographical region. Relative ease of transferability and applicability makes this a useful tool in 
the region for new sites and scenarios. A distinct advantage of the mechanistic approach is the 
ability to generate site specific scenarios, such as response to implementation of stormwater 
capture structures, or rapid urban development in a given catchment. This will aid in 
understanding the implications of the regional flow ecology relationships for specific 
management applications.  

In the future, we anticipate the application of flow-ecology relationships in predicting changes in 
the hydrologic regimes under various management options and climate change, and developing 
scenarios and risk analysis (Poff et al., 2003; Stewardson & Gippel, 2003; Richter et al., 2006). 
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This is particularly applicable to Southern California given the impetus to reuse and recycle 
treated effluent and stormwater in the region (California Water Action Plan 2015, Hering et al 
2013). Impacts of climate change in Southern California will manifest in form of flooding, and 
shifts in precipitation patterns (Hanak and Lund 2012). Foreseeing the impact of these factors in 
the hydrologic regimes in the region and proactively developing management strategies to 
mitigate the impacts will inform future decisions regarding complex water management issues.  
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4.0 EVALUATION OF BIOLOGICAL CONDITION RELATIVE TO FLOW TARGETS 

4.1 Background 

Indicators of biological integrity, such as benthic macroinvertebrates, can serve as an ultimate 
measure of the impacts of hydrologic alteration because these assemblages integrate the totality 
of stresses to which they are exposed over time (Karr and Chu 2000). Indices of stream condition 
based on benthic macroinvertebrates are widespread in both monitoring and regulatory programs, 
and are increasingly used to set management objectives (e.g., US EPA 1990). Understanding 
how flow alteration affects biological indices enables managers to establish flow management 
targets, identify when flow is a predominant stressor affecting biological condition, plan 
restorations that help recover biological condition, or avoid activities that lead to degradation.  

Establishing flow ecology targets based on benthic invertebrate indices requires large data sets of 
both biological and hydrological condition that can be used to derive relationships that are 
applicable to streams across broad ranges of conditions within a given stream class or region.  In 
Southern California, we were able to build off approximately eight years of regional 
biomonitoring (supported through both state and regional programs) that have generated 
approximately 600 probabilistically sampled bioassessment sites.  The regional model ensemble 
described in the previous chapter provides the ability to estimate hydrologic alteration at most of 
these sites, providing a large data set from which we can develop flow ecology relationships. 

Our objectives were to evaluate responses in indicators of biological health (specifically the 
California Stream Condition Index [CSCI] and its components, Mazor et al. 2016) to measures of 
hydrologic alteration using logistic regression. We then used these relationships to set flow 
targets that could be applied to ungauged sites throughout Southern California. We then created 
an index to rank metrics based on the strength of their association with biological condition 
determined by boosted regression trees, selecting metrics that represent different components of 
the hydrograph. This index was then applied to a probabilistically sampled data set to estimate 
the linear extent of hydrologically altered streams in Southern California. In conjunction with 
biological data, the index was used to prioritize management actions and perform rapid causal 
assessments at a regional scale. Finally, we evaluated the interactive effects of hydrologic 
alteration, water quality, and habitat degradation through graphical methods and ordination. 
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4.2 Methods 

4.2.1 Estimation of biological alteration  
Bioassessment data were collected at 572 unique sites in Southern California under a variety of 
programs, (most under regional stream survey of the Stormwater Monitoring Coalition [SMC], 
Mazor 2015) (Figure 4-1). Benthic macroinvertebrates were sampled according to Ode (2007), 
and scored with the California Stream Condition Index (CSCI) following Mazor et al. (2016). 
The CSCI is a predictive index that compares observed taxa and metrics to values expected 
under reference conditions based on site-specific landscape-scale environmental variables, such 
as watershed area, geology, and climate. It includes two components: a ratio of observed-to-
expected taxa (O/E), and a predictive multi-metric index (MMI) made up of 6 metrics related to 
ecological structure and function of the benthic macroinvertebrate assemblage. Because the 
CSCI and all of its components are based on site-specific reference expectations, they are 
minimally influenced by major natural gradients, and can therefore be used as a measure of 
biological alteration under anthropogenic stress. CSCI scores and all components were classified 
as indicating “intact” or “altered” condition, using the normal approximation of the 10th 
percentile of CSCI reference calibration scores as a threshold. For the CSCI, O/E, and MMI, 
these thresholds are published in Mazor et al. (2016). For the 6 biological metrics, thresholds 
were also calculated as normal approximation of the 10th percentile of reference calibration 
values, based on the means and standard deviations reported in Mazor et al. (2016); all biological 
thresholds are presented in Table 4-1. 

 

 

Figure 4-1. Locations of bioassessment sites and flow gauges used to develop models. Inset 
shows the study area within California. 
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Table 4-1. Thresholds based on the normal approximation of the 10th percentile of reference 
calibration scores used to develop the California Stream Condition Index (CSCI, Mazor et al. 2016). 
Approximations were calculated from the reference mean and standard deviation using the qnorm 
function in R (R Core Team, 2016). MMI: Multi-metric index. O/E: Observed-to-Expected taxa. EPT: 
Ephemeroptera, Plecoptera, and Trichoptera. 

Biological response variable Mean Standard 
 

Threshold Percent above 
 

CSCI 1 0.16 0.79 43 

MMI 1 0.18 0.77 34 

O/E 1 0.19 0.76 58 

Clinger Percent Taxa score 0.72 0.17 0.49 36 

Coleoptera Percent Taxa score 0.60 0.21 0.32 42 

EPT Percent Taxa score 0.74 0.16 0.54 29 

Intolerant Percent score 0.47 0.25 0.15 97 

Shredder Taxa score 0.54 0.24 0.23 90 

Taxonomic Richness score 0.67 0.20 0.41 72 
 

 

4.2.2 Estimation of hydrologic alteration  
An ensemble of hydrologic models developed at 26 calibration gauges (Figure 4-1) was used to 
estimate hourly hydrographs under current and historic conditions following Sengupta et al. (in 
review and previous chapter). Estimates were based on 6 years of rainfall: 2 wet, 2 average, and 
2 dry years. Sites where suitable precipitation data could not be estimated were excluded from 
analysis. Hourly hydrographs were then aggregated to daily discharge, and a suite of flow 
metrics (Table 4-2) with presumed biological relevance were calculated for both current and 
reference conditions. Metrics were calculated with all 6 years to estimate the metric under 
overall precipitation conditions, and also for the 2 years corresponding to each precipitation 
condition. Metric-precipitation condition combinations that validated poorly (i.e., r2<0.25) were 
dropped from analysis, yielding a total of 37 metrics and 121 metric-precipitation combinations 
for analysis. For each metric-precipitation combination, hydrologic alteration was characterized 
as differences between current and reference condition (see previous chapter).  
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Table 4-2. Flow metrics, descriptions, and results of analysis. Precipitation conditions are 
indicated by columns marked O (overall), W (wet), A (average), and D (dry). Gray cells indicate that 
the metric was analyzed under the indicated precipitation conditions. Solid black dots indicate 
that the indicated precipitation condition had greater importance for predicting biological 
endpoints than other precipitation conditions of the given metric. Hollow dots indicate that the 
metric-precipitation condition combination was selected for inclusion in the index of hydrologic 
alteration. Imp: Average importance of the metric-precipitation condition combination indicated 
with a solid or hollow dot. in predicting biological endpoints. Dec: Decreasing target. Inc: 
Increasing target. ND: No data (i.e., <30 sites along stressor gradient). NS: No significant 
relationship in the expected direction. 

Metric Unit Description O W A D    Imp Dec Inc 

Duration                     

   HighDur days/event 

Median annual longest number of 
consecutive days that flow was 
greater than the high flow 
threshold 

  ○     
  

32 -2.9 24 

  Hydroperiod proportion Fraction of period of analysis with 
flows •         79 ND 0 

  LowDur days/event 

Median annual longest number of 
consecutive days that flow was 
less than or equal to the low flow 
threshold 

    •   
  

48 -69 2.3 

  NoDisturb days 

Median annual longest number of 
consecutive days that flow 
between the low and high flow 
threshold 

    ○   
  

22 -64 NS 

  Per_Low Flow proportion Percent of time with flow below 
0.0283 cms •         68 -2.7 0.3 

Frequency                     

  FracYearsNoFlow proportion Fraction of years with at least one 
no-flow day •         118 ND ND 

  HighNum events/year 

Median annual number of 
continuous events that flow was 
greater than the high flow 
threshold 

      ○ 
  

32 ND 2.9 

  Median 
NoFlowDays days/year Median annual number of no-flow 

days     •     91 -
212 ND 

Magnitude                     

  MaxMonthQ cms Maximum mean monthly 
streamflow   ○       4 NS 1.3 
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Metric Unit Description O W A D    Imp Dec Inc 

  MinMonthQ cms Minimum mean monthly 
streamflow •         36 -0 0.2 

  Q01 cms 1st percentile of daily streamflow     •     64 -0 NS 

  Q05 cms 5th percentile of daily streamflow   •       53 -0 0 

  Q10 cms 10th percentile of daily streamflow     •     54 -0 NS 

  Q25 cms 25th percentile of daily streamflow     •     45 -0 NS 

  Q50 cms 50th percentile of daily streamflow     •     45 -0 0.4 

  Q75 cms 75th percentile of daily streamflow   •       35 -0 0.5 

  Q90 cms 90th percentile of daily streamflow   •       30 -0 4.6 

  Q95 cms 95th percentile of daily streamflow   •       25 -0 14 

  Q99 cms 99th percentile of daily streamflow     ○     13 -0 32 

  Qmax cms Median annual maximum daily 
streamflow   •       13 ND 6.3 

  Qmean cms Mean streamflow for the period of 
analysis   •       13 ND 0.1 

  QmeanMEDIAN cms Median annual mean daily 
streamflow     •     17 -0.7 1.6 

  Qmed cms Median annual median daily 
streamflow     •     23 -0.3 NS 

  Qmin cms Median annual minimum daily 
streamflow     •     31 -0.6 NS 

Timing                     

  C_C ratio Colwell's constancy (C) a 
measure of flow uniformity.       •   88 -0.1 NS 

  C_CP ratio 
Colwell's maximized constancy 
(C/P). Likelihood that flow is 
constant throughout the year 

•       
  

76 -0.1 NS 

  C_M ratio 
Colwell's contingency (M). 
Repeatability of seasonal 
patterns. 

•       
  

89 -0.1 0 
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Metric Unit Description O W A D    Imp Dec Inc 

  C_MP ratio 

Colwell's maximized contingency 
(M/P). Likelihood that the pattern 
of high and low flow events is 
repeated across years. 

•       
  

62 NS 0.1 

  C_P ratio 
Colwell's predictability (P=C+M). 
Likelihood of being able to predict 
high and low flow events 

    •   
  

88 -0 0 

  MaxMonth month Month of maximum mean monthly 
streamflow   •       106 -0.4 NS 

  MinMonth month Month of minimum mean monthly 
streamflow       •   106 -0.4 1.3 

Variability                     

  QmaxIDR cms Difference between 90th and 10th 
percentiles of annual maxima ○         9 -4.5 2.4 

  QmeanIDR Cms Difference between 90th and 10th 
percentiles of annual means •         11 NS 0.1 

  QminIDR Cms Difference between 90th and 10th 
percentiles of annual minima •         50 -0 NS 

  RBI Unitless Richard Baker Index (flashiness)       ○   10 NS 0.2 

  SFR Proportion 

90th percentile of percent daily 
change in streamflow on days 
when streamflow is receeding 
(storm-flow recession) 

    •     18 -0.7 NS 
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4.2.3 Estimation of water chemistry alteration  
Selected analytes commonly sampled along with benthic invertebrate assessments were used as 
indicators of water chemistry alteration: specific conductance, total Nitrogen, and Chloride. 
Nutrients and major ions are known to be pervasive contaminants associated with biological 
degradation in Southern California (Mazor 2015). Specific conductance was measured in the 
field at 511 sites where bioassessments were conducted. These observed values were compared 
to values expected under natural conditions based on catchment properties (such as geology and 
climate) following Olson and Hawkins (2012). Water chemistry alteration was then characterized 
as log of the ratio of observed to expected specific conductance values. Chloride was available at 
243 sites, and total Nitrogen was available at 148 sites. 

4.2.4 Calculation of biologically-based targets for hydrologic alteration 
We established flow targets for each of the 121 metric-precipitation combinations using logistic 
regression. The logistic regression produces a probability of specific flow alteration being 
associated with biological alteration. Thresholds were established separately for hydrologic 
alteration manifested as in increase in metric value and alteration manifested as a decrease in 
metric value (Figure 4-2). Gradients that included fewer than 30 hydrologically altered sites were 
excluded from further analysis. Logistic regressions were used to predict the probability of intact 
biological condition based on a single measure of hydrologic alteration. The glm function in R, 
with a binomial error distribution and logit link function, were used for analyses (R Core Team, 
2016). Regressions were dropped from further analysis if the coefficient term was not significant 
(p>0.05), or if the relationship was in the wrong direction (i.e., a negative relationship for 
decreasing gradients, or a positive relationship for increasing gradients). 

Logistic regression models were used to predict the likelihood of intact biology being associated 
with ranges of hydrologic alteration between the minimum predicted metric value to zero change 
(for decreasing gradients), or from zero to the maximum predicted metric value (for increasing 
gradients). Relative likelihood of biological response was then calculated by rescaling 
predictions by the maximum prediction to account for the influence of stressors that degrade 
biology even when hydrology is unaltered. Targets were then selected as the change in 
hydrologic metric value (excluding zero) that had the relative likelihood of biological response 
closest to 0.5, meaning that the likelihood of observing intact biological conditions when the 
target is exceeded is half the likelihood under hydrologically unaltered conditions. The most 
conservative targets were then selected for each metric from among the all the biological 
response variables tested (i.e. CSIC, pMMI, O/E, component metrics). To explore the role of 
classification, targets derived from the complete regional data set were compared to targets 
derived for subsets of sites belonging to hydrologic stream classes that were well represented in 
the region (i.e., Classes 1,2, and 4; n > 100). 
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Figure 4-2. Workflow used to calculate, evaluate, and select priority flow metrics for inclusion in 
the index of hydrologic alteration and for use in establishing regional flow targets. Analyses of 
biologic alteration are represented in green boxes; analyses of hydrologic alteration are 
represented in blue boxes  
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4.2.5 Selection of hydrologic metrics and development of a hydrologic alteration index 
We used boosted regression tree (BRT) analysis to rank hydrologic metrics based on their 
relationships with biological condition for the full suite of 121 flow metric-precipitation 
condition combinations. BRT models were run using the gbm package in R (Ridgeway 2015) 
and with specific code from Elith et al. (2008). Each BRT model was developed with the 
following parameter settings: we used a bag fraction of 0.50, a learning rate of 0.0005 for 
developing our models, and a tree complexity of 5. Variable relative importance (VRI) was 
calculated using formulae developed by Friedman (2001) and implemented in the gbm package 
to estimate the relative influence of each flow metric. Calculations of VRI are based on the 
number of times a variable is selected for splitting, weighted by the squared improvement to the 
models as a result of each split, averaged over all trees. VRI values were ranked within in each 
biotic response model from 1 to 121, with 1 being the best rank. Ranks were then averaged 
across all 9 biological response variables. Metric-precipitation condition combinations were 
selected for further analysis if they had at least one target supported by the logistic regression 
analysis, described above. Within a metric, only the best-ranked precipitation condition was 
selected for further analysis.  

To select a subset of metrics to use in a hydrologic alteration index, up to two metrics were 
selected in order of average rank from each metric class (i.e. duration, magnitude, variability, 
frequency), as long as the average rank was better than the median average rank. The subset of 
flow metrics was re-run in new BRTs in order to evaluate their relationship with biological 
response variables. Metrics were scored 0 if they met targets, 1 if they failed targets, and 2 if 
they failed by more than twice the target value. Sites that scored 2 or more were designated as 
hydrologically altered. To examine the relationship between the index and biological response 
variables, the index score was then plotted against each response variable. A smoothed fit from 
general additive models was added by using the default settings of the geom_smooth function in 
the ggplot2 package in R (Wickham 2009, R Core Team 2016). 

4.2.6 Assignment to classes for management priorities 
Sites were assigned to one of four classes based on their biological and hydrological condition 
(Table 4-3). Biological condition was inferred using CSCI scores: Sites with scores greater than 
0.79 were designated as biologically intact, and sites with lower scores were designated as 
biologically altered (Mazor et al. 2016). Hydrologic alteration was inferred using the hydrologic 
alteration index described above. Hydrologically unaltered (i.e., hydrologic alteration index score 
= 0) and biologically intact (i.e., CSCI score ≥ 0.79) sites were put into a “protection” class 
connoting the need to protect these sites from further degradation. Hydrologically altered and 
biologically altered sites were put into a “monitoring” class containing sites that may be resilient 
to stressors related to hydrologic alteration and require monitoring to ensure they continue to 
support biological health. Hydrologically altered and biologically altered sites were put into a 
“flow management” class; these sites should undergo a causal assessment to determine if flow 
management is likely to improve biological condition. Hydrologically unaltered and biologically 
altered sties were put into an “other management class; these sites should also undergo causal 
assessments with other management options prioritized over flow management. 
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Table 4-3. Management categories defined based on combination of hydrologic and biologic 
alteration 

 Poor hydrologic condition 

(Hydrologic alteration index score > 0) 

Good hydrologic condition 

(Hydrologic alteration index score = 0) 

Poor biology (CSCI < 0.79) Flow Management: Evaluate hydrologic 
alteration among other stressors. 
Determine relative importance of flow 
management for improving biological 
condition, relative to other stressors. 

Other Management/Causal 
Assessment: Evaluate other stressors 
to determine cause of poor biology. 
Evaluation of flow management not 
recommended. 

Good biology (CSCI > 0.79) Monitor: Communities may be resilient 
to flow alteration. Continue to monitor for 
factors that may reduce resilience. 

Protect: Intact area. Target for 
preservation. Explore factors that may 
contribute to resilience or vulnerability. 

 
 

4.2.7 Application to a regional survey 
Sites sampled as part of an ongoing regional ambient monitoring program that uses a 
probabilistic survey design were used to estimate the extent of hydrologically altered streams, as 
well as the extent of the different management priority classes for the entire South Coast region. 
Sites were assessed based on major land use types (i.e., agricultural, urban, and open), as well as 
for major hydrologic stream classifications (Pyne et al., in review and previous chapter). Because 
sites were sampled under multiple surveys, weights were recalculated through post-stratification. 
These weights were used to estimate extent and magnitude using the Horvitz-Thompson 
estimator (Horvitz-Thompson 1952). Confidence intervals were based on local neighborhood 
variance estimators (Stevens and Olsen 2004). All calculations were conducted using the 
spsurvey package (Kincaid and Olsen 2013) in R (R Core Team 2016). Additional details about 
weight adjustments, land use classifications, and extent estimates are provided in Mazor (2015). 

4.2.8 Comparison of the influence of hydrologic alteration and water chemistry on 
biological condition 
We graphically evaluated relationships between hydrologic and chemical stressors and biology 
by plotting stressors against CSCI scores, and by constructing a linear model to predict CSCI 
scores from the index of hydrologic alteration, Chloride, total Nitrogen, and the ratio of observed 
to expected specific conductivity at the 124 sites where all data were available. In addition, 
relationships were explored qualitatively in a nonmetric multidimensional scaling (NMDS). An 
ordination was constructed using the metaMDS function in the vegan package in R (Oksanen et 
al. 2016 R Core Team 2016). Invertebrate data were processed as required to calculate the O/E 
component of the CSCI; specifically, taxa were aggregated to unambiguous operational 
taxonomic units, ambiguous data were tossed, and samples were standardized to 400-count 
samples. A 2-dimensional solution based on Bray-Curtis distance was calculated using default 
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settings (apart from suppressing auto-transformation of thee data). Ordination axes were then 
used for correlation with hydrologic alteration and water chemistry variables using Spearman’s 
rank correlation coefficient. 

4.3 Results 

4.3.1 Hydrologic alteration targets to support biological integrity 
Hydrologic alteration based on most flow metrics was associated with a decline in biological 
index scores. In many cases, both increases and decreases in flow metrics were associated with 
biological degradation, and healthy conditions were most common where alteration was close to 
zero (e.g., Figure 4-3a). However, relationships were sometimes evident for just a single 
direction of alteration (increasing or decreasing; Figure 4-3b). Typically, this situation occurred 
where alteration along one gradient affected few sites, or affected them to a lesser degree than 
the other gradient. Within the data set, gradients of alteration were evident for nearly every 
metric, and all but one (i.e., fraction of years with no flow) had sufficient data for analysis (i.e., 
30 or more sites exhibiting alteration along a single gradient).  

 

 

Figure 4-3. An example plot of biological change versus two measures of hydrological change. 
The dashed line is the threshold for identifying healthy versus degraded biological conditions. 
EPT: Ephemeroptera, Plecoptera, and Trichoptera. As described in Mazor et al. (2016), the 
biological metric is the difference between observed and predicted values (O/E ratio), transformed 
to a scale from 0 to 1. 

 

Each biological endpoint was successfully modeled against nearly all of the flow metrics for all 
climatic conditions, with the exception of two variables (i.e., percent intolerant and shredder 
taxa). These endpoints rarely or never indicated poor condition (respectively), a consequence of 
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the low mean and high variability of these metrics in the reference data set (Table 4-1). Although 
targets could be identified for multiple biological endpoints, the most conservative target was 
almost always associated with the MMI component of the CSCI. Selected relationships between 
flow metrics and the CSCI are shown in Figure 4-4. 

 

Figure 4-4. Relative likelihood of healthy biological conditions at different levels of hydrologic 
alteration for selected flow metrics. Points at the top of each panel represent sites in healthy 
biological condition, and points at the bottom of each panel represent sites in poor biological 
condition. Dotted vertical lines represent hydrologically unaltered conditions. Dashed vertical red 
lines represent targets where the likelihood is half the likelihood at unaltered conditions. Not 
shown: shredder taxa and % intolerant biological response variables. Coleo: Coleoptera. 
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Flow ecology relationships were stronger when based on all streams in the region than when 
based on streams from a single hydrologic class, as many class-specific relationships lost 
statistical significance or had too few data to analyze (Table 4-4). In only one case (i.e., the 
increasing gradient for Qmed in Class 1) was a target set for a class when we were unable to do 
so with the regional data set. When targets were successfully set for specific stream classes, 
some thresholds became stronger (i.e., more conservative) and others became weaker. Stronger 
metrics were more common for increasing gradients, and for streams in Class 4, whereas weaker 
targets were more common for decreasing gradients and for streams in Class 1. In a handful of 
cases, the targets for individual stream classes were identical to regional targets.  

 
Table 4-4. Targets for selected hydrologic stream classes. Symbols indicate whether the target 
was more conservative (+), less conservative (-), or equal to (=) regional targets. ND: Insufficient 
data to analyze a target within a class. LS: No significant target within a class, but a target was set 
at the regional scale. NS: No significant target within a class, nor at the regional scale. GS: Target 
set within a class, but not at the regional scale. Blank cells indicate that the data were insufficient 
to set a target at the regional scale, and were therefore not analyzed for individual classes. 

    Decreasing   Increasing 

Metric Class 1 Class 2 Class 4   Class 1 Class 2 Class 4 

Duration               

   HighDur ND - +   - + + 

  Hydroperiod         + - + 

  LowDur ND - LS   ND + - 

  NoDisturb - - +   ND ND ND 

  Per_LowFlow - + +   LS ND ND 

Frequency               

  HighNum         - = + 

  MedianNoFlowDays ND + LS         

Magnitude               

  MaxMonthQ ND ND ND   + = + 

  MinMonthQ - - -   + + LS 

  Q01 - - =   ND NS ND 
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    Decreasing   Increasing 

Metric Class 1 Class 2 Class 4   Class 1 Class 2 Class 4 

  Q05 ND - LS   LS LS LS 

  Q10 - - -   ND NS ND 

  Q25 - - -   NS NS NS 

  Q50 LS - -   + - + 

  Q75 LS - -   - - + 

  Q90 LS - LS   = LS + 

  Q95 LS + +   - LS + 

  Q99 LS + ND   - + = 

  Qmax         LS + + 

  Qmean         - + = 

  QmeanMEDIAN + LS LS   + + LS 

  Qmed LS NS LS   GS NS NS 

  Qmin + LS LS   NS NS NS 

Timing               

  C_C - = +   ND ND ND 

  C_CP - = +   ND ND ND 

  C_M ND ND ND   - - + 

  C_MP ND ND ND   - = + 

  C_P ND + +   ND ND + 

  MaxMonth ND ND ND         

  MinMonth ND - -   ND - ND 

Variability               
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    Decreasing   Increasing 

Metric Class 1 Class 2 Class 4   Class 1 Class 2 Class 4 

  QmaxIDR ND ND ND   + = + 

  QmeanIDR ND ND ND   + + = 

  QminIDR LS + =   ND ND ND 

  RBI ND ND ND   + - + 

  SFR + + =   ND ND ND 
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4.3.2 Selection of hydrologic metrics and development of a hydrologic alteration index 
The relative influence of flow metrics varied by metric class, but not by precipitation condition. 
Magnitude metrics (particularly those associated with high flows) and variability metrics showed 
the greatest influence on biological response variables. Certain metrics within the frequency and 
duration classes also had great influence. In contrast, timing metrics had relatively little influence 
over most response variables; the only exception being C_MP (Colwell’s maximized 
contingency, a measure of the likelihood that the pattern of high- and low-flow events is repeated 
across years), which had large influence over the percent intolerant and taxonomic richness 
metrics (Figure 4-5). 



 

74 

 

 

Figure 4-5. Ranked variable influence in boosted regression trees to predict biological response 
variables from metrics of flow alteration. Cell color indicates the ranked influence of the flow 
metric, and the “Ave” column indicates the average rank across the 9 biological response 
variables; blue cells are better ranked than red cells. White cells indicate flow metric-precipitation 
combinations that were not analyzed. Outlined cells indicate the best-ranked precipitation 
condition within a flow metric, and thick outlined cells indicate the metrics that were selected for 
inclusion in an index of flow alteration (i.e., up to two top-ranked metrics per class, and in the top 
half of metrics overall). 
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Based on the average ranked influence from the BRT analysis, seven flow metrics were selected 
for inclusion in an index of hydrologic alteration (Table 4-5). Metrics were prioritized based on 
the following criteria (Mazor et al. in review): 

• Ability to differentiate reference sites and non-reference sites  
• Strong relationship to biological condition based on boosted regression tree analysis and 

can produce a hypothesized ecological response  
• Ability to be modeled under both current and reference conditions with a high level of 

confidence  
• Amenability to management actions, with predictable responses to changes in flow 

conditions 
• Representation of different components of the hydrograph (e.g. magnitude vs. duration) 
• Minimal redundancy with other metrics
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Table 4-5. Priority hydrologic metrics and associated thresholds used in the regional flow-ecology relationships.  Metrics are grouped 
the hydrograph component they represent. Thresholds are expressed as the change in metric value (delta H) associated with poor 
biologic condition (CSCI <0.79). Thresholds can be based on increasing or decreasing flows.  Metric effects on biology were typically 
strongest during either average, wet, or dry rainfall years, or all years combined (overall). NT= no threshold established. 

Hydrograph 
Component 

Metric Metric Definition Critical precipitation  
condition 

Decreasing 
Threshold 

Increasing 
Threshold 

Duration NoDisturb 
(days) 

median annual longest number of 
consecutive days that flow is between the 
low and high flow threshold 

Average -64 
NT 

 

HighDur 
(days/event) 

median annual longest number of 
consecutive days that flow was greater 
than the high flow threshold 

Wet -3 
24 

Magnitude MaxMonthQ 
(m3/s) 

Maximum mean monthly streamflow Wet NT 
1.5 

 

Q99 (m3/s) streamflow exceeded 99% of the time Wet -0.01 
32 

Variability RBI (unitless) Richards-Baker index of stream flashiness Dry NT 
0.25 

 QmaxIDR 
(m3/s) 

Interdecile range of flow Overall -5 
2.5 

Frequency HighNum 
(events/year) 

median annual number of events that flow 
was greater than high flow threshold 

Dry NT 
3 

 



 

77 

 

Based on these criteria, we selected two duration (i.e., NoDisturb and HighDur), one frequency 
(i.e., HighNum), two magnitude (i.e., Q99 and MaxMonthQ) and two variability (i.e., RBI and 
QmaxIDR) metrics. Metrics based on high flows were favored over those associated with low 
flows, as they typically had greater influence in predicting biological responses. Because all 
timing metrics were among the bottom-ranked metrics, none were selected. Three of these 
metrics were based on average precipitation conditions, two on dry conditions, two on wet 
conditions, and one on overall conditions.  

The overall hydrologic alteration index showed a negative relationship with all biological 
response variables (Figure 4-6). In general, the relationship was strongest when the hydrologic 
alteration score was below 5; the relationships for many response variables leveled off at higher 
levels of alteration, suggesting that benthic macroinvertebrate communities lack a capacity to 
respond to more severe levels of alteration or reach a saturation point above which there is no 
additional community response. The relationships were particularly striking for the shredder taxa 
and % intolerant metrics, despite the fact that these were rarely (for shredders) or never (for % 
intolerant) used to model responses to flow alteration.  

 

Figure 4-6. Biological responses to the index of hydrologic alteration. Sites in good biological 
condition are shown as white dots, and sites in poor biological condition are shown as black dots. 
The black line represents a smoothed fit from a general additive model, and the gray band 
represents its 95% confidence interval.   
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4.3.3 Classification and application to a regional survey 
Application of the overall hydrologic alteration index to the regional probabilistic data set 
showed that about two-thirds of stream-kms were considered unaltered based on our criteria (59 
to 73% of stream-kms, 95% confidence interval, n = 255 unaltered streams). Alteration was most 
extensive in urban streams (91%, n=177), followed by agricultural streams (80%, n = 44); 
alteration was limited to only 11% of stream-kms (n = 29) draining undeveloped catchments 
(Figure 4-7a). Among the seven hydrologic classes certain were more pervasively altered than 
others, although data were limited in a few classes. Among the three classes with the greatest 
extents within the region, class 1 was the least altered (14%, n = 14), while classes 2 and 4 were 
more extensively altered (37%, n = 91 and 40% of stream-kms, n = 81). Although very few sites 
were sampled in classes 5 and 7 (i.e., 6 and 10, respectively) and precision of estimates are 
therefore poor, they were found to be the most extensively altered (56% and 69%, respectively). 

About half of the region’s stream-kms (i.e., 52%, n = 183 sites) were designated for protection, 
as they had unaltered hydrology based on the index, and had good biological condition based on 
CSCI scores. These sites were predominantly located in mountainous areas (Figure 4-7b). 
Among streams with undeveloped catchments, about three-quarters (72% of stream-kms, n = 
137) were in this category. A very small subset of streams (4% of stream-kms, n = 40) were in 
good biological condition, but showed evidence of hydrologic alteration, and were recommended 
for additional monitoring to track potential changes in condition. Although these streams were 
considered hydrologically altered, the alteration score was substantially and significantly lower 
than scores at sites where biological condition was poor (mean: 4.6 vs 6.7, Welch’s two-sample 
t-statistic = 4.6, p < 0.001), suggesting that alteration may not be as severe in this group. About a 
quarter to a third of stream-kms (i.e., 30%, n = 227) were in poor biological condition and 
hydrologically altered, and evaluations of flow management to improve stream health are 
recommended for streams in this class; this class was particularly pervasive among urban (85%, 
n = 166) and agricultural (53%, n=31) streams. Finally, a small portion of the region (14%, n = 
72) was in poor biological condition but unaltered hydrology. At these sites, stressors unrelated 
to flow alteration (such as degraded water quality or direct habitat modification) should be 
prioritized in causal assessments. 
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Figure 4-7. Hydrologic alteration scores (A) and recommended management actions (B) at sites in 
the region. Urban areas are represented as dark gray. Boundaries of major hydrologic regions are 
shown. 
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4.3.4 Comparison of the influence of hydrologic alteration and water chemistry alteration 
on biological condition 
Hydrologic alteration was positively correlated with chemical alteration, although not 
statistically significant. Pearson’s r2 between the hydrologic alteration score was 0.22 for specific 
conductance, 0.27 for total Nitrogen, and 0.37 for Chloride. In general, sites in good biological 
condition were restricted to sites where these analytes were low, and where the hydrologic 
alteration score was low (Figure 4-8), supporting a role for both chemical and hydrological 
alteration in affecting biological condition. Linear model fit was good (p<0.001, adjusted R2 
0.41), but none of the water chemistry variables were statistically significant.  

 

 

Figure 4-8. Relationship between CSCI scores, selected water chemistry analytes, and the 
hydrologic alteration score. Chloride and total nitrogen (TN) are in mg/L. CondOE is the ratio of 
the observed to expected specific conductance. 

 

Ordination resulted in a moderately high-stress solution (stress = 0.257), yet a clear relationship 
with hydrologic alteration was evident (Figure 4-9a). Axis 1 was correlated with several 
measures of hydrologic alteration, including the overall hydrologic index (Spearman’s rho: 0.41, 
Figure 4-9b). This axis was also positively correlated with several measures of water chemistry 
(e.g., chloride: 0.59; specific conductivity O/E: 0.46), and negatively correlated with the CSCI (-
0.54). Flow metrics related to timing also showed strong relationships with this axis (e.g., 
Colwell’s contingency (M): 0.41), despite having little influence on biological condition in 
boosted regression tree models. In contrast, several duration metrics had correlations with this 
axis that were weaker than might be expected (e.g., HighDur: -0.29); however, both increases 
and decreases in this metric were clustered on the right side of axis 1, which reduced the 
apparent strength of the relationship (Figure 4-9c). Many taxa considered to be sensitive to 
hydrologic alteration (e.g., Ephemeroptera, Plecoptera, and Trichoptera) were more common at 
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the unaltered sites on the left side of Axis 1 (Figure 4-9d), whereas Odonata were more common 
at the altered sites on the right. Clingers in particular were more abundant at the sites with 
minimal flow alteration, and the % clinger taxa metric had a spearman rank correlation of -0.46 
with Axis 1. Biological and environmental gradients along axis 2 were less obvious, although 
non-insects and Odonata were both more common at sites with high values on axis 2. The 
biological and environmental gradients associated with axis 2 were less clear, and very few 
hydrologic metrics had a stronger relationship with axis 2 than axis 1 (e.g., Colwell’s 
predictability [P]). 
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Figure 4-9. Nonmetric multidimensional scaling (NMDS) plots of sites in the study. A: Each point 
represents a single site. Darker colors indicate greater scores of the index of hydrologic 
alteration. B: Each vector represents a variable related to water chemistry, biology, or hydrologic 
alteration. Position of the endpoint of the vector indicates Spearman rank correlation metric with 
each axis. C: Same as panel A, except that symbol color and size indicates degree and alteration 
of the HighDur metric. D: Scores for each taxon in the data set. Symbol color and shape indicates 
taxonomic group. EPT: Ephemeroptera, Plecoptera, and Trichoptera. 
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4.4 Discussion 

4.4.1 Regional targets create new options for managing hydrologic alteration  
Regional flow targets associated with healthy biological communities provide an important tool 
to inform water management decisions and address effects of hydrologic alteration from local to 
regional scales. In particular, targets create a way for managers to anticipate the impacts of 
development, and to prioritize stream reaches or sub-watersheds for protection.  Regionally-
derived targets provide a robustness not possible with locally-derived thresholds because the 
flow-ecology relationships are based on large data sets. Although site-specific approaches may 
be appropriate for isolated, point-source impacts like dams, hydrologic alteration caused by 
urban runoff or increases in impervious surfaces can best be managed with a set of targets with 
regional applicability. By applying a regionally transferable ensemble of hydrologic models to a 
large bioassessment data set, we were able to model responses across a wide range of range of 
conditions, and derive targets that can be applied to sites throughout the region. Furthermore, 
because these targets are based on probabilistic relations in logistic regression models, managers 
can adjust the targets according to their tolerance for risk. 

Planning and prioritization of management actions requires a regional understanding of 
hydrologic alteration. As demonstrated in this study, regional targets can be used for ambient 
assessments of hydrologic conditions (e.g., Figure 4-7a), and for rapid screening of hydrologic 
stressors associated with poor health (e.g., Figure 4-7b). Crucially, these targets allow the 
evaluation of best management practices, helping managers select the appropriate solutions for 
each site; for example, Stein et al. (in review) found that capture of peak storm flows could 
achieve targets more effectively than even great reductions in impervious surfaces in a small 
urban watershed in San Diego. Potentially, these targets could also be used to inform the 
development of policies that establish regional flow criteria, or to identify contributing stressors 
of biological impairment in the establishment of total maximum daily loads. However, these 
applications have not yet been evaluated, and we recommend further exploration through case 
studies and other investigations. 

4.4.2 Integrative biological indicators of condition, like BMI, are essential targets for 
management 
Although many studies of hydrologic alteration focus on impacts to fish and other vertebrates 
(e.g., Beecher et al. 2010, DePhilip and Moberg 2013, McManamay et al. 2013), they also 
recognize the importance of including additional community-level indicators of condition as a 
biological endpoint, such as benthic macroinvertebrate assemblages. Tools that focus on a single 
resource (e.g., minimum flows that support an endangered fish) are only useful where production 
of the resource is a goal. In arid regions like southern California, native fish fauna may be 
depauperate, and the majority of streams in the region may be fish-free from natural or 
anthropogenic reasons. Therefore, flow targets designed to protect fish are inappropriate for 
many streams in this region. In contrast, benthic macroinvertebrates are an appropriate 
management endpoint in nearly all streams (Bonada et al. 2006). Even in streams where fish are 
an appropriate endpoint, a single-species focus may not be integrative enough to adequately 
protect the health of streams. Managers should use flow targets designed to support integrative 
measures of biological integrity, such as benthic macroinvertebrates, in tandem with targets 
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aimed at more specific resources of interest where needed. Expanding the manager’s toolkit to 
include additional integrative biological indicators, such as benthic algae, may also have 
benefits. 

Benthic macroinvertebrates are particularly good for assessing hydrologic alteration because they 
possess diverse life history traits that should respond strongly to alterations in flow regimes. For 
example, decreased low-flows may exacerbate stresses related to high temperature and low 
dissolved oxygen, favoring species with traits adapted to these conditions (e.g., respiratory 
pigments or air-breathing strategies). An increase in flashiness may frequently “reset” benthic 
macroinvertebrate communities through direct mortality; under this type of alteration, species 
that have resilient traits (e.g., strong aerial dispersal, propensity to drift, and rapid, multivoltine 
reproduction) may be favored. It is likely that many of the responses to flow alteration are 
mediated by habitat alteration. For example, lowland streams are often dominated by sands and 
fines, and increased runoff may incise the streambed to bedrock; in this scenario, burrowing 
mayflies may be extirpated not by the increase in Q99, but rather by the elimination of their 
preferred substrate (Walters 2011, Kath et al. 2016, Poff and Zimmerman 2010). 

4.4.3 Relating hydrologic alteration to water quality and habitat degradation 
As observed here and elsewhere (e.g., Buchanan et al. 2013, Carlisle et al. 2014), hydrologic 
alteration often co-occurs with water quality and habitat degradation, and rarely occurs in 
isolation from other stressors. Although this correlation creates challenges for understanding the 
root causes of biological degradation, it underscores one of the key benefits of a flow-focused 
approach to management: because hydrology is a master driver of stream condition, flow 
management may address multiple impacts at once. Management measures that reduce flow 
alteration are likely to also improve water quality, and may also lead to hydrologic regimes that 
generate the physical habitat conditions that support healthy biology. In some cases, however, 
poor water quality or habitat conditions may not respond to flow management. For example, 
concrete-lined channels (which comprise ~26% of stream-kms in the region, Mazor 2015) may 
never support the diversity of microhabitats that benthic macroinvertebrates require, even if 
natural hydrologic regimes are restored. Therefore, the value of flow management options should 
be evaluated in the context of how habitat and water quality conditions are likely to respond to 
improved hydrology. 

4.4.4 Site-specific resilience can inform management, but requires further study 
Although rare in our study (i.e., 40 sites), streams with altered hydrology but good biological 
condition were observed. While this discordance between hydrological and biological conditions 
could simply be due to statistical noise, it could also arise from differences in resilience to 
hydrologic alteration among watersheds. Several factors could contribute to resilience. At the 
catchment scale, some watersheds may be better able to absorb the impacts of dams, diversions, 
or increased imperviousness than others, dampening the impacts on the hydrograph. At the reach 
scale, certain types of habitats are more likely to tolerate more severe hydrologic alteration than 
others. For example, bedrock-dominated streams are less likely to erode in response to increased 
peak flows than streams dominated by fine substrates. At the organismal scale, certain life 
history traits confer a natural resilience to hydrologic alteration. These traits, such as rapid life-
cycles and good dispersal ability, may be particularly important in regions with naturally high 
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hydrologic variability, such as the arid Mediterranean climates found in California (Gasith and 
Resh 1999, Bonada et al. 2007). Although only a small number of sites were observed to be in 
good condition despite hydrologic alteration, it is possible that watershed-, reach-, and 
organismal-scale factors all contribute to the resilience observed at these sites. 

4.4.5 Comparison with other studies reveal common themes 
We found that metrics related to high flows were particularly useful in assessing biological 
responses to hydrologic alteration. For example, HighDur, HighNum, Q99, and MaxMonthQ 
were all selected for inclusion in the index, and similar metrics were highly ranked in BRT 
models. Similarly, Buchanan et al. (2013) observed strong responses to alterations the 
magnitude, duration, and frequency of high flow events. Although we successfully established 
targets for metrics related to low flows, they were less influential on biological response 
variables, and none were selected for inclusion in the hydrologic alteration index. There are a 
few explanations for this pattern, which contrasts with other studies (e.g., Bonada et al. 2007, 
Konrad et al. 2008, Kennen et al. 2010, Buchanan et al. 2013) that show that benthic 
macroinvertebrate communities are highly sensitive to changes in low-flow metrics. First, the 
local fauna may be well adapted to the pressures of low-flow conditions as a consequence of the 
region’s arid, Mediterranean climate (Gasith and Resh 1999, Resh et al. 2013). Mazor et al. 
(2014) showed that an index of biotic integrity was robust to seasonal drought in southern 
California intermittent streams, underscoring the resilience of species in the region to low-flow 
conditions. Second, we were less successful in predicting low-flow metrics than high-flow 
metrics (Sengupta et al. in review), and the imprecision in these predictions may have caused us 
to underestimate their influence on benthic macroinvertebrates.  
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5.0 CONCLUSIONS AND NEXT STEPS 
Using the general approach of ELOHA framework, we developed regional flow-ecology 
relationships based on healthy benthic macroinvertebrate communities. Following classification 
of California’s wadeable streams into seven hydrologic classes, we focused the development of 
hydrologic targets and assessment of hydrologic alternations on the predominant stream classes 
in Southern California. Our analysis produced a set of ensemble hydrologic models that allow 
estimation of hydrologic alteration at any ungauged stream in the region based on 37 flow 
metrics under several climatic conditions (e.g. wet years, dry years, average years). We identified 
seven priority flow metrics that are most associated with biological effects, representing a broad 
range of hydrologic properties (e.g. flow magnitude, duration, frequency), that can be readily 
estimated, and are amenable to management actions. Using these seven flow metrics, we were 
able to assess the extent of hydrologic alteration in the region and categorize streams into four 
major management classes.  

Three key factors contributed to our success in setting regional thresholds for flow alteration: 1) 
an ensemble of regionally transferable hydrologic models, 2) a large bioassessment data set from 
regional surveys, and 3) a widely accepted index of stream health (i.e., the CSCI) that is 
minimally influenced by natural co-factors. The ensemble of 26 models allows estimation of 
hydrologic alteration at any ungauged site, provided that adequate precipitation data are available 
(Sengupta et al. in review). Expanding the ensemble with additional models would likely 
improve performance at stream-types that are currently underrepresented (e.g., small high-
elevation watersheds), and allow expansion outside the South Coast region. The bioassessment 
data, most importantly, represented a wide range of conditions, from minimally disturbed 
reference sites (Stoddard et al. 2006, Ode et al. 2016) to sites where hydrologic alteration was 
severe. Although only a small subset of these sites were co-located with stream gauges (i.e., 133, 
of which 20 were reference), the transferability of the hydrologic models allowed us to take full 
advantage of the data set and the stressor gradients it represents. Because the index of stream 
health is based on predictive models that set site-specific biological expectations in 
environmental context (e.g., climate, watershed area, geology), scores have the same meaning at 
all sites in the study area. Thus, the index could be used to characterize changes in biological 
condition for multiple river-types, without the classification steps ordinarily required in the 
ELOHA approach (Poff et al. 2010). Indeed, this index, combined with the regional 
transferability of the hydrologic models, likely accounts for the small differences in targets we 
observed among stream classes (Table 4-4). Generating targets for other biological endpoints, 
such as fish, benthic algae, or riparian vegetation, may require additional analyses to control the 
influence of natural gradients if predictive models or indices are unavailable.  

The transferability of the hydrologic models is enhanced by their simplicity, but this simplicity 
brings with it a few downsides. For example, in our study, historic conditions were simulated by 
altering mechanistic model parameters related to watershed imperviousness, and it could be 
argued that our models show responses to land use rather than to hydrologic alteration. However, 
by translating changes in imperviousness into biologically relevant targets for flow alteration, 
we’ve created tools that can be used in a variety of applications discussed above, including 
specification of stormwater control measures that maintain and reestablish target streamflows. In 
contrast, targets for imperviousness could not be used for most management applications, like 
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causal assessment or comparing restoration options. More complex models (such as 
ParFlow.CLM; Bhaskar et al. 2015) can incorporate many more factors (such as coupled 
groundwater-surface water-land surface interactions), and thereby provide more realistic 
estimates of current and historic flow conditions, but this complexity makes them impractical for 
regional applications at hundreds of sites, and so were inappropriate for our study. Complex 
models could be used at sites of interest, in conjunction with the targets derived from simpler 
models, to evaluate management decisions. Therefore, the simplicity of the hydrologic models 
does not detract from their utility.  

The flow-ecology tools and targets can be used in a variety of ways, several of which have been 
demonstrated in the San Diego River Watershed (Stein et al. 2016). In addition to mapping 
hydrologic alteration and identified unmodified areas for protection, the flow ecology tools can 
be used to establish management or compliance targets relative to flow, support causal 
assessments to determine whether flow alteration is a dominant stressor affecting biological 
condition, and to inform development of management actions aimed at mitigating or remediating 
the effects of hydrologic alteration.   

Future efforts should expand to include stream classes from regions outside southern California. 
These efforts should also focus on enhancing hydrologic modeling to more fully assess 
hydrologic alteration due to groundwater infiltration or withdrawal or stream diversion. 
Hydraulic modeling could be used to more directly assess the effect of physical habitat alteration 
on biological condition, relative to changes in flow. Finally, our analysis could be repeated for 
other biological indicators of interest, such as algae, fish, or amphibians in order to provide a 
broader suite of tools for assessing condition, evaluating hydrologic stress, and setting 
management targets.  
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