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FOREWORD 

The 2013 Southern California Bight Regional Monitoring Survey (Bight’13) is an integrated, 

collaborative effort to provide large-scale assessments of the Southern California Bight (SCB). 

The Bight’13 survey is an extension of previous regional assessments conducted every five years 

dating back to 1994. The collaboration represents the combined efforts of nearly 100 

organizations. Bight’13 is organized into five elements: 1) Contaminant Impact Assessment 

(formerly Coastal Ecology), 2) Shoreline Microbiology, 3) Nutrients, 4) Marine Protected Areas, 

and 5) Trash and Debris. This assessment report presents the results of the Marine Protected Area 

portion of the survey. Copies of this and other Bight’13 reports, as well as workplans and quality 

assurance plans, are available for download at www.sccwrp.org. 
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EXECUTIVE SUMMARY 

Background 

About 25% of the Southern California Bight coastline is made up of shallow, subtidal rocky reef 

habitats, which are one of the most productive marine ecosystems on earth. Rocky reefs support 

extensive commercial and recreational fishing industries valued at an estimated $400 million 

annually. Because of the reefs’ proximity to the largest urbanized coastline in the nation, Bight 

rocky reefs are particularly vulnerable to the twin stressors of fishing extraction and land-based 

pollution loading. To mitigate the impacts of these stressors, regulations have been developed to 

restrict extraction practices in Bight rocky reefs, and best management practices have been 

implemented to lessen pollution loading.  

At the same time, there has historically never been a study at a Bight-wide scale that offered 

insights into the relative contributions of fishing extraction and pollution loading on the overall 

ecological health of rocky reefs. Prior studies, which have been conducted at smaller spatial 

scales, have offered limited insights because of three main factors. First, many species, especially 

fished species, move at Bight-wide spatial scales. Second, natural biogeographic cycles at the 

Bight-wide scale can confound observations of presumed anthropogenic effects. Third, although 

individual stressors at low levels may not impact ecosystem function, low levels of multiple 

stressors in combination can exert cumulative impacts. 

Goals of This Study 

This study aimed to shed important new insights into the relative impacts of fishing extraction 

and pollutant discharges on the health of rocky reefs at the Bight-wide scale. Three key questions 

were asked: 

 What is the Bight-wide extent of fishing pressure on rocky reefs, and how does 

fishing pressure vary by individual reef? 

 What is the Bight-wide extent of water quality pressure on rocky reefs, and how 

does water quality pressure vary by individual reef? 

 What is the rocky reef biological response to fishing and water quality pressure? 

To answer these questions, three environmental scoring tools were developed: a fishing index to 

measure extraction density, a plume exposure index to measure pollutant loading and plume 

exposure, and a reef response index to measure biological impacts in rocky reefs. 

Study Design and Findings 

The three indices were used to illuminate the three stressor-response relationships outlined by the 

study’s three key questions: 

Fishing Pressure Index: GIS tools were used to map historical harvest rates for both commercial 

and recreational fishing across the Bight coast. The harvest rates, which came from the California 

Department of Fish and Wildlife and dated back as early as 1980, were adjusted in accordance 

with the amount of reef area available in 10-mi2 fishing blocks. Commercial fishing pressure was 

greatest in a block south of Anacapa Island, and recreational fishing pressure was greatest in a 

Santa Monica Bay. Predictable patterns were identified from the GIS-based analysis, and there 

was confidence in the large-scale spatial findings. However, inferences at smaller spatial scales 

were limited as multiple reefs may be contained in a single fishing block.  The magnitude of 

extraction was underreported, since not all extraction techniques are reported in this data set. 



 

iv 

 

Plume Exposure Index: While pollutant loading from stormwater and wastewater effluent 

plumes to the ocean has already been examined, this index took analyses of Bight plumes to the 

next level by estimating the likelihood of plume exposure in any given area of the Bight. 

Probability of exposure was estimated using geostatistical tools and new technology to estimate 

advection of plumes away from wastewater outfalls and large rivers and streams. While plume 

exposure was estimated to extend across more than 2,400 km2 of nearshore Bight ocean, the 

probability of exposure was frequently low, with just 200 km2 having a probability of exposure 

greater than 50%. The analysis was limited for three reasons: Stormwater plume probability maps 

were not validated fully, minor pollutant inputs such as individual coastal storm drains and small 

wastewater discharges were not included, and pollution loading data for most Channel Islands 

locations were not available and thus they were assumed to have zero pollution loading. 

Biological Reef Response Index: A multivariate model was developed to predict which species 

of fish, invertebrates and algae should be present at a given site under natural environment 

conditions; then, these data were compared to species that were actually observed. This so-called 

“observed-to-expected” index is already used to assess biological health in streams and marine 

soft-bottom habitats; the more these expected species are absent, the more the ecosystem is 

assumed to be impacted. In this study, fishing pressure influenced the Biological Reef Response 

Index more than plume exposure – an indication that some fish species are being extracted faster 

than they can be recruited. Although the Biological Reef Response Index was slightly more 

responsive to fishing pressures than plume exposure, water quality remains a significant concern 

of degradation for nearshore rocky reef habitats and, in fact, the twin stressors of fishing 

extraction and pollutant loading tend to co-occur and exert cumulative effects, especially across 

the highly urbanized portions of the Bight.  

Next Steps 

While this study sheds new insights into the relative contributions of fishing extraction and 

pollutant loading on overall ecological health, additional work is needed to address the study’s 

limitations and enhance its impactfulness. First, the Plume Exposure Index modeling should be 

improved upon, especially as more powerful computer models and validation data become 

available. Second, managers should continue to aim for integrated collaborations with regional 

monitoring programs focused on water quality and natural resources, including the Southern 

California Marine Protected Area Monitoring Enterprise and Areas of Special Biological 

Significance (ASBS). 
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SYNTHESIS 

Introduction 

The Southern California Bight (SCB) with its eight Channel Islands and biogeographic transition zone 

(Horn and Allen 1978, Pondella et al. 2005) is one of the most complex ecosystems in the world (Figure 

1).  Its scale is challenging, particularly from a research and monitoring perspective; the coastline is 

~1200 km in length comprising as much coastline as the rest of the state. Twenty-five percent of coastline 

contains shallow (0-30m) subtidal rocky habitat, approximately 49,055 hectares (Pondella et al. 2015).  

These rocky reefs support the keystone species giant kelp (Macrocystis pyrifera), an indicator of highly 

productive temperate marine ecosystems and one of the most productive globally.   

The well-chronicled, hallmark ecosystem of shallow subtidal rocky reefs faces critical sustainability 

challenges in the SCB. These reefs exist proximate to the largest urbanized coastline in the United States; 

over 20 million people live within an hours’ drive of the coast.  As a result, these reefs suffer from 

varying levels of fishing pressure and exposure to poor water quality.  Thus, the primary management 

question posed for this study juxtaposes fishing pressure versus pollution pressure, and their relative roles 

in the health of rocky reef biological communities.  

Due to its high productivity and accessibility, the SCB’s rocky reefs support extensive commercial and 

recreational fishing industries valued at approximately $400 million dollars annually (Gautam et al. 

1996).  This fishing pressure has caused ecosystem stress and multiple fisheries have collapsed or 

declined including abalone, bass, white seabass, giant seabass, rockfish etc. (Love et al. 1998, CDFG 

2005, Allen et al. 2007, Pondella and Allen 2008, Erisman 2011). At the climax of this spectrum is white 

abalone (Haliotis sorenseni), now on the endangered species list.   

Fishery declines have promulgated substantially increased regulations of the fishing industry.  These 

regulations include fishing closures (both individual species and spatial closures) or restrictions on catch 

limits and increased size at capture (e.g., Rock Basses).  More recently, California Department of Fish 

and Game (CDFG 2012) implemented Marine Protected Area networks (MPAs) that restrict extractive 

practices.  Concurrent with the promulgation of new fishing regulations, is a debate about the impact of 

nearshore pollution and its deleterious effects on this habitat.   

Poor water quality can lead to a number of potential rocky reef impacts including smothering and habitat 

loss from sedimentation, decreased water column clarity that limits light availability for plants, or toxic 

pollutants (i.e., trace metals, pesticides, and herbicides) that can cause detrimental acute or chronic effects 

on different life stages of endemic organisms.  For example, sediment from runoff can scour or smother 

rocky substrate preventing settlement (Airoldi 2003).  Runoff samples have proven toxic to purple sea 

urchins in the laboratory (Bay et al. 2003).  Water quality effects may be exacerbated in locations such as 

the SCB, where this highly urban coastline generates sediment and potentially toxic pollutants from its 

27,830 km2 watersheds, nearly all which receives no treatment during infrequent, but often intense 

rainstorms (Ackerman and Schiff 2003). 

The question of which stressor – fishing or water quality - presents a greater risk to rocky reef ecosystems 

has been asked for decades, but not well answered (Allen et al. 2004). This is partly because stress 

evaluations, and subsequent remediation strategies, are typically sector-based.  For example, the State of 

California Department of Fish and Wildlife (CDFW) promulgated Marine Protected Areas (MPAs) as 

locations of harvest refugia in an effort to curb fishing pressure.  In contrast, the State Water Resources 

Control Board promulgated Areas of Special Biological Significance (ASBS) as water quality protected 

areas where the discharge of pollutants is unlawful.  Both agencies aim to “protect natural ecosystem 
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function”, but only address one-half of the fishing-water quality pressure conundrum, associated with 

their respective missions and legal authorities.   

Regardless of whether fishing or water quality pressure presents the greater risk to natural ecosystem 

function, this question has never been answered at the scale of the entire SCB.  This scale is important for 

several reasons.  While many fish and invertebrate species can be sedentary or have a very small home 

range, many other species (especially fished species) move at spatial scales of the SCB.  So, site-specific 

examinations may miss important confounding factors.  Also, many oceanographic processes occur at 

SCB-wide scales, potentially confounding presumed anthropogenic effects with natural biogeographic 

cycles.  Finally, while low levels of an individual stressor alone may not cause impacts, cumulatively low 

levels of multiple stressors may impact ecosystem function. 

 

General Approach 

The general approach to this element of the Southern California Bight Regional Monitoring Program was 

to address three questions: 

 What is the bightwide extent of fishing pressure on rocky reefs and how does fishing pressure 

vary by individual reef? 

 What is the bightwide extent of water quality pressure on rocky reefs and how does water quality 

pressure vary by individual reef? 

 What is the rocky reef biological response to fishing and water quality pressure? 

 

There are at least three unique features used in our approach to answering these questions.  The first is the 

desire to work at SCB-wide scale, while attempting to provide data at individual rocky reef scale.  The 

second unique feature is the stressor-response approach used in this the study design, which required the 

development of three new indices; one each to capture the complexity of fishing stress, water quality 

stress, and biological response.  These generalized indices form their respective axis necessary for 

examining stress-response relationships.  The third unique feature is the availability of new data sets for 

constructing the three indices at this wide range of spatial scales.  These datasets include GIS maps of 

individual rocky reefs for the entire SCB, commercial and recreational fish and invertebrate extraction 

data from CDFW, and new remotely sensed data for measuring surface currents and detecting discharge 

plumes.   

The following three sections represent the major chapters of the report, each designed to answer one of 

the primary monitoring questions. 

 

Fishing Pressure Index 

The Fishing Index assigned fishing pressure to individual reefs by extraction density (MT/yr/km2).  The 

Fishing Index utilized historical catch data from Commercial landings receipts and from recreational 

fishers on Commercial Passenger Fishing Vessels (CPFVs or “party boats”) from the California 

Department of Fish and Wildlife, but examined it in a new geostatistical context.  Although the historical 

data was collected in 10 mi2 blocks, we were able to achieve the desired spatial resolution by focusing the 

species selection on rocky reef associated organisms and then using GIS to assign harvest data to rocky 

habitats.  The key to unlocking this approach was the map of rocky reef habitat that was created during 

the Bight’08 Regional Monitoring Program (Pondella et al. 2015).  
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Commercial and recreational CPFV fishers extracted a recorded total of 2.04 x 105 MT for 68 shallow 

rocky reef species combined from the SCB during the period 1980-2009 (excluding 1985). The Red Sea 

Urchin (Strongylocentrotus franciscanus), primarily a commercially harvested species, dominated this 

total accounting for 76% of the total biomass harvested (1.55 x 105 MT). We attribute much of this 

extreme harvest size to the large amount of water contained within the body of the urchin when weighed, 

and thus to prevent any bias we removed this species from all further analyses. Recreational CPFV annual 

harvest rates (mean = 602.0 MT/yr) were only slightly, although significantly, lower than commercial 

harvest rates (mean = 771.9 MT/yr) on shallow rocky reefs in the SCB (Paired t test: t = 3.15, p = 0.003), 

with the exclusion of the Red Sea Urchin. While recreational CPFV fishers harvested primarily finfishes, 

commercial fishers harvested mostly invertebrates with some overlap between the two fisheries. 

Recreational and commercial harvest rates were not significantly correlated with one another (Spearman 

Rank Correlation: S = 20554, p = 0.06). While commercial harvest rates were greater in blocks around the 

Channel Islands, recreational harvest rates were greater in blocks along the mainland. For commercial 

fishers, harvest rates increased with increasing reef area and decreased with distance to the nearest port. 

Recreational harvest rates asymptotically decreased in more distant blocks. After correcting for the 

amount of reef area available in each block, both commercial and recreational CPFV harvest rates were 

randomly distributed across the SCB (Com: Moran’s I = -0.01, p = 0.41; Rec: Moran’s I = 0, p = 0.05). 

Commercial reef area-corrected fishing pressure was highest in block 707 (52.3 MT/yr/km2, south of 

Anacapa Island), while recreational reef area-corrected fishing pressure was highest in block 701 (338.8 

MT/yr/km2, Marina del Rey). 

Challenges remain with the Fishing Index.  Due to the way data are reported, multiple reefs may be 

contained in large fishing blocks making inter-reef comparisons difficult or impossible.  Similarly, it has 

been widely reported that not all fishers are submitting their fishing location data accurately.  In addition, 

we found a substantial amount of nearshore reef data reported to fishing blocks that did not contain rocky 

reefs.  The data that were inaccurately reported were removed from the analyses.  Regardless, we 

identified predictable patterns within the data.  Further, the Fishing Pressure Index does not include all 

fishing pressure.  Non-CPFV fishing (from shore, private boaters, kayaks, piers etc.) was not quantified.  

Thus, while we have confidence in large-scale spatial patterns we report, inferences into smaller spatial 

scales are limited, and it is likely the magnitude of the extraction is undoubtedly higher.   

 

Plume Exposure Index 

The Plume Exposure Index (Schaffner et al. 2014) assigned relative plume exposure based on dose 

(pollutant load) and probability of plume exposure.  Pollutant load information has been available for 

some time (Ackerman and Schiff 2003, Schiff et al. 2000), but new geostatistical tools were necessary to 

quantify probability of exposure.  These new tools were built upon recent innovations that measure 

treated wastewater plume presence or absence (Nezlin et al., in prep), or advection of surface plumes 

away from major rivers and streams (Rogowski et al. 2015).  Treated wastewater plume presence was 

detected using in situ sensors for Colored Dissolved Organic Matter (CDOM).  Surface plume advection 

utilized the Southern California Ocean Observing System’s new high frequency radar (HFRadar) 

network.  Both CDOM and HFRadar needed algorithm development to process the dosing information 

utilizing a handful of representative pollutants (sediment/suspended solids, nutrients/nitrogen, trace 

metals/copper).   

Results indicated that there was a gradient in plume exposure amongst rocky reefs in the region.  

Cumulatively, treated wastewater and untreated stormwater discharged an estimated 200,000 metric tons 

of suspended solids annually, accompanied by 1,000 metric tons of copper and 4,000 metric tons of 

dissolved nitrogen.  The probability of plume exposure extended across more than 2,400 km2 of nearshore 
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ocean in the SCB.  However, the probability of plume exposure was frequently low, and approximately 

200 km2 had a plume probability greater than 50%. 

There were also challenges and assumptions with the Plume Exposure Index.  The first and largest of 

these assumptions was that the stormwater plume probability maps remain unverified.  While the 

algorithms for making the maps were validated, the validation was conducted at a small number of site-

specific locations.  While the SCB-wide plume probability maps did match satellite images reasonably 

well, rigorous additional validation should occur when using this line of data.  A second assumption for 

the Plume Exposure Index was a number of additional pollutant sources, albeit with exceedingly small 

doses, that were not included.  These sources included individual coastal storm drains, small wastewater 

plumes, and small creeks. While not large contributors of pollutant inputs at the SCB-wide scale, each of 

these sources could have localized impacts at the individual reef scale.  Finally, we did not examine 

pollutant sources at most Channel Islands because we had no information on source loading.  Therefore, 

we assumed zero water quality pressure for these locations. 

 

Biological Reef Response Index 

The Reef Response Index used an “observed-to-expected” (O:E) ratio approach to defining biological 

expectations.  This technique, commonly applied in streams and marine soft bottom habitats, has never 

been attempted in rocky subtidal reefs.  This approach is based on the presence or absence of hundreds of 

fish, invertebrate, and algal species providing a mechanism to include fished and non-fished species, 

pollution tolerant and intolerant species, and a means to assess natural ecosystem function that is both 

fishery- and pollution-independent.  Simply described, a multivariate model predicts which species should 

be present at a site based on natural environmental (i.e., depth, substrate, temperature) factors.  Then, the 

observed species are compared to what is expected.  O:E values near one indicate all of the expected 

species are present and values less than one indicate absent species. As more and more species are absent, 

the O:E values depart further and further from one, and ecosystem function is assumed to be impacted. 

We found that the Reef Response Index was more responsive to the Fishing Pressure Index than the 

Water Quality Index.  In the O:E analyses we observed that there was a significant reduction in the 

number of taxa present on a variety of nearshore rocky-reef in the bight, i.e. we are missing taxa where 

we expect taxa to be found.  The Reef Response Index was sensitive to extractable resources (fishes and 

mobile invertebrates).  Thus, it makes sense that fishing pressure was largely driving this conclusion.  

Benthic and encrusting invertebrates and algae, which are not as easily extracted but immobile and cannot 

escape plume excursions, are perhaps better indicators of pollution pressure.  These results suggest that 

localized fishing mortality rates can approach 1.0 (100%), indicating that animals are extracted at rates 

exceeding recruitment resulting in their complete loss from reef habitats.  

The challenges and assumptions with the Reef Response Index fell into two distinct categories.  The first 

category was defining reference condition, which essentially sets the biological expectations for E as part 

of the O:E ratio (Ode et al. 2015).  In a location like the SCB, however, there are likely no sites that have 

zero fishing pressure.  So, the challenge is to include as many “best available” reference sites as possible 

to appropriately model E across all of the important biogeographic gradients, while at the same time 

minimizing fishing pressure index values.  Our analysis indicated that all of the important biogeographic 

gradients were incorporated into the ecological models for E.  However, this leads to our second 

challenge, whereby including some fishing pressure may reduce the O:E index responsiveness to stress 

(especially at low levels of fishing pressure).  We evaluated this balancing act of covering biogeographic 

gradients while at the same time minimizing fishing pressure using sensitivity analysis, but the true 

answer may never be known since fishing has always occurred in the SCB. 
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Future Directions 

Since the Reef Response Index was more responsive to the Fishing Index than the Plume Exposure Index, 

does that mean that pollution is not a problem for southern California nearshore reefs?  Of course not.  All 

three Indices had limitations and additional future work is recommended.  Historically, water quality has 

been a significant cause for degraded nearshore rocky reef habitat (North 1964, Foster and Schiel 2010).  

What was clear from the detailed analysis was that the greatest urbanization leads to the greatest ocean 

access for fishing and the greatest potential for plume exposure.  Thus, these stressors are not 

independent, and instead tend to co-occur at many locations throughout the SCB.   

The Bight’13 Rocky Reef Element was a good step forward, but only a first step forward.  There are a 

number of recommendations from the Bight’13 Planning Committee for topics to be explored for future 

Bight Programs.  Here, we suggest integration among other Bight Elements that should prove fruitful in 

future regional surveys.  The first recommendation is to improve upon the Plume Exposure Index 

modeling.  As new, more powerful computer models become available, they can and should be adapted 

for applications such as this.  One such model is being developed as part of the Bight’13 Nutrient 

Element; a predictive tool that links physical oceanography and biogeochemistry at a bightwide scale.  

The second recommendation is to improve upon the integration between the Bight Rocky Reef 

monitoring and the water quality conducted by Areas of Special Biological Significance (ASBS) Regional 

Monitoring.  ASBS Regional Monitoring is specifically focused on small drain discharges and local water 

column chemistry, one of the primary data gaps identified in the Plume Exposure Index.  The third 

recommendation is to improve the interaction between Bight Rocky Reef and Marine Protected Area 

(MPA) monitoring.  The MPA monitoring, currently coordinated by the Ocean Science Trust, was an 

important collaborator with the Bight ’13 Rocky Reef Element, helping create the Reef Response Index.  

We look to continue this collaboration, including enhancing the Reef Response Index or testing 

alternative indices.  Using these opportunities to not just enhance coordination and reduce uncertainties, 

but to also generate positive momentum towards case studies and restoration opportunities, all of which 

provide a transition towards management. 

 

 

 

  



 

6 

 

References 

Ackerman, D., and K. C. Schiff. 2003. Modeling storm water mass emissions to the Southern California 

Bight. Journal of Environmental Engineering 129:308-317. 

Airoldi, L. 2003. The effects of sedimentation on rocky coast assemblages. Oceanography and Marine 

Biology: An Annual Review 41:161-236. 

Allen, L. G., D. J. Pondella, and M. A. Shane. 2007. Fisheries independent assessment of a returning 

fishery: Abundance of juvenile white seabass (Atractoscion nobilis) in the shallow nearshore waters of the 

Southern California Bight, 1995-2005. Fisheries Research 88:24-32. 

Allen, M. J., R. W. Smith, E. T. Jarvis, V. Raco-Rands, B. B. Bernstein, and H. K. T. 2004. Temporal 

trends in southern California coastal fish populations relative to 30-year trends in oceanic conditions. 

Southern California Coastal Water Research Project, Westminster, CA. 

Bay, S. M., B. H. Jones, K. Schiff, and S. Y. Kim. 2003. Water quality impacts of stormwater discharges 

to Santa Monica Bay. Marine Environmental Research 56:205-223. 

CDFG. 2005. Abalone recovery and management plan, final.in S. California Department of Fish and 

Game.  The Resources Agency, editor. 

CDFG. 2012. Guide to the Southern California Marine Protected Areas: Point Conception to California-

Mexico Border.120. 

Erisman, B. E., L. G. Allen, J. T. Claisse, D. J. Pondella II, E. F. Miller and J. H. Murray. 2011. The 

illusion of plenty: hyperstability masks collapses in fisheries that target fish spawning aggregations. 

Canadian Journal of Fisheries and Aquatic Sciences 68:1705-1716. 

Foster, M. S., and D. R. Schiel. 2010. Loss of predators and the collapse of southern California kelp 

forests (?): alternatives, explanations and geralizations. Journal of Experimental Marine Biology and 

Ecology 393:59-70. 

Gautam, A., M. Holliday, and R. Lent. 1996. Our living oceans: the economic status of U.S. fisheries.in 

F. S. D. NOAA-NMFS, editor. 

Horn, M. H., and L. G. Allen. 1978. A distributional analysis of California coastal marine fishes. Journal 

of Biogeography 5:23-42. 

Love, M. S., J. E. Caselle, and W. Van Buskirk. 1998. A severe decline in the commercial passenger 

fishing vessel rockfish (Sebastes spp.) catch in the Southern California Bight, 1980-1996. Calif. Coop. 

Oceanic Fish Invest. Rep 39:180-195. 

North, W. J. 1964. Ecology of the rocky nearshore environment in Southern California and possible 

influences of discharged wastes. International Conference on Water Pollution Research, London, 

September, 1962 Pergamon Press, Oxford. 

Ode, P. R., A. C. Rehn, R. D. Mazor, K. C. Schiff, E. D. Stein, J. T. May, L. R. Brown, D. B. Herbst, D. 

Gillett, K. Lunde, and C. Hawkins, P. 2015. Evaluating the adequacy of a reference-site pool for 

ecological assessments in environmentally complex regions. Freshwater Science. 

Pondella, D. J., and L. G. Allen. 2008. The decline and recovery of four predatory fishes from the 

Southern California Bight. Marine Biology 154:307-313. 



 

7 

 

Pondella, D. J., B. E. Gintert, J. R. Cobb, and L. G. Allen. 2005. Biogeography of the nearshore rocky-

reef fishes at the southern and Baja California islands. Journal of Biogeography 32:187-201. 

Pondella, D. J., J. Williams, J. Claisse, R. Schaffner, K. Ritter, and K. Schiff. 2015. The Physical 

Characteristics of Nearshore Rocky Reefs in The Southern California Bight. Bulletin of the Southern 

California Academy of Sciences 114(3):105-122. 

Rogowski, P. A., E. Terrill, K. C. Schiff, and S. Y. Kim. 2015. An assessment of the transport of southern 

California stormwater ocean discharges. Marine Pollution Bulletin 90:135-142. 

Schaffner, R. A., S. J. Steinberg, and K. C. Schiff. 2014. A GIS tool to compute a pollutant exposure 

index for the Southern California Bight. Page 25 in D. J. Wright, editor. Ocean Solutions Earth Solutions. 

Esri Press, Redlands, California. 

Schiff, K.C., M. J. Allen, E.Y. Zeng, and S.M. Bay. 2000. Southern California. Marine Pollution Bulletin 

41(1-6): 76-93 

 
  



 

8 

 

 
 

Figure 1. Map of the Southern California Bight and its 119 shallow (0-30m depth) rocky reefs 
(from: Pondella et al 2015). 
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Figure 2.  Average reef area-corrected harvest rates (MT/yr/km2) for Commercial and Recreational 
CPFV fishers in the SCB between 1980-2009. 
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Figure 3.  Maps illustrating plume exposure probabilities for (A) treated wastewater and (B) major 
creek and river storm discharges (from: Schaffner et al 2014). 
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CHAPTER 1:  FISHING PRESSURE INDEX 

 

Amanda J. Zellmer, Jeremy T. Claisse, and Daniel J. Pondella 

Occidental College, Vantuna Research Group, Los Angeles, CA 

 

I. Abstract 

Spatial conservation priorities are increasingly being utilized in ecosystem management, but our ability to 

accurately identify where these priorities should be located requires an understanding of the processes 

structuring human impacts. While the intensity of human activities may vary across space due to socio-

economic processes, the structure of biological resources may also contribute. Here we use an extensive, 

spatially-explicit dataset with both commercial and recreational landings records collected by the 

California Department of Fish and Wildlife to evaluate the processes structuring harvest rates of shallow 

rocky reef marine species in southern California. While commercial harvest rates increase with greater 

reef area availability and the minimum distance to the nearest port, recreational harvest rates were only 

related to the minimum distance to the nearest port. Our results thus suggest that both biological and 

socio-economic processes are involved in the spatial structuring of fishing pressure across southern 

California. After correcting for the biological spatial structure, we identified new locations for 

conservation priorities, demonstrating the need to account for variation in biological structure when 

evaluating the spatial distribution of human impacts. The presence of significant spatial variation in 

fishing pressure highlights the importance of collecting georeferenced data on human impacts for 

development of spatially-informed conservation and resource management plans. 
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II. Introduction 

Human-related activities now impact almost every part of the world, encompassing both terrestrial (Evans 

et al. 2011) and marine ecosystems (Halpern et al. 2008). However, across space, the extents of these 

impacts vary, with some regions incurring much higher levels of impact than others (Halpern et al. 2007). 

Mapping this variation in human impacts is crucial for identifying spatial conservation priorities 

(Crowder et al. 2006), which are increasingly being utilized by conservation practitioners in the 

development of spatially-based management plans (Margules & Pressey 2000). Yet, just knowing the 

patterns of spatial variation in human impacts provides limited information. It may help us identify areas 

that are exposed to greater levels of human activity, but our results will only be applicable locally. If 

instead we know what processes are responsible for generating that spatial structure, then we can 

potentially extrapolate to other ecosystems and create regulations that can be applied at broader spatial 

scales. 

The main processes that explain spatial variation in the distribution of human impacts may be the 

biological processes that structure the resource itself. In the ecological literature, it is well known that 

predators concentrate in areas with high prey density (e.g., Sih 1984), and since humans often 

functionally fill this role as predator, we expect similar processes to occur in the anthropogenic use of 

biological resources. In other words, human impacts are likely to be greater in areas with more resources. 

Since these areas may be able to sustain greater levels of human activity, what we really want to know 

instead is where human impacts are expected to be the greatest after accounting for the underlying 

biological structure. After controlling for biological processes, we can then begin to investigate 

hypotheses about other processes that structure human impacts, such as socio-economic dynamics.  

One of the biggest challenges to studying the processes structuring anthropogenic threats is the lack of 

georeferenced data. While a few studies have estimated or modeled the spatial distribution of human 

impacts (e.g., Halpern et al. 2008; Evans et al. 2011), collecting large-scale, georeferenced data on the 

intensity of human impacts remains a challenge. Not only is it difficult to collect these data, but also there 

is often disparate governance of the diverse set of users and stakeholders involved, resulting in incomplete 

datasets. Here we take advantage of a unique dataset with 29 years of spatially-explicit commercial and 

recreational landings data collected by the California Department of Fish and Wildlife (CDFW)* (Perry et 

al. 2010) in an effort to investigate the processes driving the spatial distribution of fishing across shallow 

rocky reefs in southern California. This dataset is not only extensive in spatial and temporal scales, but 

also includes all commercially and recreationally important species, allowing for multi-species 

assessment of the spatial distribution of fishing pressure. Ecosystem-based approaches to conservation are 

increasingly being favored to single-stock methods, due to inherent dependencies among species (Pauly et 

al. 2002; e.g., Browman et al. 2004). As a result, this data set provides an opportunity to evaluate the 

general processes that structure fishing rather than species-specific processes. 

Overfishing remains one of the greatest pressures to marine ecosystems, especially in coastal regions 

(Jackson et al. 2001). Our ability to identify and predict where overfishing is the greatest is essential for 

successful conservation of marine ecosystems. Fishing intensity does in fact vary across the seascape 

(Ralston & O’Farrell 2008; Stelzenmüller et al. 2008a, 2008b; Stewart et al. 2010; Hunt et al. 2011), but 

marine habitats themselves are often highly structured (Margalef 1979; Wedding et al. 2011). So what are 

the processes that generate spatial variation in fishing? We tested two hypotheses – the amount of fish 

harvested may be affected by variation in biological productivity across the ocean (i.e., how many fish are 

available) and further may be affected by socio-economic factors driving the fishing industry (i.e., how 

many fishers are fishing). To test whether biological productivity influences the structure of fishing 

pressure, we tested for a relationship between harvest rates of reef-associated species and amount of reef 

habitat available, since larger reefs support greater biomass (Bohnsack et al. 1994). If biological 

productivity drives spatial structure in fishing, then we expect that harvest rates will be positively 

associated with habitat availability. 
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We also tested for an effect of socio-economic dynamics in driving the spatial structure of fishing. 

Specifically, we tested whether harvest rates were associated with the distance to the nearest port, since 

this provides a measure of the cost of fishing. More distant reefs incur greater travel costs on fishers. 

Additionally, we investigated differences between the commercial and recreational fishing industries 

since the socio-economic processes driving these fishers are different. While commercial fishers are 

driven by market demands for marine organisms (e.g., Purcell et al. 2013), recreational fishers are driven 

by demands for fishing opportunities (Dotson & Charter 2003; Figueira & Coleman 2010). Thus, similar 

distributions in these two fisheries would lend support to the hypothesis of biological productivity, 

whereas differences would indicate a role of socio-economic factors. By teasing apart the contributions of 

biological and socio-economic factors in generating fishing pressure, we will better be able to identify 

regions most at risk of overfishing and which spatial processes to target in conservation plans. 
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III. Methods 

A. Study system 

For this analysis, we focus specifically on fishing pressure of fish and invertebrate species associated with 

the shallow rocky reefs of the Southern California Bight (SCB). The SCB is a unique and increasingly 

critical stretch of California, encompassing 1197.2 km of coastline between the mainland and the islands 

(Pondella et al. 2015). Within the SCB, the extensive kelp beds that grow upon rocky substrates provide 

habitat for a wide array of species (Graham 2004; Stephens et al. 2006). The SCB is a transitional zone 

between the cold temperate (Oregonian) fauna fueled by the California current from the north and the 

warm temperate (San Diegan) fauna from the south. As a result, the SCB hosts an exceptionally 

biodiverse and productive community of subtidal rocky reef species (Hubbs 1960; Horn & Allen 1978; 

Pondella et al. 2005; Horn et al. 2006). However, being located off the coast of Los Angeles, the largest 

city in the western United States, the highly productive shallow rocky reefs of the SCB are of prime 

conservation concern due to intense commercial and recreational fishing pressure (Love 2006). 

Commercial fishing on reefs in southern California accounts for approximately $12.2 million in US 

dollars per year (Perry et al. 2010). Similarly, in the recreational fishing market, total expenditures for 

charter and private boats alone in southern California have been estimated to average almost $400 million 

US dollars annually (Gautam et al. 1996). The proximity of an ecologically diverse community next to 

such a large source of anthropogenic pressure makes the SCB an especially important region to closely 

monitor and manage for sustainability of marine populations. 

B. Data processing 

Commercial and recreational fishing records were downloaded from the Pacific Coast Fisheries GIS 

Resource Database (Perry et al. 2010; Original data source: State of California, The Resources Agency, 

Department of Fish and Wildlife (CDFW), USA). The commercial fisheries data come from monthly 

tabulations of landing receipts collected by the CDFW between 1972-2009 (Perry et al. 2010). The 

recreational fisheries data cover monthly harvests between 1980-2009 recorded in Commercial Passenger 

Fishing Vessel (CPFV) logbooks (Hill & Schneider 1999; Perry et al. 2010). While CPFVs constitute 

only part of the total recreational landings (~37%, Love 2006), the dataset provides a good comparison to 

the commercial data. 

Since our primary interest was in conservation of shallow rocky reef species within the SCB, we filtered 

the data in R based on the following criteria. We included only landings records that occurred within 

blocks in the SCB (from the Mexican border to Point Conception). We limited the dataset to the years 

1980-2009, because CPFV data were only reported back to 1980 in the dataset. We also removed data 

from 1985, since no spatially-explicit recreational data was available for this year. Additionally, we 

filtered the dataset for only shallow reef-associated species. We only included species that had been 

observed on shallow rocky reef habitats (above 30 m depth) during previous visual SCUBA based 

surveys across the region (Pondella et al. 2015). This list was then reduced further based on expert 

opinion, removing species that reside or are caught primarily in deeper (>30 m) or in pelagic habitats. 

The data were additionally filtered to include only those blocks in which shallow rocky reefs, above 30m 

depth, are known to occur. These blocks were identified using a shapefile of reefs in the SCB, which 

outlines most of the known rocky reef habitat above the 30 m isobath (Pondella et al. 2015). By 

restricting the spatial analyses to only those blocks with known shallow rocky reefs, the analyses exclude 

any harvest of reef-associated species that occurs in blocks with no known shallow reef habitat. This non-

reef harvest may occur because some species spend only part of their life cycle on reefs or migrate away 

from reefs for spawning aggregations, where they are likewise fished (Erisman & Allen 2006; Erisman et 

al. 2011; McKinzie et al. 2014). To confirm that exclusion of non-reef blocks did not significantly impact 

the results, we conducted the analyses with and without the Barred Sand Bass (Paralabrax nebulifer), a 



 

15 

 

shallow reef species known to be caught both on and off reefs (Erisman et al. 2011). The results remained 

the same regardless of whether this species was included in the analysis (Tables S2,S3). 

Since the recreational data were reported in number of individuals harvested, while the commercial data 

were reported in pounds harvested, we used an estimate of the average weight of individuals caught to 

convert the numbers harvested in the recreational database to pounds. For each fish species and Red Sea 

Urchin, we calculated the mean weight observed on shallow rocky reefs across the SCB (Pondella et al. 

2015) after excluding individuals below the minimum length catch limits, when applicable, or young-of-

the-year for all other species. Observed fish lengths were converted to weights using standard species-

specific weight-length relationships from the literature. For California Spiny Lobster (Panulirus 

interruptus) we used the mean weight caught in the recreational fishery (Neilson & Buck 2008), and for 

Rock Scallops (Crassadoma gigantea) we used a weight based on the average size sold in retail markets 

(CDFG 2001), because no other information was available. There were nine other species of invertebrates 

caught recreationally for which we could not determine a mean size at harvest and thus could not convert 

the landings from these species to pounds (Supporting Information). However, the total recreational 

landings of these species during the 29-year period was minimal and inconsequential to the dataset. 

After combining the commercial and recreational datasets, all records were then converted into amount of 

metric tons harvested. While our calculations are dependent upon this conversion for the recreational 

fishing data, any biases should only affect biomass totals but not patterns of spatial distribution. Finally, 

harvest rates for each block were divided by the area of the block to account for variation in the size of 

each block. 

C. Analyses 

All analyses were completed in R v 3.0.1 (R Development Core Team 2013). We calculated summary 

statistics for both fisheries. To compare yearly harvest rates among commercial and recreational fisheries 

we conducted a Welch two-sample t test. To determine whether harvest rates were spatially structured, we 

calculated Moran’s I statistic as a measure of spatial autocorrelation using the R package, ape (Paradis et 

al. 2004). Moran’s I values that are significantly greater than zero indicate positive spatial autocorrelation, 

or a patchy distribution, while values significantly less than zero indicate negative spatial autocorrelation, 

or a uniform distribution. Values that are not significantly different from zero are expected when there is 

no spatial autocorrelation, or a random distribution. Moran’s I was also calculated for the proportion of 

reef habitat within blocks to assess whether the underlying biological feature was spatially structured as 

well. We compared the distribution of fishing pressure between the fisheries by testing for an association 

in fishing pressure index values between commercial and recreational fishers using Spearman rank 

correlation. 

To evaluate the role of biological and socio-economic factors in predicting harvest rates, we conducted an 

AICC model selection analysis (Burnham & Anderson 2002, 2004) using the R package, AICcmodavg 

(Mazerolle 2011). We compared 13 candidate models for harvest rates, including combinations of 

proportion of reef area per block, minimum distance to nearest port, and the interaction between reef area 

and port distance. Based on inspection of the data, we also evaluated a polynomial function for both reef 

area and minimum distance to port (Table 1). To fit the models, we used the Linear and non-linear mixed 

effects models (nlme) R package (Pinheiro et al. 2009), which allowed us to include a correction for the 

spatial location of blocks in each model to account for potential spatial autocorrelation in harvest rates. 

For each candidate model, we performed a linear regression analysis and calculated the second-order bias 

corrected Akaike’s Information Criterion (AICC), a measure of the relative quality of a model based on 

the goodness of fit observed and the parsimony of that model. Akaike weights (ωi) were calculated to 

assess the relative likelihood of each model in a set and were interpreted as a weight of evidence in favor 

of the hypothesis represented by the model (Burnham & Anderson 2002, 2004). Reef area was calculated 

in ArcGIS v. 10.1 (ESRI 2011) using the shapefile of known shallow rocky reefs in southern California 
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described above (Pondella et al. 2015). Models in each set were ranked according to the difference in 

AICc (Δi) and ωi. A difference in AICc greater than 2 can be considered equivalent to a significant 

difference.  

Since reef area was found to be a significant predictor of harvest rates, we calculated reef area-corrected 

harvest rates to account for the proportion of reef habitat within blocks. We calculated the reef area-

corrected harvest rates by dividing harvest rates (MT/yr/km2) by the proportion of reef habitat within each 

block. We repeated the Moran’s I spatial autocorrelation analyses on the reef area-corrected data to 

evaluate spatial structure of overfishing. 
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IV. Results 

A. Summary Statistics 

Commercial and recreational CPFV fishers extracted a total of 2.04 x 105 MT for 68 shallow rocky reef 

species combined from the SCB between 1980-2009 (Supporting Information). The Red Sea Urchin 

(Strongylocentrotus franciscanus), a primarily commercially harvested species, dominated this total 

accounting for 76% of the total biomass harvested (1.55 x 105 MT). Although this is one of the most 

important commercially harvested species in California (Rogers-Bennett 2013), the over-representation of 

Red Sea Urchin harvest in the dataset would swamp out any general patterns observed across each of the 

other species. We attribute much of this extreme harvest size to the large amount of water contained 

within the body of the urchin when weighed, and thus to prevent any bias we removed this species from 

all further analyses. Results including the Red Sea Urchin can be found in the online Supporting 

Information. 

Recreational CPFV (mean = 602.0 MT/yr) annual harvest rates were only slightly, although significantly, 

lower than commercial harvest rates (mean = 771.9 MT/yr) on shallow rocky reefs in the SCB (Paired t 

test: t = 3.15, p = 0.003), with the exclusion of the Red Sea Urchin. While recreational fishers harvested 

primarily finfishes, commercial fishers harvested mostly invertebrates with some overlap between the two 

fisheries (Supporting Information). The proportion of reef habitat within blocks was not uniform 

(Moran’s I = 0, p = 0.39, Supporting Information). Harvest rates similarly were not uniformly distributed 

across the bight, but instead were randomly distributed for commercial fishers (Moran’s I = -0.03, p = 

0.72; Figure 1a, Supporting Information) and clumped for recreational fishers (Moran’s I = 0.13, p = 3.56 

x 10-10; Figure 1b, Supporting Information). Recreational and commercial harvest rates were not 

significantly correlated with one another (Spearman Rank Correlation: S = 20554, p = 0.06). While 

commercial harvest rates were greater in blocks around the Channel Islands, recreational harvest rates 

were greater in blocks along the mainland (Figure 1). 

B. Processes of Spatial Structure 

Model selection analysis resulted in a single model with Δi score <2 for both commercial and recreational 

harvest rates, however the best-fit model was different for each. The best-fit model for commercial 

harvest rates included the proportion of reef habitat within blocks and the polynomial of this variable, the 

minimum distance to the nearest port, and the interaction between reef proportion and minimum distance 

to port (Table 1). Further, the three models with the lowest Δi scores each included the proportion of reef, 

distance to port, and the interaction (combined ωi = 0.90). For commercial fishers, harvest rates increased 

with increasing reef area (Figure 2a) and decreased with increasing distance to the nearest port (Figure 

2c). The relationship between reef area and harvest rates was less strong for more distant blocks. Only 

minimum distance to the nearest port and the polynomial function of port distance were included in the 

best-fit model of recreational harvest rates, and models that included minimum distance to port 

consistently ranked high in the analysis (Table 1). Recreational harvest rates asymptotically decreased in 

more distant blocks (Figure 2b). 

C. Corrected Fishing Distributions 

After correcting for the amount of reef habitat per block, the distribution of fishing pressure across the 

SCB differed qualitatively compared to the uncorrected harvest rates for both commercial and 

recreational fishers (Figure 1c,d). Corrected for reef area, commercial fishing pressure was highest in 

block 707 (52.3 MT/yr/km2, south of Anacapa Island), while recreational fishing pressure was highest in 

block 701 (338.8 MT/yr/km2, Marina del Rey). Commercial reef area-corrected harvest rates remained 

randomly distributed across the SCB (Moran’s I = -0.01, p = 0.41), while recreational rates shifted from 

clumped before the correction to a random distribution after (Moran’s I = 0, p = 0.05).  
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V. Discussion 

Understanding the spatial distribution of human impacts is a crucial component of conservation, 

especially for identifying locations of spatial conservation priority. However, the success of these 

management plans is dependent upon our ability to correctly identify the areas that are most at risk. The 

amount of risk depends not only on the amount of human impact occurring but also the extent to which 

the environment can handle the pressure. Here we show that by incorporating underlying structure of the 

environment, we identify different patterns of spatial structure in fishing pressure on southern California 

shallow rocky reef species compared to analyses that do not include the underlying biological processes 

(Figure 1). As a result, we are able to identify new areas of spatial conservation priority where fishing 

pressure is greater than expected based on the amount of reef habitat available. For example, the blocks 

south of Anacapa Island, and south of Point Dume, and near the port of Newport had relatively low 

average annual commercial harvest rates; however, after correcting for relatively small reef area, these 

blocks had some of the highest harvest rates. 

In addition, our results provide support for the role of socio-economic processes in structuring fishing 

pressure. Consistent with previous research we found comparable harvest rates among commercial and 

recreational fishers (Eggleston et al. 2003; Coleman et al. 2004; Birkeland & Dayton 2005; Erisman et al. 

2011); however, our results also provide new evidence that the spatial structures of harvest in these 

fisheries vary significantly. Moreover, we found that harvest rates were associated with an indicator of 

cost, the minimum distance to the nearest port (Figure 2b). This relationship is consistent with previous 

studies that have found increased hunting and fishing closer to areas with dense human populations (Sirén 

et al. 2004). Further, we unexpectedly found that recreational CPFV fishing pressure was unrelated to the 

underlying spatial distribution of reefs (Table 1, Figure 2). This result suggests that socio-economic 

factors may be stronger for recreational fishers than biological ones, although it is possible that there are 

other biological factors that are more relevant to recreational fishing than reef area. 

These results raise the question as to why the minimum distance to port, an indicator of socio-economic 

processes, impacts the structure of recreational fishing pressure more than for commercial fishers and 

why reef area, an indicator of biological processes, has such little impact on the structure of recreational 

fishing. One possibility may be that since commercial fishers generally tend to be more efficient 

harvesters than recreational fishers, they are able to shift to more productive locations when stocks 

become less profitable per amount of effort (Cooke & Cowx 2006). As a result, they may be able to better 

track the structure of biological resources. Moreover, since recreational fishing depends on maximizing 

fishing opportunities (Dotson & Charter 2003; Figueira & Coleman 2010), recreational fishers may be 

restricted to only the most accessible reefs, preventing them from optimizing for biological productivity 

in their choice of fishing locations. Remaining close to ports is especially important for CPFVs so that 

these vessels can operate multiple fishing trips per day and accommodate customers with more limited 

time available for fishing, further increasing profits. There is thus less incentive for recreational fishers to 

travel to more distant reefs, since they can afford to withstand lower catch rates (Crowder et al. 2008).  

As an alternative hypothesis, these differences in the spatial distribution of commercial and recreational 

fishers could be the result of different distributions of the species targeted by each industry. In fact, we 

detected important differences, with commercial fishers targeting primarily invertebrates while 

recreational CPFV fishers target finfishes (Supporting Information). Regardless, when we look at species 

that are equally fished by both industries (e.g., California Sheephead, Semicossyphus pulcher), we find 

similar patterns to the full species dataset. Commercial fishing of California Sheephead increases with 

reef area, while there is little evidence to suggest that recreational harvest rates of this species are related 

to reef area (Supporting Information). This suggests that socio-economic factors play a significant role in 

structuring the spatial distribution of fishing pressure, despite biological influences. Moreover, these 

socio-economic processes are general and not just species-specific. For example, if we remove the most 

highly fished recreational species (Barred Sand Bass) from the dataset, the results remain the same. 
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Minimum distance to nearest port remains the best predictor of recreational harvest rates and we still 

identify the same blocks as the highest impacted regions (Supporting Information). 

Blocks where fishing pressure is greater than expected based on amount of habitat available could 

alternatively be due to increased biological productivity, possibly as a result of upwelling or better 

conditions on reefs in those blocks (e.g., Wolanski et al. 1988). If this were the case, then we would 

expect both commercial and recreational fishing to be greater in these blocks. However, we did not detect 

a correlation in harvest rates between the two fisheries. Taken together, our results suggest that while 

biological processes are associated with patterns of fishing pressure across space, this relationship is 

dependent upon socio-economic processes affecting fishing. 

A. Conservation implications 

The spatial variation of human impacts observed in this study provides further evidence for the necessity 

of spatial conservation priorities. Fishing pressure was not consistent across blocks in the SCB, and thus 

different reefs will require various levels of attention in order to protect shallow rocky reef-associated 

marine species. As human impacts continue to intensify globally, it will become increasingly crucial to 

investigate spatial variation in order to prioritize our efforts for conservation (Brooks et al. 2006). With a 

detailed understanding of this variation we can identify ideal locations for implementing a suite of 

strategies to limit or mitigate human impacts, such as designation of reserves (e.g., Marine Protected 

Areas (MPAs)), habitat restoration, and pollution management, allowing for an ecosystem-based 

approach to conservation. 

With an understanding of the processes generating structure in fishing, we can go beyond just identifying 

specific locations for spatial conservation priorities. Combined, the roles of biological and socio-

economic processes in structuring spatial fishing pressure suggest that it is the smallest reefs that are 

easily accessible that are most at risk. Consequently, conservation efforts should be concentrated in these 

locations. Similarly, the differences between the commercial and recreational fisheries suggest that 

management and conservation may need to be specific to the socio-economic processes acting within 

each. By identifying general trends in the processes shaping the spatial structure of fishing, we can inform 

the development of spatially-explicit conservation and resource management plans that are applicable 

over broad scales (e.g., Hamilton et al. 2011), rather than applying on just a site-by-site basis. Further, 

these results provide important hypotheses to test in other coastal ecosystems, which may speed the 

process of developing conservation plans across the globe. Last, the use of broad-scale policies as 

opposed to site-specific designations will become increasingly useful with continued global climate 

change (Faleiro et al. 2013), as they allow for a more dynamic response to environmental changes. 

B. Supporting Information 

The authors are solely responsible for the content and functionality of these materials. Queries (other than 

absence of the material) should be directed to the corresponding author. All scripts are available on Data 

Dryad. 
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VII. Tables 

Table 1. Comparison of linear models for harvest rates (MT/yr/km2) for shallow rocky reef 
species1 in the SCB using AICC analysis. The candidate models include the variables 
proportion of reef area per block (Reef), minimum distance to nearest port (Port), and the 
interaction between reef area and minimum distance to port (Int). Results are shown for 
both the commercial and recreational datasets. The results include: the parameter count, 
K; the AICC score; the change in AICC scores relative to the lowest AICC score, Δi; the 
weight of each model, ωi; and the log-likelihood values, LL. 

Fishery Model K2 AICC Δi ωi LL 

Commercial Reef + Port + Int + Reef2 8 -131.4 0.0 0.63 75.2 

 Reef + Port + Int + Reef2 + Port2 9 -129.1 2.3 0.20 75.6 

 Reef + Port + Int 7 -126.9 4.4 0.07 71.7 

 Reef + Port + Reef2 7 -125.5 5.9 0.03 70.9 

 Reef + Port + Int + Port2 8 -124.5 6.9 0.02 71.8 

 Reef + Port 6 -124.0 7.3 0.02 68.9 

 Reef + Port + Reef2 + Port2 8 -123.6 7.7 0.01 71.4 

 Reef + Reef2 6 -122.2 9.2 0.01 68.0 

 Reef + Port + Port2 7 -121.9 9.4 0.01 69.2 

 Reef 5 -121.4 10.0 0.00 66.3 

 Port 5 -92.8 38.6 0.00 52.0 

 Null 4 -92.2 39.2 0.00 50.5 

 Port + Port2 6 -90.6 40.7 0.00 52.2 

       

Recreational Port + Port2 6 -106.9 0.0 0.54 60.3 

 Port 5 -104.3 2.6 0.15 57.8 

 Reef + Port + Port2 7 -104.3 2.6 0.15 60.3 

 Reef + Port + Reef2 + Port2 8 -102.0 4.9 0.05 60.6 

 Reef + Port 6 -101.8 5.1 0.04 57.8 

 Reef + Port + Int + Port2 8 -101.6 5.4 0.04 60.3 

 Reef + Port + Reef2 7 -99.4 7.5 0.01 57.9 

 Reef + Port + Int 7 -99.2 7.7 0.01 57.8 

 Reef + Port + Int + Reef2 + Port2 9 -99.2 7.8 0.01 60.6 

 Reef + Port + Int + Reef2 8 -96.7 10.2 0.00 57.9 

 Null 4 -95.1 11.8 0.00 52.0 

 Reef 5 -92.8 14.1 0.00 52.0 

 Reef + Reef2 6 -90.4 16.6 0.00 52.1 

1Excludes Red Sea Urchin 

2Parameter count includes intercept and variance 
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Supplementary Table 3. Comparison of linear models for harvest rates (MT/yr/km2) for 

shallow rocky reef species1 in the SCB using AICC analysis. The candidate models include 

the variables proportion of reef area per block (Reef), minimum distance to nearest port 

(Port), the interaction between reef area and minimum distance to port (Int). Results are 

shown for both the commercial and recreational datasets. The results include: the 

parameter count, K; the AICC score; the change in AICC scores relative to the lowest AICC 

score, Δi; the weight of each model, ωi; and the log-likelihood values, LL. 

Dataset Fishery Model K1 AICC Δi ωi LL 

All Species 
including Red Sea 
Urchin 

Com Reef + Reef2 6 124.14 0.00 0.46 -55.19 

 Reef + Port + Reef2 7 125.46 1.33 0.24 -54.54 

 
Reef + Port + Reef2 + 
Port2 8 125.96 1.82 0.19 -53.41 

 Reef + Port + Int + Reef2 8 128.19 4.05 0.06 -54.53 

 
Reef + Port + Int + Reef2 + 
Port2 9 128.80 4.66 0.04 -53.40 

 Reef 5 133.19 9.06 0.00 -60.98 

 Reef + Port + Port2 7 134.72 10.59 0.00 -59.17 

 Reef + Port 6 134.94 10.80 0.00 -60.59 

 Reef + Port + Int 7 137.25 13.12 0.00 -60.43 

 Reef + Port + Int + Port2 8 137.28 13.14 0.00 -59.07 

 Null 4 143.81 19.67 0.00 -67.50 

 Port 5 145.67 21.53 0.00 -67.22 

 Port + Port2 6 145.82 21.68 0.00 -66.04 

       

Rec Port + Port2 6 -106.93 0.00 0.54 60.34 

 Port 5 -104.35 2.58 0.15 57.79 

 Reef + Port + Port2 7 -104.30 2.63 0.15 60.34 

 
Reef + Port + Reef2 + 
Port2 8 -102.02 4.91 0.05 60.58 

 Reef + Port 6 -101.82 5.11 0.04 57.79 

 Reef + Port + Int + Port2 8 -101.56 5.37 0.04 60.35 

 Reef + Port + Reef2 7 -99.39 7.54 0.01 57.89 

 Reef + Port + Int 7 -99.21 7.72 0.01 57.80 

 
Reef + Port + Int + Reef2 + 
Port2 9 -99.16 7.77 0.01 60.58 

 Reef + Port + Int + Reef2 8 -96.69 10.24 0.00 57.91 

 Null 4 -95.14 11.79 0.00 51.97 

 Reef 5 -92.79 14.14 0.00 52.01 

 Reef + Reef2 6 -90.35 16.58 0.00 52.05 

       
All Species 
excluding Red Sea Com Reef + Port + Int + Reef2 8 -131.35 0.00 0.63 75.24 

 
Reef + Port + Int + Reef2 + 
Port2 9 -129.10 2.25 0.20 75.55 
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Dataset Fishery Model K1 AICC Δi ωi LL 
Urchin and Barred 
Sand Bass 

 Reef + Port + Int 7 -126.94 4.41 0.07 71.66 

 Reef + Port + Reef2 7 -125.47 5.88 0.03 70.93 

 Reef + Port + Int + Port2 8 -124.48 6.87 0.02 71.81 

 Reef + Port 6 -124.03 7.32 0.02 68.89 

 
Reef + Port + Reef2 + 
Port2 8 -123.65 7.71 0.01 71.39 

 Reef + Reef2 6 -122.20 9.15 0.01 67.97 

 Reef + Port + Port2 7 -121.94 9.41 0.01 69.16 

 Reef 5 -121.37 9.99 0.00 66.29 

 Port 5 -92.79 38.56 0.00 52.01 

 Null 4 -92.17 39.18 0.00 50.49 

 Port + Port2 6 -90.64 40.71 0.00 52.19 

       

Rec Port 5 -308.08 0.00 0.39 159.65 

 Port + Port2 6 -306.54 1.54 0.18 160.15 

 Reef + Port 6 -305.56 2.51 0.11 159.66 

 Null 4 -305.26 2.82 0.10 157.03 

 Reef + Port + Port2 7 -304.01 4.07 0.05 160.20 

 Reef + Port + Int 7 -303.68 4.40 0.04 160.03 

 Reef + Port + Reef2 7 -302.98 5.10 0.03 159.68 

 Reef 5 -302.84 5.24 0.03 157.03 

 Reef + Port + Int + Port2 8 -302.22 5.85 0.02 160.68 

 
Reef + Port + Reef2 + 
Port2 8 -301.37 6.71 0.01 160.25 

 Reef + Port + Int + Reef2 8 -300.93 7.15 0.01 160.03 

 Reef + Reef2 6 -300.35 7.73 0.01 157.05 

 
Reef + Port + Int + Reef2 + 
Port2 9 -299.38 8.70 0.01 160.69 

 
       

California 
sheephead Com Reef 5 -392.14 0.00 0.43 201.68 

  Reef + Reef2 6 -390.62 1.52 0.20 202.19 

  Reef + Port 6 -390.00 2.15 0.15 201.87 

  Reef + Port + Reef2 7 -388.36 3.79 0.06 202.37 

  Reef + Port + Int 7 -387.46 4.68 0.04 201.92 

  Reef + Port + Port2 7 -387.39 4.76 0.04 201.89 

  Null 4 -386.15 6.00 0.02 197.47 

  Reef + Port + Int + Reef2 8 -385.94 6.20 0.02 202.54 

  
Reef + Port + Reef2 + 
Port2 8 -385.60 6.55 0.02 202.36 

  Reef + Port + Int + Port2 8 -384.73 7.42 0.01 201.93 
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Dataset Fishery Model K1 AICC Δi ωi LL 

  Port 5 -384.02 8.13 0.01 197.62 

  
Reef + Port + Int + Reef2 + 
Port2 9 -382.97 9.18 0.00 202.48 

  Port + Port2 6 -381.52 10.62 0.00 197.64 

        

 Rec Null 4 -467.25 0.00 0.33 238.02 

  Port 5 -466.12 1.12 0.19 238.67 

  Reef + Reef2 6 -465.54 1.71 0.14 239.65 

  Reef 5 -465.40 1.85 0.13 238.31 

  Reef + Port 6 -464.06 3.19 0.07 238.90 

  Reef + Port + Reef2 7 -463.77 3.47 0.06 240.08 

  Port + Port2 6 -463.63 3.62 0.05 238.69 

  Reef + Port + Port2 7 -461.44 5.80 0.02 238.91 

  
Reef + Port + Reef2 + 
Port2 8 -461.04 6.21 0.01 240.08 

  Reef + Port + Int 7 -456.61 10.64 0.00 236.50 

  Reef + Port + Int + Reef2 8 -454.20 13.05 0.00 236.66 

  Reef + Port + Int + Port2 8 -453.98 13.27 0.00 236.56 

  
Reef + Port + Int + Reef2 + 
Port2 9 -451.49 15.76 0.00 236.74 

1Parameter count includes intercept and variance 
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Figure 1. Distribution of harvest rates of 67 shallow rocky reef species in fishing blocks 
with known rocky reef habitat above the 30m isobath in the SCB. The average annual 
harvest rates (MT/yr/km2) and reef area-corrected harvest rates (MT/yr/km2), both with a 
log10+1 transformation, are shown for both commercial (a,c) and recreational (b,d) fishers.  
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Figure 2. Predictors of harvest rates of shallow rocky reef species. Both commercial (a,c) 
and recreational (b,d) average yearly harvest rates (MT/yr/km2) are shown in relation to the 
proportion of reef habitat available within blocks (a,b) and the minimum distance to the 
nearest port for each block (c,d). 
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Figure S1. Distribution of harvest rates of shallow rocky reef species in fishing blocks with 
known reef habitat in the SCB. The average annual reef area-corrected harvest rates 
(MT/yr/km2), with a log10+1 transformation, are shown for both commercial and recreational 
fishers. The distributions shown are for: all species including Red Sea Urchin (a-b), all 
species excluding Red Sea Urchin and Barred Sand Bass (c-d), and California Sheephead 
(e-f).  
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Figure S2. Predictors of harvest rates for all shallow rocky reef species including Red Sea 
Urchin. Both commercial (a,c) and recreational (b,d) average yearly harvest rates 
(MT/yr/km2) are shown in relation to the proportion of reef habitat available within blocks 
(a,b) and the minimum distance to the nearest port for each block (c,d). 
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Figure S3. Predictors of harvest rates for all shallow rocky reef species excluding Red Sea 
Urchin and Barred Sand Bass. Both commercial (a,c) and recreational (b,d) average yearly 
harvest rates (MT/yr/km2) are shown in relation to the proportion of reef habitat available 
within blocks (a,b) and the minimum distance to the nearest port for each block (c,d). 
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Figure S4. Predictors of harvest rates for California Sheephead. Both commercial (a,c) and 
recreational (b,d) average yearly harvest rates (MT/yr/km2) are shown in relation to the 
proportion of reef habitat available within blocks (a,b) and the minimum distance to the 
nearest port for each block (c,d). 
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CHAPTER 2: PLUME EXPOSURE INDEX 

 

Rebecca A. Schaffner, Steven J. Steinberg, and Kenneth C. Schiff 

Southern California Coastal Water Research Project, Costa Mesa, CA 

 

I. Abstract 

Southern California marine ecosystems face a variety of threats to their integrity and health as a result of 

their proximity to urbanized areas. These threats may be direct, through fishing and resource extraction, 

or indirect, through exposure to anthropogenic pollutants. Two primary sources of anthropogenic 

pollutants are treated wastewater, released by publicly owned treatment works (POTWs) through ocean 

outfalls, and stormwater runoff contained in urban river plumes. We developed a geospatial tool in 

ArcGIS to calculate a Plume Exposure Index (PEI) for the Southern California Bight (SCB). The PEI 

quantifies long-term exposure to potentially harmful pollutants emanating from these two sources. Recent 

studies on the dispersal of plumes have resulted in high quality spatial datasets that predict plume 

occurrence frequencies as point grids around POTWs and river mouths throughout the region. We 

multiplied the plume frequency values with data on average annual discharge rates, initial dilution factors, 

and concentration of chemicals in discharges to calculate total exposure to pollutants at each location. 

Using this approach, we developed maps of the distribution of three important plume constituents: 

dissolved inorganic nitrogen in the form of nitrate and nitrite (DIN), total suspended solids (TSS), and 

copper. A series of Python scripts were created to facilitate geoprocessing of the exposure data and to 

calculate the final PEI raster, including: 1) Creating exposure rasters for each pollutant and source using 

Inverse Distance Weighting; 2) Summing POTW and river plume exposure rasters for each pollutant and 

normalizing each raster to the maximum exposure value; 3) Creating the PEI by summing pollutant 

exposure rasters and normalizing again to provide values ranging from zero to one. The resulting 

georeferenced PEI raster may be used with other spatial data to examine relative pollution risk for any 

area of interest within the mapped region. The PEI will be incorporated into an ongoing study to examine 

relative risks posed to marine habitats by water quality and fishing pressure.  
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II. Introduction 

A. The Southern California Bight is a valuable resource 

The Southern California Bight (SCB) is an oceanographically defined region that extends from Point 

Conception in Santa Barbara County, California to Cabo Colnett, Mexico, including the Channel Islands 

(Figure 1). The SCB is a valuable natural resource that contributes to the regional economy and enhances 

quality of life for those who work in, live in or visit the area. Human uses of the coastline and ocean 

waters of the SCB include recreation, tourism, aesthetic enjoyment, sport and commercial fishing, coastal 

development, and industry. For example, ocean-dependent tourism contributed approximately $41 billion 

to the economies of coastal communities surrounding the SCB and supported over 800,000 jobs in 2007 

(NOEP 2008).  

 

  
 
Figure 1:  Map of the Southern California Bight showing the four major wastewater treatment plant 
outfalls: City of Los Angeles Hyperion Treatment Plant (HWTP); Los Angeles County Sanitation 
District Joint Water Pollution Control Plant (JWPCP), Orange County Sanitation District (OCSD), 
and the City of San Diego Point Loma Treatment Plant (PLWTP) and major river mouths draining 
to the Southern California Bight. Also shown are the state offshore jurisdictional boundary and 
the boundary encompassing the plumes analyzed in this study. 
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The SCB is a unique and highly diverse ecological resource (Schiff et al. 2000). For example, subtidal 

rocky reefs that support giant kelp (Macrocystis pyrifera) are amongst the most productive habitats in the 

world. The SCB is a primary stop along the Pacific Flyway, the major migration route for seabirds from 

North to South America. It also hosts a number of threatened and endangered species, including the Blue 

(Balaenoptera musculus) and humpback (Megaptera novaeangliae) whales, California least tern (Sterna 

antillarum browni), and least Bell’s Vireo (Vireo bellii pusillus). Altogether, the SCB is home to over 

5000 species of invertebrates, 480 species of fish, and 195 species of marine birds (Dailey et al. 1993).  

B. Human influence in the region 

Throughout the 20th century, significant population growth propelled the coastal community along the 

SCB from under 200,000 in 1900 to over 17 million (US Census 2010) making the region the largest 

metropolitan center in the United States. As a result of rapid urbanization, marine resources in the SCB 

have been placed under extreme pressure including loss of habitat and discharge of pollutants.  

There are a variety of pollutant sources to the SCB including publicly-owned treatment works (POTWs), 

urban and agricultural runoff, industrial facilities, power generating facilities, boating and shipping, 

dredged material disposal, atmospheric deposition, amongst others (Schiff et al. 2000). Historically, the 

largest of these sources has been POTWs. With increased treatment, pre-treatment, and reclamation, both 

total discharge rates and pollutant inputs from POTWs have decreased over the last four decades, greater 

than 90% for some individual pollutant types. However, surface runoff generated by storm events that 

wash off the region’s highly developed watersheds deliver large pulses of potential pollutants that enter 

the ocean without any treatment. Flows and pollutant inputs from surface runoff have generally increased 

over this same time period as impervious surfaces (roads, rooftops, etc.) have hardened coastal 

watersheds. As a result, pollutant inputs from runoff now rival those of POTWs. 

Of the 17 POTWs in the SCB, four comprise the vast majority of the discharge flow and pollutant inputs 

(Schiff et al. 2000). These four POTWs are amongst the largest in the United States and include the City 

of Los Angeles, County of Los Angeles, County of Orange, and City of San Diego (Figure 1) 

cumulatively discharging over 800 million gallons of treated wastewater per day. These inputs remain 

relatively stable as flows are metered and treatment processes are engineered to maintain a consistent 

effluent quality, but there has been a gradual downward trend in total discharge rates due to 

improvements in treatment and in wastewater reclamation projects (Lyon and Sutula 2011). 

There are 23 major watersheds in the SCB (Figure 1). Stormwater discharges are highly variable, with 

infrequent but intense storms capable of increasing streamflow three to four orders of magnitude in less 

than one hour (Schiff and Tiefenthaler 2011). Intensive stormwater discharge after rainstorms can 

produce plumes that are easily distinguished from ambient marine waters by their high concentration of 

suspended matter that changes the color of the ocean surface (Mertes et al. 1998, Sathyendranath 2000, 

Mertes & Warrick 2001). The movement and persistence of plumes may be influenced by a variety of 

factors, such as wind and ocean circulation, coastline shape and bathymetric variability which may cause 

resuspension of sediments, as well as the volume, timing and intensity of stormwater discharge (Nezlin et 

al. 2005).  

C. Study Objective 

To date, no study has effectively utilized a geospatial approach in assessing potential exposure to POTW 

effluent or stormwater plumes throughout the full extent of the SCB. Prior studies tended to focus on 

individual sources of pollution such as a single POTW outfall or an individual watershed (Bay et al. 2003, 

Warrick et al. 2004, Ahn et al., 2005). While these localized studies are valuable, they leave numerous 

gaps in both spatial and temporal coverage of the SCB making it impossible to develop a comprehensive 

understanding of conditions and potential water quality threats. Furthermore, since each study used 

independent data and methods to assess water quality at a specific time and location, study results are not 
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directly comparable. This variability results in a fragmented understanding of conditions in the SCB, 

making it difficult to understand how water quality conditions are changing over time as a result of 

management decisions or regulatory actions intended to protect and improve the water quality of the SCB. 

To develop an accurate map of water quality conditions of the entire SCB requires data that is collected in 

a consistent manner and at an appropriate spatial scale. Such data have only recently become available 

through the efforts of coordinated regional monitoring programs such as those led by SCCWRP 

(http://www.sccwrp.org/ResearchAreas/RegionalMonitoring), and data obtained from regional efforts 

such as the Southern California Coastal Ocean Observing System (SCCOOS) or satellite imagery data 

collected by NOAA and NASA. 

Our objective was to develop geospatial tools in ArcGIS to model ocean exposure to land-based sources 

of pollution. Combining sources of newly acquired spatial data for the SCB with information on locations 

of pollution sources and inputs, we developed a series of Python scripts to calculate a composite Plume 

Exposure Index (PEI) based on pollutant inputs from both POTWs and rivers. Developing tools like the 

PEI provide several important benefits. The ArcGIS scripts provide a mechanism to assess plume 

exposure throughout the SCB in a consistent and repeatable manner. Second, these scripts provide a 

documented methodology that may be readily adapted by other researchers. This allows for adjustments 

that may be useful to incorporate data for additional pollutants or to apply these methods in other 

locations.  

For purposes of this study, we focused development of the PEI on three pollutants: dissolved inorganic 

nitrogen in the form of nitrate and nitrite (DIN), total suspended solids (TSS), and toxic trace metals 

(copper). Selection of pollutants for development and testing of the tool was based upon the following 

characteristics: 

 The pollutant has known impacts on marine ecosystem health, either through direct toxicity 

or secondary effects by promoting growth of nuisance algal blooms; 

 Data are available on the pollutant for both river and wastewater discharge sources; 

 The pollutant is discharged frequently and in large enough quantities that it is likely to have 

significant and ongoing effects on marine ecosystems; 

 The pollutant represents a range of sources such as urban, agriculture, or industrial activities. 

Nitrate is a critical plant nutrient necessary for the growth of phytoplankton, seagrasses, kelp, and other 

macroalgae. However, in large concentrations nitrate can promote the growth of harmful algal species and 

cause phytoplankton blooms (Anderson et al. 2008). Recent studies have found that treated effluent may 

have nitrate concentrations equivalent to natural sources such as upwelled seawater (Howard et al. 2014).  

Total suspended solids (TSS) can negatively impact nearshore subtidal communities, reefs, and kelp beds 

through reduction of light availability and, in large quantities, by smothering benthic organisms. Episodic 

riverine TSS inputs can be quite large in some regions such as the Santa Clara River (up to 5.5 x 107 

kg/yr). Additionally, other toxic chemicals adsorb onto the surface of particulate matter, creating a large-

scale transport mechanism between the water column and benthic substrates (Hart 1982). 

In sufficiently large doses, copper is a trace metal that can cause both acute (lethal) and chronic (impaired 

growth, reproduction) effects in marine organisms. Copper is a by-product of some industrial activities 

and is a common contaminant found in stormwater. Its ubiquity in stormwater is due to its use in brake 

pads on vehicles, pesticides, building materials, and from atmospheric deposition (Davis et al. 2001). 

Copper toxicity to marine plants and invertebrates is so prevalent that it is often used as a biocide in 

paints used to coat the bottoms of boats and docks. Copper does not transform easily and can settle into 

ocean sediments, exerting long-term effects (Long et al. 1995).  



 

39 

 

III. Methods 

We used a regional-scale risk-based approach to creating the PEI. The risk was estimated as a function of 

pollutant concentration, magnitude, and duration of exposure. Therefore, the primary factors for the index 

were pollutant loading and plume contact frequency. Pollutant loading was estimated for the SCB’s two 

largest sources, POTWs and rivers. Spatial distribution of exposure duration was acquired from multiple 

sources that utilize advances in plume detection technology. Table 1 lists the sources of data used for the 

WQI. Many of the geoprocessing tasks were automated using ArcGIS Model Builder and Python scripts. 

Table 1. Sources of spatial data and pollutant loading data for POTWs and river plumes.  

A. Riverine pollutant loading 

A rational model was developed that uses precipitation data, watershed size, and land cover to predict 

daily loads of chemicals from watersheds (Ackerman and Schiff 2003, Sengupta et al. 2013). For 23 

rivers, we calculated average annual loads of DIN, TSS, and copper based on eleven years of data (2000-

2010). Watershed sizes for these rivers range from 25 to 4486 km2 and comprise a wide range of 

predominant land uses including urbanized (i.e. residential, commercial, and industrial areas), agricultural 

lands, and open space (i.e. largely undisturbed areas of wetlands, forest, or scrub/shrub vegetation) 

(Sengupta et al. 2013). The model ignores base flows that result from inland wastewater treatment plant 

discharges and general dry-weather run-off. For the purposes of this study, we assumed that base river 

flows are minor source of pollutants whose effects do not radiate far from river mouths. 

Each river mouth was treated as a single point source. Pollutant loads were multiplied by a dilution factor 

of 1:100 to account for estuarine mixing processes and loss of the pollutant from the plume as it entered 

the ocean. This factor was selected based on studies showing that during storm events, only about 1% of 

the TSS originating from riverine inputs is found in the surface plume offshore of river mouths. The 

majority of sediment settles out in the estuarine mixing zone and within 1km of the river mouth (Mertes 

and Warrick 2001, Warrick et al. 2004).  

B. Riverine plume mapping 

Southern California river plumes have been mapped using several different methods, primarily satellite 

imagery in combination with in situ sampling of plume tracers (Otero and Siegel 2004, Nezlin and 

DiGiacomo 2005, Warrick and DiGiacomo 2007, Nezlin and DiGiacamo 2008, Reifel et al. 2009). These 

methods provide empirical data on plume locations and extents, but have several limitations. Generally, 

they focus on limited areas and individual storm events. Cloud cover can interfere with accurate imaging, 

preventing visualization of the plume during inclement weather when plumes are forming and dispersing. 

Remotely sensed plume indicators tend to correlate with the presence of suspended solids in surface 

waters, but may not always agree with concentrations of other dissolved pollutants. One alternative 

method of mapping plume probability is the utilization of High Frequency Radar (HFR) to model the 

dispersion of surface water tracers seeded into regions of river discharge. HFR-derived surface currents 

over a given temporal period are input into a random walk model. (Kim et al. 2009, Rogowski et al. 

2014). Rogowski et al. (2014) used HFR surface current data to model the probability of plume exposure 

for twenty river discharges in southern California, based on two years of hourly surface current data. In 

Rogowski's model, fifty water tracers were released hourly at each source location (1km offshore) and 

Pollutant Source Loading Data Frequency Data References 

Wastewater Treatment 

Plants 

Discharge Monitoring 

Reports; Bight ’08 

Water Quality Study 

CDOM plume detection 

method 

Lyon and Sutula, 2011 

Howard et al., 2014 

Nezlin et al., in prep 

River plumes Riverine loading model HFR-based surface 

circulation models 

Sengupta et al. 2013 

Rogowski et al. 2014 
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independently tracked for three days. A probability density function was used to compute the cumulative 

sum of water tracers that advected into predefined model grids surrounding each river mouth source 

location. These grids vary in point density, and may overlap (Figure 2).  

 

 

Figure 2. Four overlapping river plume grids in Orange County, CA.  

 

Final river plume probability exposure maps used many realizations (with the number varying among the 

grids) of hourly water tracer trajectory estimates to determine statistical convergence over various time 

periods. We converted the model output for each river plume into a point feature class representing the 

centroid of each grid cell, with a river plume exposure probability (RPE) attribute field. The RPE was 

calculated for each cell based on the maximum number of particles observed at a single point within the 

grids. Probabilities ranged from 0 to 1, and in order to reduce noise and eliminate probable non-plume 

regions of the grids, only cells with a value of ≥ 0.01 were included in the spatial analysis. This value was 

also used to identify the maximum extent of each plume and to create individual plume boundary 

polygons for clipping interpolated raster layers.  

To calculate the exposure for each cell, the riverine loading value for each constituent was multiplied by 

the dilution factor and the RPE (Equation 1): 

Exposure = Load x Dilution x Frequency  



 

41 

 

 

We developed Python scripts to automate most of the subsequent geoprocessing tasks (Figure 3). For 

each river plume and parameter, exposure values were interpolated across each grid using Inverse 

Distance Weighting (IDW), an exact interpolator which assumes that the influence of a known point on 

an unknown location varies inversely with the distance between the points. It is a simple interpolator that 

ignores all factors other than distance between points. We selected IDW because sufficient data are not 

available to describe the complex variables affecting plume distributions at the scale of the study region 

and time period necessary to parameterize more sophisticated interpolators such as kriging. The twenty 

individual river plume exposure grids were interpolated to rasters using a power of two, a resolution of 

250m2 and a maximum search radius of 10km. The interpolated plumes were clipped by the 

corresponding plume boundary polygon, “No Data” values were converted to 0, and the spatial extent of 

the raster was set to the maximum extent of all plumes (river and POTW) to simplify integration of the 

various layers. The 23 plume rasters were then summed to create a single layer representing the bight-

wide exposure for each chemical, and a plume boundary polygon that encompassed all 23 grids was 

created. Finally, the Zonal Statistics tool was used to calculate spatial statistics for the resulting pollutant 

exposure raster layers, including mean, median, and maximum values, using the bight-wide plume 

boundary polygon as the zone. This polygon exactly encompasses all points in the plume grids, and was 

created using the Aggregate Points tool in the Generalization section of the Cartography toolbox (Figure 

1). 

 

Figure 3. Workflow showing the geoprocessing steps used in the interpolation of pollutant 
exposure rasters and calculation of the PEI raster. 

 

C. Treated Wastewater discharge pollutant loading 

Data on monthly discharge flow rates and concentrations of copper and TSS from four major southern 

California wastewater treatment plants were obtained from Discharge Monitoring Reports each agency is 

required to submit to the United States Environmental Protection Agency (Lyon and Sutula 2011). Data 

on DIN concentrations in effluent were acquired from a recent study that directly measured nutrients in 

treated wastewater discharge (Howard et al. 2014). The four POTWs used for this analysis, City of Los 

Angeles Hyperion Treatment Plant (HWTP); Los Angeles County Sanitation District Joint Water 

Pollution Control Plant (JWPCP), Orange County Sanitation District (OCSD), and the City of San Diego 

Point Loma Treatment Plant (PLWTP) are shown in Figure 1. The average annual load of each pollutant 

from each plant was calculated for the period 2003-2009. An instantaneous dilution factor was applied to 

the loading value to account for immediate dilution of discharged effluent in seawater before dispersal 

occurs. This dilution factor is calculated individually for each outfall as part of their permitting process, 

based on empirical data comparing concentrations in the undiluted effluent with concentrations in the 

seawater immediately adjacent to the outfall (Environmental Protection Agency 1985). 



 

42 

 

D. Treated wastewater plume mapping 

Treated wastewater outfall plumes are typically modeled by measuring plume tracers such as salinity, 

ammonia, and bacteria at stations surrounding the outfall. These approaches can be time consuming and 

costly, so alternative methods of detecting plumes are being assessed. Nezlin et al. (in prep) used 

measurements of Colored Dissolved Organic Matter (CDOM) to rapidly measure and track plumes 

emanating from subsurface discharge outlets at the four large sewage treatment plants. Each POTW 

agency regularly samples water quality at a grid of stations surrounding their outfall pipes (Figure 4). 

CDOM data were collected at each station on a quarterly basis from 2004-2010. For each station, the 

percentage of sampling events when a plume was observed (at any depth between the outlet and below 

the mixed layer) was calculated (WPE). The four individual sampling grids were combined into a single 

point feature class, and each point was attributed with its associated WPE value. 

 

 

Figure 4. Grids of water quality stations sampled quarterly by each POTW agency. The distance 
between stations is variable. 

 

We assumed that plume probability at a given grid point is directly equivalent to the dilution of the treated 

effluent as it is advected away from the source, and that dilution of each chemical within the outfall 

plume also varies in proportion. Pollutant exposure at each point was calculated using Equation 1. The 
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exposure values were interpolated across the grid using IDW with a power of two, a resolution of 250m2, 

and a maximum search radius of 10km. A linear shoreline layer was used as a barrier to prevent 

interpolation of plumes over land areas. Merging the pollutant exposure layers and creating the PEI. 

The above geoprocessing steps resulted in six rasters, representing the distribution of each of the three 

pollutants from both rivers and POTWs within the SCB. For each pollutant, we summed the river plume 

and wastewater discharge plume rasters to create a single total exposure raster. Each parameter was then 

normalized to the maximum value before integrating them into the single index. This was a two-step 

process. First, to reduce skewness for each individual parameter, we calculated the cube root of each 

raster cell. The cube root-transformed value of each raster cell was divided by the maximum value found 

in the grid, resulting in a Plume exposure index layer (PEI) with values ranging from 0 – 1 for each 

chemical. These three normalized PEIs were summed to create a new raster with potential value ranging 

between 0 – 3. Finally, the cells in this raster were divided by the maximum value in the raster to create 

the normalized PEI raster, with continuous values ranging between 0 and 1 (Figure 3.)  

E. Sensitivity analysis 

We conducted a sensitivity analysis to assess variability in riverine pollutant loadings and exposure 

between wet and dry years. Representative wet and dry years in our 10-year data set were based on long-

term (63 year) rainfall records from three Southern California rain gauge stations (Los Angeles 

International Airport, Santa Ana Fire Station, and San Diego Lindbergh Field) downloaded from NOAA’s 

National Climatic Data Center (http://www.ncdc.noaa.gov/cdo-web/). Total rainfall from 2007 (8.2cm) 

was less than the 10th percentile of the long-term average. Total rainfall from 2010 (51.3cm) was greater 

than the 90th percentile of the long-term average.  

For 2007 and 2010, we calculated the total annual loads of each chemical, and compared the resulting 

range of values to the 10-year average annual loading value for each parameter and watershed. Exposure 

layers were created for both 2007 and 2010 using Equation 1 described above, and the total spatial 

variation in loading was mapped and analyzed. To examine spatial bias, the twenty river plumes assessed 

were grouped into four regions: Ventura County, Santa Monica Bay (SMB), Orange County, and San 

Diego County. 
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IV. Results 

A. Spatial extents of plumes 

By design, outfalls of wastewater treatment plants are located greater than eight kilometers offshore and 

at depths between 60-100m to inhibit effluent from recirculating back into surface and nearshore waters. 

By contrast, plumes emerging from river mouths are immediately subject to multiple nearshore processes, 

including estuarine mixing, entrainment in the surf zone, and exposure to surface currents. The resulting 

differences in the fates of riverine and wastewater plumes are shown in Figure 5. Wastewater plumes are 

observed most frequently in the immediate vicinity of the outfalls, and carried by prevailing subsurface 

currents either upcoast or downcoast of the pipe. They rarely reach shallow water, generally occurring 

within 2 km of shore less than 20% of the time. By contrast, riverine plumes tend to hug the shoreline, 

with the predominant direction depending on prevailing surface currents. Rapid settling and mixing 

processes prevent freshwater inputs from extending too far into the ocean except under extraordinary 

climatic conditions and flood events. As a result, the portion of river plumes with the greatest 

concentration of pollutants occurs within 2 km of shore.  
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Figure 5:  A) Wastewater treatment plant plume probability (WPE); B) River plume probability 
(RPE). 

B. Pollutant loading and exposure 

The relative loadings of the three pollutants vary between sources, and their spatial distributions within 

the area affected by plumes vary correspondingly. We calculated exposure statistics for individual and 

combined pollutants across the entire region, including the annual median, mean, and maximum exposure 

values (Table 2). For all pollutants, the median exposure is lower than the mean, and both values are very 

low compared to the maximum exposure value. This skewness reflects the fact that even within coastal 

waters impacted by plumes, exposures are generally low over much of the affected area. However, 

localized areas may be at risk where maxima occur. 
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Table 2: Spatial statistics for individual pollutants by source. 

Source 

   Parameter 

Plume Area (km2) Average 
Annual Load 
(kg/yr) 

Exposure (kg/yr) 

Median Mean Max 

POTWs      

   Copper 1178.9 2.62 x 104 6.5 13.7 81.2 

   DIN 2.99 x 106 261.8 2813.9 25502.8 

   TSS 3.39 x 107 11183 171670 89800 

Rivers      

   Copper 1594.3 1.37 x 104 0.2 0.7 25.4 

   DIN 9.47 x 105 15.2 49.4 2070 

   TSS 1.72 x 108 2832 9478 505746 

Combined      

   Copper 2433.1 4.0 x 104 1.2 7.1 81.2 

   DIN 1.25 x 106 37.3 1396.9 25502.8 

   TSS 2.06 x 108 6163 14527 505746 

 

Copper 

Large POTWs contribute nearly twice as much copper to the SCB than the rivers considered in this study 

(Table 2). Maximum exposures occur near the HTP outfall, in Santa Monica Bay. Riverine exposure to 

copper is highest in the vicinity of the Los Angeles and San Gabriel River mouths, in San Pedro Bay. The 

Santa Clara River also contributes high loads of copper to the coast of Ventura County. 

DIN 

POTWs also contribute 3 times as much DIN as rivers (Table 2). This agrees with recent studies showing 

that wastewater discharge represents the dominant anthropogenic source of nitrogen to the SCB (Howard 

et al. 2014). As with copper, highest exposures from wastewater sources are found near the Hyperion 

Outfall. The small but highly urbanized Ballona Creek watershed also contributes relatively high amounts 

of DIN to Santa Monica Bay (Figures 4A and 4B). As with copper, the Los Angeles River and Santa 

Clara River contribute the most riverine DIN overall. The Los Angeles River is predicted to load an 

average of 219,524 kg/yr, and the Santa Clara River contributes 121,159 kg/yr.  
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Figure 6:  Comparison of pollutants by source in Santa Monica Bay/San Pedro Bay. A). DIN 
exposure from POTWs; B) DIN exposures from rivers; C) TSS exposure from POTWs; D) TSS 
exposure from rivers. 

 

TSS 

In contrast to copper and DIN, sediment inputs are dominated by riverine loading, which contributes five 

times the TSS of POTWs (Table 2). Three of the four POTWs employ secondary treatment (activated 

sludge or biological reactors), which reduces the amount of suspended solids discharged offshore. There 

are no such controls on the sediments that enter rivers via runoff, especially from watersheds where 

elevation gradients and land use contribute to high sediment levels. Thus, while offshore exposures from 

POTW discharges are highest in Santa Monica Bay (Figure 6C) and offshore of Point Loma, San Diego, 

they are low in comparison to riverine TSS exposures, particularly from the northernmost watersheds in 

this study (Ventura River, Santa Clara River and Calleguas Creek). These watersheds have the highest 

elevations, most erosion-prone soil types, and the greatest rainfall quantities, as well as large areas of 

agricultural land. As a result, the highest TSS loadings and exposures are found in the nearshore waters of 

Ventura County. Urbanized areas such as the watersheds emptying into San Pedro Bay also contribute 

high TSS loads (Figure 6D).  
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C. Plume Exposure Index  

The PEI developed through this process is designed to be adaptable for use in comparing different 

polygonal areas of interest within the larger SCB. Figure 7 maps the combined PEI score across the Bight. 

For the purpose of this paper, the area of interest (AOI) is defined as California state waters inshore of the 

three nautical mile State Seaward boundary, and extending from the Mexico border to the northernmost 

extent of the mapped plumes (hatched area, Figure 7). Table 3 summarizes the percent area within the 

AOI found within each range of the normalized pollutant exposure indices, and the normalized PEI. Of 

the total AOI, over 45% of the AOI had a PEI score of >0 - 0.3. Another 24.2% is not covered by any 

mapped plume. The river plume model includes all major rivers, but omits some smaller coastal 

watersheds and catchments. However, most are relatively undeveloped, and unlikely to be major sources 

of pollutants.   

 

 
 
Figure 7:  Map of Plume exposure index based on combined sources. 
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Table 3: Percent area of California State Waters (inside the 3nm limit) within each class of the 
Plume Exposure Index for individual parameters and the combined Plume Exposure Index (total 
area = 1986.7km2). 

 Percent of SCB Area for each Plume Exposure Index Class 

No 

Plume 

>0-0.1 >0.1-
0.2 

>0.2-
0.3 

>0.3-
0.4 

>0.4-
0.5 

>0.5-
0.6 

>0.6-
0.7 

>0.7-
0.8 

>0.8-
0.9 

>0.9-
1.0 

Copper 24.2 8.2 20.6 15.9 10 8.2 4.6 3.7 3 1.4 0.2 

DIN 24.2 28.9 25.5 10.2 3.4 1.2 1.1 1.3 2.4 1.5 0.3 

TSS 24.2 4.6 20.2 22.1 19.2 7.3 1.5 0.4 0.2 0.1 0.1 

All 24.2 6.5 19.5 19.3 13.4 7.8 3.2 1.8 2.6 1.4 0.3 

 

 

D. Sensitivity Analysis 

The interannual variability in precipitation is reflected in total riverine pollutant loading and the spatial 

extent of plumes (Figure 8). In dry weather, plumes are ephemeral and restricted to within a few 

kilometers of river mouths. With increasing precipitation, plumes extend both alongshore and offshore 

and plumes from adjacent river mouths may merge. Table 4 and Figure 9 compare the regional mean and 

maximum exposure values between dry, average, and wet years. In all regions, dry years produce about 

20% of the total loads of wet years, while average years produce about 45% of the loads of wet years. 

Such interannual variability can play a large role in the integrity of coastal ecosystems. For example, 

several dry years in a row may allow the establishment of habitats and communities that may be severely 

impacted by heavy flows and pollutant inputs in a subsequent wet year.  
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Figure 8:   Maps comparing TSS exposures for A) dry, B) average, and C) wet years. The mapped 
plumes are grouped into four regions. 
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Table 4: Sensitivity analysis: summary statistics by pollutant and region 

 Mean Exposure (kg/yr) Maximum Exposure (kg/yr) 

 Dry Average Wet Dry Average Wet 

Copper 

Ventura 0.11 0.32 0.61 1.66 4.13 7.52 

SMB 0.04 0.12 0.24 1.03 2.39 5.49 

Orange 0.03 0.07 0.18 0.78 1.73 3.93 

San Diego 0.16 0.29 0.80 2.84 4.61 14.19 

Nitrate 

Ventura 7.2 21.5 40.6 109.7 273.7 498.4 

SMB 3.1 9.0 18.2 82.2 190.1 439.9 

Orange 1.8 4.6 12.3 52.7 116.8 265.1 

San Diego 10.6 18.4 50.8 183.4 297.9 871.3 

 TSS 

Ventura 7070 21,013 39,643 107,267 267,515 487,234 

SMB 1201 4527 7743 18,312 44,679 94,354 

Orange 1501 3893 10,739 42,135 95,163 226,030 

San Diego 1249 2178 6016 24,564 38,016 102,712 
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Figure 9. Comparison of pollutant exposure by region during dry, average, and wet years. 
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V. Discussion 

As development and population growth continue within watersheds adjacent to the SCB, loads of 

potentially harmful chemicals may present a risk to the many valuable resources via both river run-off and 

treated wastewater. Little is known about the spatial extent of the relative and combined effects of these 

pollutant sources in different areas of the SCB. With new methods of plume detection, we can now more 

effectively map and analyze these data. Regional-scale spatial analysis of freshwater plumes and pollutant 

exposures in the marine environment is a relatively new and growing field. To date, few studies have 

been done to examine regional extents and effects of plumes (McLaughlin et al. 2003, Mertes and 

Warrick 2010, Alvarez-Romero et al. 2013). As consistent and comparable data become more readily 

available through advances in both in situ sampling instruments and remote sensing systems, in 

conjunction with increasing data processing power, the opportunity to conduct regional spatial analysis 

and modeling of these data is feasible. Satellite imagery allows us to distinguish plumes from ambient 

water over large areas and longer time scales. Technologies such as High-Frequency Radar aid in the 

localized prediction of currents and particle movement through surface water. New sensor applications, 

such as CDOM, now enable researchers to capture subsurface water quality information more quickly, 

consistently and economically than they could previously using traditional sampling techniques. 

A. Benefits of using GIS to create a regional Plume Exposure Index 

Our development of geoprocessing tools to spatially integrate these data with information on pollutant 

loads to create a regional PEI provides an important next step in mapping and understanding potential 

threats to water quality in the SCB. This index enables a consistent approach to quantify the spatial extent 

of exposure to these pollutants and to identify critical coastal habitats that may be affected. These tools 

encapsulate numerous geoprocessing steps into a documented, transferrable and modifiable package. 

Most of the repetitive steps of this analysis including the interpolation of the individual plume frequency 

grids, summing of rasters, and generation of spatial statistics, were quickly accomplished by creating 

models in ArcGIS Model Builder or developing Python scripts. These tools can be customized to accept 

different input variables rather than being hardcoded with set parameters, increasing their flexibility. The 

separate scripts may then be packaged into an ArcGIS toolbox, which is easily shared with others who 

wish to perform similar analyses.  

GIS also allowed for spatial integration of datasets acquired through different methods and sources. Data 

from multiple studies and sources can be integrated as long as they have sufficient resolution and similar 

spatial referencing. In this study, we combined plume frequency data from the two primary sources, 

POTWs and rivers. The POTW plumes were empirically mapped using field sampling techniques 

(CDOM detectors), while river plume locations were modeled based on interpretations of surface current 

data. Despite these different approaches, both methods resulted in a simple grid of points attributed with a 

predicted plume frequency, enabling us to apply similar calculations and interpolation methods for both 

datasets. 

Another advantage of using GIS to model plume exposures is that variables can be easily modified to 

reflect different environmental conditions and predict different outcomes. For example, the Southern 

California climate is characterized by high interannual variability in precipitation. This variability has 

significant effects on the annual loading of pollutants by river plumes. In some years (such as those when 

El Niño conditions prevail), this can result in massive inputs of sediment, nutrients, and metals; while in 

other years, the inputs barely rise above baseline. Fortunately, the loading model we used explicitly 

incorporates precipitation as a variable in predicting loads, and provides data on a daily basis enabling us 

to subset the data into years that reflect this natural climatic variability. These subsets provide 

representative end-members for our sensitivity analysis. Other variables that could be modified include 

the dilution factors used to represent initial loss of pollutants from the plume. Flexibility to adjust these 
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tools to match regional requirements provides a distinct advantage reducing the need for expensive, long-

term empirical field-sampling efforts to capture natural variability. 

These GIS-based index development tools do have some limitations. It is a 2-dimensional model that does 

not incorporate the dispersal of pollutants with depth, or reflect complex oceanographic mixing processes, 

and is therefore only applicable to nearshore shallow water. The strength of its predictive capabilities lie 

in the methods used to integrate plume effects over a large region and long timespan, providing for a 

relative ranking of pollution impacts on coastal areas. Clearly, site-specific or short-duration inputs will 

require dedicated, localized effort beyond this long-term, regional scale PEI approach. 

B. Extent of plumes and pollutant exposures  

In this study, we identified at least 2400km2 of nearshore waters and approximately 320km of coastline 

between San Diego and Ventura County that could potentially be affected by discharge plumes emanating 

from either wastewater treatment plants or rivers. About 15% of this area experiences plumes from both 

sources, making cumulative impacts of anthropogenic influences an important management concern. As 

expected, areas where plumes overlap also tend to be some of the most highly populated, accessible, and 

utilized portions of the coastline. Santa Monica Bay and San Pedro Bay receive both treated effluent and 

riverine run-off from large urbanized areas of the greater Los Angeles Basin, making them two of the 

areas with the greatest PEI values in the SCB.  

The distribution of PEI throughout the SCB indicates that the majority of California state waters within 

the SCB remain relatively unaffected by anthropogenic pollutants from these sources. Of the 1986 km2 of 

state waters affected by plumes, 45% has a PEI less than three, while only 4.2% has a PEI greater of eight 

or higher. However, areas of higher PEI are generally closer to shore and, therefore, more likely to impact 

both sensitive habitats and areas used for human recreation.  

C. Comparison of relative risk from each source 

The risk from POTWs and rivers varies both temporally and spatially. Treated wastewater discharge from 

POTWs is a relatively continuous process that discharges pollutants to coastal waters. Conversely, the 

extent and volume of river discharge is directly proportional to precipitation events resulting in 

intermittent and somewhat unpredictable plume extent and duration. Subsequently, river plume extent 

was generally smaller than POTW plume extent. However, river plumes tend to remain inshore of the 30 

meter isobath, while POTW plumes occur most frequently between the 30 and 60 meter contours. 

Therefore, pollutants from river plumes may be more likely to settle out into nearshore sediments or be 

retained within very shallow waters, potentially causing greater impacts on marine ecosystems (Bay et al., 

2003). POTW plumes, though persistent and widespread, emerge from outfalls near the ocean bottom 

(approximately 60-100m), and tend to remain trapped below the upper mixed layer, mixing into larger 

volumes of water. Ultimately, this decreases the likelihood that POTW discharges will affect shallower 

habitats. However, treated wastewater plumes may be more likely to impact offshore ecosystems 

(Howard et al., 2014).  

Our sensitivity analysis indicated that in wet years, river plumes can contribute up to five times the 

pollutant load of dry years and potentially impact 10 times the area, while inputs from treated wastewater 

discharge remain relatively similar from year to year. For this reason, it is important to use multiple years 

of run-off and loading data (at least ten, as in this study) to capture long-term patterns in pollutant 

exposure. While smaller time scales could be modeled using our approach, the accuracy of the model as a 

predictor of overall exposures would be limited.  
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D. Role of Plume Exposure Index in research and management 

Our development of a spatially referenced PEI for the SCB provides a means to easily and rapidly 

compare relative anthropogenic exposure to a variety of ecosystems. It relies on underlying datasets that 

model the intrusion and dispersal of freshwater plumes and pollutants into the marine environment. The 

index provides a simplified, long-term average, and inherently loses some of the accuracy of intensive 

studies examining plumes over smaller areas and time scales. However, by integrating multiple sources of 

data, the PEI provides a synoptic look at coastal water quality providing environmental management 

agencies the ability to rank and prioritize affected habitats in terms of susceptibility and management 

opportunities.  

The PEI has many implications for mitigation and management practices designed to protect both the 

integrity of coastal ecosystems and human health. Since enactment of the Clean Water Act in 1972 and 

subsequent environmental legislation explicitly recognizing the connections between anthropogenic 

pollutants and ocean health, our understanding of these connections has continually been strengthened by 

research. This PEI continues the trend by directly linking land-based loads of nutrients, metals, and 

sediments arising from multiple individual sources, to ocean circulation patterns. The links can be 

manipulated to model how upstream changes in land use, flood control and drainage infrastructure, and 

run-off mitigation attempts might affect loadings, on an individual parameter basis. For example, if new 

regulations require POTWs to change how they process effluent in order to meet new permitting 

standards, the downstream effects of those changes can be easily predicted using our tools.  

E. Future Directions 

We are aiming to use and modify the PEI in several aspects. The first direction is to examine PEI within a 

new AOI. There are 27 new or modified Marine Protected Areas (MPA), comprising approximately 15% 

of the SCB coastline (including the Channel Islands), that specifically limit fishing and other extractive 

activities (California Department of Fish and Wildlife, 2013). Little is known about the effect of water 

quality in these MPAs, and the new index is one avenue to ascertain risk and prioritize future resources 

for characterizing problems in MPA performance.  

A second new direction is to examine additional sources of pollutants. Two potentially important sources 

are small POTWs and run-off from small urbanized coastal catchments. We examined the four largest 

POTWs in the SCB, but there are seven small POTW outfalls that, despite being only a fraction of the 

four large POTWs examined herein, may have discrete local impacts. Unfortunately, the plume mapping 

for these small POTWs is lacking (Jones et al., 2009) and we chose not to extrapolate limited results or 

large POTW plumes to unmapped small POTW outfalls. Similarly, urban run-off that directly enters the 

ocean through small creeks and coastal storm drains can be a major localized source of pollution. More 

storm drain water quality data is becoming available through municipal and volunteer monitoring 

programs (e.g. Los Angeles Department of Public Health, LA Waterkeeper, and City of San Diego all 

have regular storm drain monitoring projects). However, there is little available long-term data on the 

dispersal of these pollutants once they enter the ocean. With the advent of new plume monitoring methods 

such as gliders, it may become easier and less expensive to map the extent of these sources.  

A third new direction is incorporating differential dispersal patterns in the modeled parameters (Reifel et 

al., 2009). We treated each of the three pollutants as though they are conservative tracers of the plume 

and, therefore, their concentrations decrease linearly with distance from plume source. However, it is 

likely that they are not true conservative tracers of freshwater transport. For example, TSS typically 

settles more rapidly than nitrate is diluted. The result would be a higher rate of TSS loss from the plume. 

Prediction of TSS exposure in the nearshore environment is also complicated by processes other than 

riverine and POTW discharges. In particular, the resuspension of sediments by high wave energy and 

currents near headlands can result in high TSS exposures that are not accounted for in this study. By 
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adjusting dilution factors for each pollutant to more accurately reflect true oceanographic conditions, 

accuracy of the model could be further improved for TSS. Likewise, nitrate is typically consumed 

relatively rapidly by phytoplankton and these dynamics are not intrinsic to the PEI. To enhance the plume 

extent portion of the PEI, additional dispersion, advection, or transformation models could be applied. 

This would allow for more accurate estimates of potential secondary effects, if necessary. 

A fourth new direction is to determine not just potential exposure, but link to ecosystem risk.  This will 

require evolving the dose information from the PEI into predicted responses from the marine ecosystem.  

For example, we estimated copper as one of the loading parameters in the PEI, but we did not create a 

threshold for when copper exposure was beyond a limit of concern.  Thus, the PEI provides a tool for 

ranking exposure for different sources or locations, but does not provide managers an estimate if the 

highest ranked sources or locations should expect to see a biological response. It is possible that even the 

highest ranked locations may have little impact on biota.  This will likely take many years of research to 

achieve, but several activities have started to tackle this challenge including development of a biological 

reef response index (next chapter), dedicated special studies to examine chemical-biological interactions 

in AOIs such as Areas of Special Biological Significance (Schiff and Brown 2015), and development of a 

linked physical oceanographic-biogeochemical response model to assess the anthropogenic impacts of 

nutrients in the Southern California Bight. 
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I. Abstract 

Quantitative biological assessment indices overcome many of the challenges faced when conveying the 

status or trends of complex biological communities with large natural variability, particularly when 

attempting to evaluate the impacts from human influences.  In this paper, we developed a biological 

condition index for shallow (5-30 m) rocky reefs of the Southern California Bight, evaluate its 

performance to distinguish healthy from stressed sites, and then apply the index to quantify the relative 

effects of fishing and water quality as ecosystem stressors.  We utilized a multivariate, predictive index 

based on the ratio of observed-to-expected taxa (O/E). O/E indices are relatively common in freshwater 

environments, but rarely utilized in marine systems and never before applied to rocky reefs.  Based on 

expectations drawn from region-wide reference reefs with the least fishing or water quality stress, the O/E 

index predicts expected taxa at a new site based on environmental factors such as sea surface temperature, 

reef area, and slope, amongst others.  The observed taxa at that site are then compared to the predicted 

taxa to generate index scores; values near unity indicate intact, reference-like communities.  Overall, the 

accuracy of the index was high, with minimal bias, and precision exceeded the performance of an index 

based on null models (i.e., indices that did not account for natural gradients).  Based on multiple lines of 

evidence, the index was more responsive to fishing pressure than water quality.  This study demonstrates 

that a multivariate predictive index is feasible in rocky reef assessment. 

Keywords:  Bioassessment, Rocky reef, Water quality, Predictive Index, Ecosystem-based management 
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II. Introduction 

The concept of measuring the health of whole ocean ecosystems is receiving increasing attention (Halpern 

et al. 2012, Halpern et al. 2014), yet the best biological characteristics for defining healthy marine 

ecosystems remain uncertain. The uncertainty arises from the complexity of ecosystem responses, which 

are not always monotonic often producing a complex mix of positive and negative effects on the number 

and abundance of species (Pearson & Rosenberg 1978).  For example, complex trophic linkages can 

produce unexpected gains within one fishing sector resulting from overexploitation of another fishing 

sector (Andersen & Pedersen 2010, Steneck et al. 2013).  Additionally, increased runoff from agriculture 

can serve as useful nutrient subsidy to some nearshore organisms (Page et al. 2008, Gorman et al. 2009, 

Russell et al. 2009), but smother others through sedimentation (Irving & Connell 2002, Airoldi 2003, 

Connell 2005, Schiel et al. 2006, Balata et al. 2007, Walker 2007).  Determining ecosystem health in the 

context of these numerous and sometimes compound influences is not straightforward and requires a 

multivariate bioassessment approach that encompasses many ecosystem components.   

California USA represents a good case study of the need for multivariate bioassessment indices.  The 

state promulgated the Marine Life Management Act (CDFW 2014a) and the Marine Life Protection Act 

(CDFW 2014b) in 1999, which has resulted in a spatially integrated network of marine protected areas 

(MPAs).  Historically, California has relied on changes in abundance and size structure of a series of 

target species (CDFW 2008, CalOST & CDFW 2013) to judge MPA performance.  This approach 

requires contentious judgments among professionals, who must value certain species over others for 

assessment purposes, and there is currently little consensus on which taxa are most effective indicators of 

a healthy marine ecosystem.  Moreover, MPAs are expected to differentially affect species occurring 

within their boundaries depending on their life history characteristics and dispersal capabilities.  Thus, 

single species assessments of MPA impacts may be variable and not provide a complete picture of 

ecosystem status.  Finally, the strength of interactions among species may change under MPA protection 

and therefore unexpected ecosystem changes may occur that are not detected in single species 

assessments.  For these reasons, California is breaking away from traditional single species-based 

approach to marine resource management for MPAs and is embracing an ecosystem-based approach.  The 

state’s new holistic perspective includes attention to non-fisheries impacts from water quality, habitat loss 

or degradation, and climate change.  The departure from single species marine resources management and 

the complexity of the multiple ecosystem stressor interactions clearly delineates the need for developing a 

multi-variate predictive bioassessment index of ecosystem status.     

MPAs address resource depletion due to consumptive use, but often don’t incorporate protections against 

non-consumptive uses or stressors such as water quality.  The potential for non-consumptive impacts to 

marine resources is unclear.  Many studies have demonstrated the effect of sedimentation on settlement 

and survival of rocky reef organisms (Irving & Connell 2002, Airoldi 2003, Connell 2005, Schiel et al. 

2006, Balata et al. 2007, Walker 2007).  However detection of ecosystem impacts due to storm water 

runoff (Ghedini et al. 2011) and treated wastewater discharge (Tegner et al. 1995, O'Connor 2013) has 

been difficult.  Improved methods, including multi-variate based assessment tools for understanding 

impacts due to poor water quality are needed both in managing those impacts, and to aid in explaining 

inconsistencies in MPA performance.     

Predictive bioassessment indices are increasingly used by the water quality management community as 

tools for assessing the ecosystem level impacts of anthropogenic pollutants in primarily fresh water or 

fresh water influenced ecosystems such as streams, wetlands, and estuaries (Yoder & Rakin 1998, Cao & 

Hawkins 2011).  These indices typically establish an expected biological community composition within 

reference sites defined by a relative absence of anthropogenic stress (Hawkins 2006, Stoddard et al. 

2006).  Predictive models describe natural variability in biological communities due solely to 

environmental characteristics at these reference sites.  Once natural environmental variability is taken into 

account with the predictive model, deviations in index scores among non-reference sites can then be 
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associated with gradients in anthropogenic influences, thus quantifying the direction and magnitude of 

those influences on ecosystems (Vander Laan et al. 2013).  Similar indices have rarely been developed for 

marine ecosystems  (Smith et al. 2001), perhaps because of a long tradition of single-species focus (Mace 

2004, Guerry 2005), a lack of spatial management (Douvere 2008), or disagreement on the most 

important ecosystem components (de Jonge et al. 2012, Ward 2014).   

In this paper, we developed a predictive multivariate index of ecosystem status for shallow rocky reefs of 

the Southern California Bight (SCB).  This highly productive and diverse ecosystem supports intense 

consumptive and non-consumptive use and is represented within nearly all the region’s MPAs.  The 

effects of multiple stressors and management through MPAs are of particular interest in Southern 

California because of its dense coastal human population centers, which lead to particular concern about 

water quality.  Our specific objectives were to 1) develop a multivariate bioassessment index, 2) assess its 

performance and ability to distinguish healthy from stressed sites, and 3) apply the index in an effort to 

distinguish the relative effects of fishing and water quality as ecosystem stressors.   
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III. Methods 

We constructed an observed-to-expected (O/E) index to describe the condition of shallow-rock reef sites 

with the aim of using index scores to assess the relative impacts of fishing pressure and water quality on 

this ecosystem.  The study habitat is defined as subtidal, generally kelp forested, with areas of hard 

substratum ranging from appoximately 5 to 30 m depth.  Geographic extent of our study covered the 

SCB, which ranges from Point Conception to the US/Mexico border including the Channel Islands.  

Approximately 49,000 hectares of shallow rocky reef area is distributed along the mainland and island 

coastlines in this region (Pondella et al., 2011).   

A. Aggregation of Data 

 

Biological data 

Rocky reef biological data was aggregated from three separate monitoring programs conducted in four 

years: 1) the California Department of Fish and Wildlife’s Cooperative Research and Assessment of 

Nearshore Ecosystems (CRANE) in 2004, 2) the Southern California Coastal Water Research Project’s 

Bight Regional Monitoring Program in 2008, and 3) California Ocean Science Trust’s South Coast 

Marine Protected Area Baseline Program in 2011 and 2012.  These programs used nearly identical 

protocols and also to those used by the Partnership for Interdisciplinary Studies of Coastal Oceans 

(PISCO; http://www.piscoweb.org/research/science-by-discipline/ecosystem-monitoring/kelp-forest-

monitoring/subtidal-sampling-protocol) and described by (Gillett et al. 2012).  Briefly, three types of 

transect protocols were used to collect information on fish, invertebrates, benthic algae, and physical 

habitat characteristics.  Transects were placed within four reef sections (inner, middle, outer, deep).  Fish, 

as well as mobile macroinvertebrates and algae (swath), were counted along replicate 30 x 4-m bottom 

transects within those sections.  Additional fish transects were performed midwater and immediately 

below the kelp canopy.  The uniform point contact (UPC) method assessed percent cover of invertebrates 

and algae that are colonial or blanketing and physical habitat characteristics.  Abundance on replicate 

transects for each survey method (fish, swath, UPC) were averaged within each site and sample year then 

converted to a presence/absence matrix.  Therefore, a biological sample reflects a unique site-year 

combination.  Monitoring was conducted at 140 unique reefs during one to four sample years, resulting in 

299 biological samples.   

Stressor data 

We characterized two stressor gradients: water quality and fishing pressure.  Each was described by an 

index that aggregated multiple years of local-scale stressor data into an SCB regional scale map.   

We used a risk-based approach to create the water quality index (WQI) detailed within Schaffner et al. 

(2015). The risk was estimated as a function of pollutant concentration, magnitude, and duration of 

exposure. Pollutant loading was estimated for the SCB’s two largest sources, publicly owned treatment 

works (POTWs) and rivers (Lyon & Stein 2009).  Spatial distribution of exposure duration was acquired 

from multiple sources that utilize advances in plume detection technology including High Frequency 

Radar and optical sensors for Colored Dissolved Organic Matter (CDOM).  Average annual loads of 

dissolved inorganic nitrogen (DIN), total suspended solids (TSS), and copper were calculated for twenty 

rivers based on eleven years of data (2000-2010; Howard et al. 2014) and four POTWs using seven years 

of data (2003-2009; Lyon & Stein 2009).  Due to the absence of rivers and POTWs at the Channel Islands 

and because mainland plumes rarely if ever extend that far offshore, we assumed an absence of water 

quality pressure (WQI = 0) in that region of the SCB.  Our WQI varied at spatial scales (250 m) finer than 

the biological sites (individual reefs from 6-5000 hectares).  The WQI incorporated data over a similar 

time frame to biological data (2000-2010).   

http://www.piscoweb.org/research/science-by-discipline/ecosystem-monitoring/kelp-forest-monitoring/subtidal-sampling-protocol
http://www.piscoweb.org/research/science-by-discipline/ecosystem-monitoring/kelp-forest-monitoring/subtidal-sampling-protocol
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Data to describe fishing pressure was taken from a synthetic fishing pressure index derived for the SCB 

by Zellmer et al. (Chapter 1).  Development of the fishing index involved additively combining California 

Department of Fish and Wildlife commerial fisheries data with commercial passenger fishing vessel 

(CPFV) recreational data after converting both to pounds taken.  Both fisheries report take with reference 

to a spatial grid or “fishery blocks” approximately 10 minutes square.  The data was filtered to include 

only rocky reef associated species and trimmed to the time period 1980-2009.  Some alterations were 

made for the purpose of the present study including weighting take within fishery blocks by the length of 

ocean-facing coastline within that block, removal of urchins from the aggregate index, and trimming the 

data to biological transect sample dates.  Fishery take to be associated with a given biological transect 

sample reflected the most recent possible fishing data, not extending past the transect sample date (e.g. 

transect data collected in 2004 was associated with fishing data up to and not past 2004, transect data 

collected in 2012 was associated with fishing data up to 2009).  The spatial scale of commercial fishing 

blocks is generally greater than that of individual reefs; therefore, the index may not be able to distinguish 

fine variation in fishermen’s behavior.  Because we chose to include historical fishing pressure back to 

1980, catch during past decades tended to swamp smaller catch amounts during recent years.  Thus, the 

index showed little effective temporal variation.   

B. Designation of Reference and Stressed Sites 

Reference sites were defined by the relative absence of stress, as measured by our two stressor indices.  

Therefore, our reference sites meet Stoddard’s (2006) criteria for best available sites experiencing the 

least human influence in the current [sea]scape.  This designation represents an objective reference 

definition.  Best professional judgements of high quality reef sites based on biological attributes like high 

species diversity were not considered, as they are subjective and perpetuate circular reasoning (i.e., using 

biology to define biology).  Rather, this framework allows sites to be judged on their best achievable 

biological community based on their physical enviromental characteristics and lack of human-induced 

stress.   

Stress due to fishing was described in three ways: take within the 5 most recent years, within the 10 most 

recent years, and between 1980 and 2012.  Stress due to water quality impacts was desribed using the 

synthetic water quality index (WQI) as well as each of its components (DIN, TSS, Copper) (Schaffner et 

al. 2015).  Criteria for identifying reference sites were set at fisheries take below the 30th percentile of 

take among all sites, and an absence of water quality stress (WQI = 0).  Our goal was to have a sufficient 

number and geographic distribution of reference sites to reflect the full spectrum of natural habitat 

gradients.  To verify that reference sites could represent the environmetal gradients at stressed sites, we 

visually compared probability density plots of the environmental gradients represented within reference 

sites that met these thesholds and each of the three fisheries take time periods with environmental 

gradients within non-reference sites (Ode et al. in press).   

Reference sites were divided into calibration (80%) and validation (20%) sets.  Models were trained on a 

single sample year at each reference calibration site, chosen at random for sites with multiple years of 

samples (later referred to as selected samples).  This selection procedure was carried through validation 

and non-reference sites, as well for assessment of index performance in samples that are both replicated 

and unreplicated at the three site types (reference validation, reference calibration, non-reference).   

Habitat data 

Each sample site was attributed with a suite of variables describing its habitat characteristics generally not 

associated with anthropogenic influence (Table 1).  These are factors expected to influence the biological 

community on rocky reefs and inform the expected taxa of the observed to expected index.  Some of these 

variables are expected to vary spatially, temporally, or both.  Bedrock and sand substrate categories may 

or may not be covered by biota, while bare rock and bare sand are separately measured cover categories 
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devoid of biota.  Sea surface temperatures are averages of measurements taken at 15-day intervals over 

multiple (MeanSST) or single (SST, SST1, and SST2) year periods.  Monthly El Niño Southern 

Oscillation (ENSO) index values were averaged within one year periods.  The strength of settlement 

patterns was described using invertebrate settlement on artificial substrates at six Southern California sites 

collected by the Santa Barbara Coastal Long Term Ecological Research project (Schroeter et al. 2012).  

Values were averaged across all sites within one-year periods.   

C. Development of the O/E Index 

Degraded biological condition can be described as a loss of expected taxa, and quantified by the ratio of 

observed-to-expected taxa (O/E) (Wright 1995, Hawkins 2006).  We developed the reef O/E index 

following methods described by Moss et al. (1987) and modified by Mazor et al. (in review).  First, we 

used cluster analysis to identify biologically-homogeneous groups of sites within the reference calibration 

set.  Second, we developed a random forest model to relate group membership to the habitat variables.  

Third, this model was used to predict group membership for test sites based on their habitat predictors, 

generating probabilities of taxa presence at those sites (capture probability).  Fourth, the overall expected 

number of taxa at a site was calculated as the sum of the probabilities of observing each taxon, including 

only taxa with capture probabilites greater than 0.5.   

In order to evaluate the relative improvement in index precision attributable to modeling reference site 

variability, an index based on a null model (wherein all reference sites belong to a single group) was 

calculated; the null index provides an estimate of the upper limit of precision attainable by a model.  A 

theoretical lower limit of precision was calculated as the standard deviation of replicate samples (SDRS), 

as described by Van Sickle et al. (2005). Thus, the standard deviation of the index may be compared to 

the standard deviation of the null index and the SDRS to evaluate the improvement caused by modeling 

natural gradients   

Five separate O/E indices were created using each of the three species assemblages (fish, swath and 

UPC), fish and swath combined, and all assemblages combined.  Different clusters of reference 

calibration sites were derived based on each species assemblage.  Individualized final random forest 

models with unique sets of habitat predictors were created for each species assemblage.    
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IV. Index Performance Evaluation 

O/E index performance was assessed with regard to accuracy, precision and sensitivity.  Accuracy was 

evaluated as the mean score of reference sites.  Mean scores close to 1 indicate high accuracy. Accuracy 

was also evaluated as the number of validation reference sites with scores within one standard deviation 

of the reference mean.  We assessed bias as a component of accuracy by regressing O/E scores with each 

continuously varying habitat variable at reference sites.  Temporal bias with sample year was assessed 

using an ANOVA of scores at reference sites by year.  Finally, we used random forest models to examine 

the percent variance in O/E scores explained by habitat variables at reference sites; an unbiased index will 

have low variability associated with natural gradients at reference sites.   

Precision was evaluated as the standard deviation of scores at reference sites; low standard deviation 

among reference sites indicated high precision.  Means close to one indicate accuracy and small standard 

deviations indicated precision (Ode et al. 2008).  These were calculated for reference calibration and 

validation site sets.  We also assessed precision by examining the within-site variability of index scores 

where sites were visited in multiple years.    

Sensitivity was evaluated as the frequency of impairment among nonreference sites, and responsiveness 

was evaluated as a t-test comparing mean index scores at reference and non-reference sites.  We further 

assessed responsiveness by regressing index scores against continuously varying stressor data; significant 

regression slopes indicated a responsive index.   

Indices trained on different species assemblages (i.e., fish, swath, UPC, or combinations thereof) were 

first compared with regard to accuracy and precision as defined by the mean and standard deviation of 

scores.  Sensitivity and responsiveness were then evaluated.  Then, the index with best performing index 

based on these criteria was further evaluated for bias.   

A. Relative Impacts of Fishing Pressure and Water Quality 

Relationships between index scores and stressor levels were used to assess the relative impacts of 

stressors on site condition.  A weight-of-evidence approach was taken to achieve confirmation of stressor 

patterns relative to an index performance threhsold and to individual species abundances. 

A threshold to identify degraded biological communities was defined as the lowest reference O/E 

(fish+swath) score (0.847).  Samples above this threshold were considered within reference condition and 

samples below below this threshold were considered degraded or in non-reference condition.  We 

compared mean stress and habitat variables for samples above and below threshold using t-tests.  Those 

stress and habitat variables showing significant differences in samples above and below the threshold 

were used as predictor varibles in a multiple regression with OE (fish+swath) index scores as the response 

variable.  A simplified model was produced using a step-wise procedure.  Finally, a Chi squared analysis 

was used to further examine patterns relative to the threshold.  Both the fishery and water quality indices 

were divided into high and low impact categories based on their median value.  Impact intervals for the 

fishing index were set at low: 20,758 to 95,781 and high: 95,782 to 43,851,984.  Impact intervals for the 

water quality index were low: 0 to 0.36 and high: 0.37 to 2.9.  The proportion of all samples falling within 

those categories were used to generate an expected proportion of samples below threshold that should fall 

within those categories.  A Chi squared test assessed differences in the expected and observed number of 

below-threshold index scores within the impact categories.   

We examined the impact of stress on individual species in an effort to identify indicator species and their 

influence on the index.  We identified the fish and swath species with probabilities of capture greater than 

50% as those species having an influence on index scores and compared the abundance of those species in 
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samples above and below the index performance threshold.  Those species with significant abundance 

differences between the sample groups were then tested in an ANOVA using abundance as the response 

variable and the log of the fishery index and TSS as random factors.  The strength of main effects and 

their interaction was assessed to determine the relative influence of stressors on the individual species.   
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V. Results 

A. Reference Sites 

We identified a set of 41 reference samples with broad geographic distribution and representation of 

habitat variability in our non-reference sample set.  Probability density plots for 29 different habitat 

variables demonstrated tremendous agreement in the relative range of natural gradients among the 

reference and non-reference sample distributions (Figure 1).  These 41 reference samples included reefs 

that scored zero in the water quality index and reefs that scored below the 30th percentile in the fishing 

pressure index dating back to 1980.  To evaluate the potential effect of fishing pressure on the reference 

sample population, this analysis was re-run by defining fishery stress by the most recent 5 and 10 years of 

fishing pressure data for each sample (data not shown). Many, but not all, of the same sites were found in 

this sensitivity analysis.  However, the reference sample population dating back to 1980 provided the 

greatest coverage of natural gradients.   

Flexible beta cluster analysis produced five dendrograms based on Bray-Curtis dissimilarity in species 

presence/absence data for each of the five species assemblages.  We then chose five to six groups within 

those dendrograms.  Sites within the same clusters grouped together geographically with some restricted 

to either island or mainland sites and others spanning both.  For the fish+swath species assemblage, 

habitat features that differed most strongly among clusters included mean SST [F(1, 30) = 45.68, p = 

1.711 x 10-7], reef area [F(1, 30) = 13.43, p = 9.502 x 10-2], and slope [F(1, 30) = 9.00, p = 5.391 x 10-3], 

while differences in relief and amount of bedrock were also observed (Figure 2).  Samples with colder 

temperatures differentiated by reef area and samples with warmer temperatures differentiated primarily by 

slope. 

B. Model Performance 

The predictive model produced similar accuracy and precision across the five different species 

assemblages (Table 2).  The UPC index produced the highest accuracy as measured by reference site 

scores closest to one.  The indices using fish + swath and swath only were equally accurate as measured 

by each with only one reference validation sample falling outside one standard deviation of the reference 

calibration mean.  The indices using fish, UPC, and all assemblages were less accurate with eight, three 

and two validation samples outside one standard deviation of the reference calibration mean, respectively.  

The index using all assemblages combined resulted in the highest precision as measured by the lowest 

standard deviations of scores.  At calibration sites, improvement in precision over the null model was 

greatest for fish, fish+swath, and swath assemblage index scores.  Performance through predictive 

modeling was only impoved by 0.6% using the UPC assemblage in these samples.  Reference site 

samples not used for model training showed the greatest index precision improvement when all 

assemblages were used.  Finally, the greatest improvement in precision at test sites was achieved by the 

indices using swath and fish + swath assemblages.  The majority of reef sites were sampled in multiple 

years.  The median of within-site standard deviations of O/E (fish + swath) scores at reference and non-

reference sites was 0.046 and 0.065 respectively.   

Random forest models show that predictive modeling effectively reduced bias in selected calibration and 

validation samples by reducing the variance in fish + swath index scores explained by habitat (Table 3).  

Percent variance explained by habitat for unselected calibration and validation samples not used for 

model training was greatly reduced by predictive modeling but 20% variance was still explained by 

habitat in these samples (Table 3).  Bias was also indicated in reference samples not used for model 

training by significant relationships between index (fish + swath) scores and bedrock, cobble, relief from 
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0-0.1 m and 0.1-1 m, site aggregation, and reef area (Table 4).  There was no significant bias by sample 

year among reference samples [F(1, 49) = 2.358, p = 0.131]. 

Index sensitivity to stress was greatest for the fish + swath species assemblage and was more responsive 

to fishing than water quality.  Differences between scores of reference (samples not used for model 

training) and nonreference samples were greatest for the fish + swath species assemblage [t(130) = -

2.882, p = 0.005] (Figure 3).  Differences in fish assemblage index scores were also significant [t(125) = -

2.626, p = 0.010] and all other assemblage differences were nonsignificant.  Regressions of index scores 

on stressor indices showed significant negative relationships with the log of the fishery index with each 

species assemblage, although the magnitude of these relationships was small (Table 5).  Only one 

significant relationship was observed between O/E index scores based on each of the species assemblages 

and any of the water quality indices.  The O/E index based on the UPC assemblage was significantly, 

positively related to the synthetic water quality index [F(265) = 3.977, p = 0.047].  Because sensitivity 

was greatest using the fish + swath species assemblage, and this assemblage’s index performed well 

relative to it’s null model, we applied only this index to determining the relative impacts of fishing and 

water quality.   

C. Relative Impacts of Fishing Pressure and Water Quality 

The threshold for the O/E (fish + swath) index was set at the value for the lowest performing reference 

sample (0.847).  Non-reference sample index scores ranged as low as 0.173.  Some significant differences 

in means of habitat variables and stress indices in samples above and below the threshold showed that low 

performing samples were associated with more bare rock, less bedrock, more cobble, low relief, shallower 

water, more sand transport, greater invertebrate settlement, and higher fishing pressure (Table 6).  Mean 

TSS was higher while DIN and Copper were lower at sites below threshold, though differences were 

nonsignificant.   

Multiple regression identified both stress and habitat variability as important predictors of index scores.  

Stepwise variable reduction identified bare rock, bare sand, bedrock, sand transport, relief, cobble, fishing 

pressure and TSS as important predictors of O/E (fish + swath) scores (Table 7).  While these results 

indicated that many habitat factors are important in dictating the biological community, the influence of 

fishing pressure was the strongest predictor.   

Chi square analysis also indicated an influence of fishing pressure on index scores.  Fewer low 

performing sites experienced low fishing impact than expected and more low performing sites 

experienced high fishing impact than expected [χ2 (1, 38) = 3.79, p = 0.052].  The proportion of samples 

with low performing index scores did not differ from expected relative to the water quality index.   

The abundance of species with high capture probabilities was not necessarily related to the position of 

index scores relative to the index threshold.  Those species for which abundance was significantly 

different in samples with high index performance demonstrated influence of both fishing pressure and 

TSS.  Of the 25 fish species with high capture probabilities, 15 had significantly greater abundance in 

samples with index scores above the index threshold.  Seven of those were significantly related to fishing 

pressure and nine to TSS (Table SI1).  Of the 31 swath species with high capture probabilities, 15 had 

significantly different abundance in samples with index scores above the index threshold.  Means of all 

taxa except Pterygophora californica were higher above the index threshold.  Four of those were 

significantly related to fishing pressure and 10 to TSS.   
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VI. Discussion 

This is the first O/E index constructed for a marine rocky reef ecosystem and, while not intended to be the 

final assessment tool to be used by scientists or managers, this study illustrated initial concepts and 

demonstrated the utility of its application to scientists and managers who invest in this habitat.  The 

benefits of an O/E index overcome at least three challenges that have presented roadblocks to scientists 

and managers in the past.  The first challenge the O/E index overcomes is its ability to integrate across the 

entire biological community and not rely on single species (or groups of single species) assessments.  

Much research on marine community structure has focused on disentangling the effects of biotic or top 

down forces (often impacted by fishing pressure) from abiotic or bottom up forces (often impacted by 

water quality).  Identification of the dominant force can be limited by ecological interactions and non-

linear responses in single species assessments (Worm et al. 2000, Smith et al. 2004, Heck & Valentine 

2007, Foster & Schiel 2010, Huntington et al. 2010, Sangil et al. 2013).  Multivariate approaches are a 

common approach to multi-species assessments in rocky reef ecosystems (Smith & Simpson 1993, Smith 

et al. 1999, Hamilton et al. 2010, Sala et al. 2012, Sangil et al. 2013, Horta e Costa et al. 2014), but these 

studies are typically focused on single and spatially limited project issues.  These single-focused 

multivariate approaches, unlike the O/E index, limit broader applicability such as when new sites or 

future time periods are sampled.  In this paper, we trained five O/E models on five different species 

assemblages (including combinations of fish, invertebrates, algae) using data over a 10-year period, all of 

which performed similarly with regard to producing mean index scores close to one at reference sites 

(accuracy) and doing so consistently (precision).  However, the O/E index achieved its greatest sensitivity 

to stress when fish and non-colonial/non-blanketing macroinvertebrates and algae were combined 

together (fish + swath).  In freshwater habitats, the sensitivity of the O/E index to stress at the community 

level has been attributed to its ability to integrate differences in species tolerance and differences in life 

history strategies, while accounting for natural species replacement (Hawkins 2006).  Clearly, the mix of 

rocky reef assemblages in the selected O/E has these important characteristics. 

A second benefit of the O/E index is that it overcomes the challenges of natural variability that confound 

most attempts to draw out changes due to human-induced stress.  The fact that rocky reef communities 

respond to differences in temperature, reef size, substrate, and other purely natural factors is not new 

(Dayton et al. 1984, Tegner & Dayton 1991, Torres-Moye et al. 2013).  However, the ecological 

modeling in the O/E index that predicts taxa occurrence is a novel approach in this habitat to “normalize” 

these environmental gradients.  The challenge of natural variability is perhaps maximized in California 

where the cold, sub-arctic California Current meets the warm, sub-tropical Davidson Counter-current, and 

rocky reef substrates range from low-lying cobbles with intermittent sand burial to tall pinnacles (Airame 

et al. 2003 and references therein).  However, this challenge is no less than the dynamic freshwater habitat 

variability observed in California where O/E models have had to overcome natural gradients that range 

from the highest (Mt Whitney, 4,421 m) and lowest (Death Valley -86 m) elevations in the contiguous 

United States (Mazor et al. in review).  The key to meeting the challenge of large natural variability is 

ensuring that our pool of reference sites captures the entire gradient of natural environmental conditions.  

In this study, we illustrated that our reference samples captured the same range of environmental 

gradients as was observed in our non-reference samples. 

The third benefit of the O/E index was its ability to identify stressed sites once natural variability was 

accounted for.  In this study, 13% of the samples in southern California were identified as non-reference 

or “stressed”.  One advantage of the O/E index is its objective quantitative nature that can be used for 

ranking and prioritizing future activities.  This allows scientists to focus their efforts on the most stressed 

sites, identifying site-specific causative factors, and for managers to focus their efforts on restoration 

and/or mitigation.  Moreover, once a management action is taken, the O/E index can provide a 

quantitative tool for measuring and communicating progress towards agreed upon endpoints of success. 
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Application of the O/E index in this study identified that fishing was a more important stressor than water 

quality based on two lines of evidence.  The first line of evidence was the step-wise regression of O/E 

scores versus stressor values.  In this case, increasing fishing pressure index values was the single largest 

variable that correlated with decreasing O/E scores.  While the slope of this regression was not large, 

there were no significant correlations with the water quality index score or any of its component metrics. 

The second line of evidence was the chi square analysis, where disproportionately low O/E scores 

occurred when the fishing pressure index scores were high.  In contrast, there was no significant change 

in the proportion of O/E scores due to water quality index scores.   

Unlike relationships between index scores and stressors, species specific responses to stressors showed a 

more complex mix of influence from fishing and water quality pressure.  Many species of fish and 

invertebrates with significantly higher abundance (not frequency) in samples above threshold, experience 

little to no fishing pressure.  Therefore, it is not surprising that more of these species show significant 

relationships between abundance and water quality stress than fishing pressure.  Some interesting species 

responses, such as negative relationships between the abundance of unfished species like giant kelp and 

garibaldi with fishing pressure, illustrate the potential for species interactions to complicate understanding 

of ecosystem response to stress and thus the need for an index.   

While the O/E index has many advantages, certain limitations need to be addressed before it is used.  One 

limitation was the remaining influence of natural gradients, even after the ecological modelling was 

completed.  This was most acutely observed during the step-wise regression analysis; increasing fishing 

pressure provided the strongest regression coefficients relative to decreasing O/E scores.  However, some 

natural characteristic variables were also identified (e.g., bare rock, bare sand, bedrock, sand transport, 

relief, cobble). Two outcomes, equally challenging, could account for this potential bias in the O/E model.  

The first is that the O/E model was not adequately trained, most likely due to insufficient reference sites 

with these natural characteristics.  As previously illustrated, our reference pool covered all of the major 

natural gradients in southern California rocky reefs found in our regionwide data set, and in the relative 

frequency of which they are found.  However, the relative frequency of naturally occurring reefs with 

bare rock, bare sand, or bare cobble reefs with high sand transport is low and, as a result, the number of 

reference sites with these natural characteristics was also low.  The second outcome that could account for 

this bias is the covariance of fishing pressure and reef characteristics.  In essence, fishing pressure exerts a 

disproportionately large influence on reefs with these natural characteristics because resiliency is far less.  

Archaeological evidence at the Channel Islands for geographic continuity in kelp-forest associated red 

abalone populations suggests resilience of kelp forests to dramatic ecological change over long time 

scales (Braje et al. 2009).  Southern California kelp forests are also thought to be particularly resilient due 

to resistance of urchin-mediated trophic cascades provided by a diverse suite of urchin predators (Steneck 

et al. 2002).  Despite strong resilience at broad spatial and long temporal scales, local scale kelp forests 

and their associated organisms are more variable and subject to disturbance on unstable substrata (Dayton 

1985, Edwards 2004).   

A second limitation of the model is how reference sites were selected.  We utilized a composite fishing 

pressure index and a composite water quality index as a screen for human influence.  These were useful 

tools for us, since these were the two stressors we wished to evaluate, similar to how soft-bottom marine 

ecotoxicologists use sediment contamination as screens for reference sites for their quantitative condition 

assessment tool, the Benthic Response Index (Smith et al. 2001).  However, the fishing pressure and 

water quality composite indices each had their own assumptions that could miss potential impacts to reef 

communities.  For example, the water quality index captured the largest pollution discharges and 

representative chemicals of concern in southern California, but it did not capture every source and every 

chemical.  Likewise, the fishing pressure index captured commercial fishing and CPFV recreational 

fishing, but it did not capture private vessel fishing effort (which remains unquantified in southern 

California).  Finally, both the fishing pressure and water quality indices were based on long-term averages 
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of up to 10-30 years.  However, the samples used for calibrating, validating, and applying the O/E index 

are single point-in-time measurements.  Clearly, further work in the development of screening tools 

should be evaluated for building future O/E indices because the inclusion of non-reference sites in the 

reference pool will decrease sensitivity of the model and potentially lead to false negative conclusions (or 

type I error of identifying a test site as reference when it really isn’t). 

A third limitation of the O/E model is the basic construct of species presence or absence.  While both 

fishing and water quality can lead to complete extirpation, this is usually far past the scientitifc concept of 

community alteration.  For example, fishing pressure may vastly reduce the population and dramatically 

alter the size frequency distributions of an extracted species, but there still may be an individual(s) of that 

taxa residing at a reef.  Similarly, water quality impacts may exert sublethal impacts on growth and 

reproduction that can be equally detrimental as fishing, but without complete loss of that taxa through 

acute mortality (Pearson & Rosenberg 1978).  We would encourage future iterations of predictive rocky 

reef ecological modeling to consider weighting factors for key biological community factors including 

abundance, taxa functional groups, and/or diversity measures.  

Our final evaluation of future O/E model needs is to further refine the thresholds index impact.  Defining 

impact thresholds is partly technical, but also partly sociological.  In the case of our study, we utlized a 

conservative index threshold, defined as the minimum reference pool O/E score.  However, other 

quantitative indices have used other population based estimators (i.e., 1st percentile, 5th percentile, Mazor 

et al in review), two standard deviations below the mean of the reference population (Ode et al. 2005), or 

community-based ecological cutoffs (i.e., loss of taxa groups, Smith et al 2001).  The statistical 

approaches lend themselves to objective and repeatable thresholds, but the magnitude of these changes 

(and the management reactions to them) are ultimately a sociological choice. 

VII. Conclusions 

Based on a multi-decadal data set of biological surveys, fishing pressure, and water quality exposure in 

southern California, we developed the first known O/E index for shallow, subtidal rocky reefs.  This 

predictive model performed best using combined fish, invertebrate, and algal communities (fish + swath) 

based on accuracy and precision across a wide range of environmental gradients, and sensitivity to 

multiple stressors.  The O/E index is a new approach for this habitat providing an objective, quantitative, 

and repeatable assessment tool for use by scientists and managers when ranking and prioritizing shallow, 

rocky reef sites for management action, and assessing the progress of sites once management action(s) is 

taken.   
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Figure 1:  Probability density plots of habitat variable distributions in reference and non-reference samples. Overlaps in reference and 
non-reference distributions are an indicator of the scoring tools’ ability to assess across natural gradients. 
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Figure 2:  Dendrogram based on fish+swath community assemblages, with specific sites plotted in a map of the Southern California 
Bight. 
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Figure 3.  Boxplot of reference and nonreference sample index scores for each of five species assemblages. 
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Table 1. Habitat variables and their attribution to temporal or spatial variability 

Habitat Gradient  

Variability 

Citation  Spatial Temporal 

Substrate (% Cover)      

Bare Rock  X X Pondella et al., 2001 

Bare sand  X X Pondella et al., 2001 

Bedrock  X X Pondella et al., 2001 

Boulder  X X Pondella et al., 2001 

Cobble  X X Pondella et al., 2001 

Sand  X X Pondella et al., 2001 

Sediment  X X Pondella et al., 2001 

Shell harsh  X X Pondella et al., 2001 

       

Relief (m)      

0-0.1  X X Pondella et al., 2001 

0.1-1  X X Pondella et al., 2001 

1-2  X X Pondella et al., 2001 

>2  X X Pondella et al., 2001 

       

Temperature ( C )       
Mean Sea Surface Temperature 
(MeanSST)   X   

SST  X X   

SST1  X X   

SST2  X X   

Longitude  X    

Latitude  X    

Island/Mainland  X    

Deepest Survey  X X   

Site Clustering  X    

Reef Area  X  Pondella et al., 2001 

Slope  X    

Littoral Drift  X  Patsch & Griggs, 2006 
El Niño Southern Oscillation (ENSO) 
Index   X Wolter, 2014; Wolter & Timlin, 1993, 1998 

ENSO1   X Wolter, 2014; Wolter & Timlin, 1993, 1998 

ENSO2   X Wolter, 2014; Wolter & Timlin, 1993, 1998 

Settlement 1   X Schroeter et al., 2012 

Settlement 2   X Schroeter et al., 2012 
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Table 2.  Mean O/E Index score and standard deviations for five different species assemblages for reference or nonreference category 
using predictive and null models. 

  Fish + Swath Fish Swath UPC All Assemblages 

 O/E Scores Mean SD Mean SD Mean SD Mean SD Mean SD 

Predicted Model            

Calibration 

Selected 1.017 0.131 1.006 0.126 1.014 0.182 1.028 0.177 1.026 0.131 

Not Selected 1.048 0.105 1.041 0.118 1.061 0.138 1.010 0.121 1.038 0.098 

All 1.033 0.120 1.024 0.123 1.038 0.163 1.019 0.152 1.032 0.116 

Validation 

Selected 1.027 0.094 0.988 0.123 1.038 0.071 1.034 0.093 1.020 0.088 

Not Selected 1.032 0.059 0.988 0.143 1.049 0.122 0.979 0.075 1.023 0.046 

All 1.030 0.076 0.988 0.134 1.044 0.102 1.004 0.088 1.022 0.068 

Test 

Selected 0.952 0.187 0.923 0.227 0.988 0.198 0.976 0.183 0.966 0.179 

Not Selected 1.017 0.156 0.991 0.200 1.042 0.160 1.028 0.151 1.031 0.147 

All 0.987 0.174 0.960 0.216 1.017 0.181 1.004 0.168 1.001 0.166 

All Reference 1.032 0.112 1.016 0.127 1.039 0.152 1.015 0.140 1.030 0.107 

No training Reference 0.997 0.164 0.972 0.203 1.024 0.172 1.005 0.159 1.007 0.155 

Null Model            

Calibration 

Selected 1.000 0.156 1.000 0.159 1.000 0.206 1.000 0.178 1.000 0.134 

Not Selected 1.049 0.139 1.012 0.140 1.076 0.181 1.048 0.183 1.051 0.140 

All 1.025 0.149 1.006 0.150 1.039 0.197 1.024 0.182 1.026 0.139 

Validation 

Selected 0.995 0.151 0.956 0.201 1.024 0.148 1.081 0.125 1.009 0.111 

Not Selected 0.970 0.118 0.916 0.198 1.011 0.113 1.044 0.142 0.992 0.099 

All 0.981 0.135 0.934 0.201 1.016 0.130 1.060 0.136 0.999 0.105 

Test 

Selected 0.963 0.209 0.917 0.240 0.998 0.223 0.979 0.205 0.970 0.192 

Not Selected 1.023 0.195 0.968 0.221 1.065 0.203 1.057 0.155 1.039 0.166 

All 0.995 0.204 0.944 0.231 1.034 0.215 1.021 0.184 1.007 0.182 

All  Reference 1.015 0.147 0.991 0.165 1.034 0.185 1.032 0.174 1.020 0.133 

No training Reference 1.001 0.194 0.952 0.221 1.038 0.207 1.027 0.182 1.012 0.203 

 

 

 



 

83 

 

Table 3.  Variance in O/E Index scores trained on the fish + swath species assemblage explained 
by habitat variables. 

 % Variance Explained 

 
Predictive 

Model 
Null  

Model 

All reference samples 20.76 54.04 

Reference (not for training) 20.59 44.38 

Selected Validation -36.77 2.56 

Selected Calibration -16.07 24.84 
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Table 4.  Regression statistics for significant relationships between index (fish + swath) scores 
with habitat variables for reference samples. 

  Estimate t p r^2 F df 

Bedrock 
Slope 0.001 2.086 0.042 0.082 4.353 49 

Intercept 0.952 21.501 <0.001    

Cobble 
Slope -0.003 -2.982 0.004 0.154 8.892 49 

Intercept 1.070 64.243 <0.001    

Relief 0-0.1 m 
Slope -0.002 -2.490 0.016 0.112 6.199 49 

Intercept 1.066 61.950 <0.001    

Relief 0.1-1 m 
Slope 0.002 2.272 0.028 0.095 5.163 49 

Intercept 0.942 20.931 <0.001    

Aggregation 
Slope -0.005 -2.113 0.040 0.084 4.467 49 

Intercept 1.066 57.684 <0.001    

Reef Area 
Slope 0.000 -1.861 0.069 0.066 3.464 49 

Intercept 1.062 58.272 <0.001    
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Table 5.  Regression statistics for O/E Index scores from each species assemblage with fishing 
pressure 

  Estimate t p r^2 F df 

Fish+Swath 
Slope -0.044 -3.820 0.000 0.052 14.590 265 

Intercept 1.504 11.290 <0.001    

Fish 
Slope -0.055 -3.897 0.000 0.054 15.190 265 

Intercept 1.613 9.766 <<0.001    

Swath 
Slope -0.047 -3.863 0.000 0.053 14.930 265 

Intercept 1.567 11.090 <0.001    

UPC 
Slope -0.027 -2.394 0.017 0.021 5.730 265 

Intercept 1.321 9.921 <0.001    

All 
Assemblages 

Slope -0.040 -3.694 0.000 0.049 13.640 265 

Intercept 1.474 11.591 <0.001    
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Table 6.  Statistics for t-tests comparing means of habitat and stress stress variables above and 
below the index performance threshold.  Bold indicates statistically significant result at P< 0.05. 

Habitat or Stress Variable t df P Mean Above Mean Below 

bare rock -2.362 37.496 0.023 5.963 10.996 

bare sand -1.693 42.162 0.098 9.647 12.956 

bedrock 3.164 41.371 0.003 66.565 51.842 

boulder -0.680 41.574 0.500 14.356 16.226 

cobble -2.573 37.153 0.014 8.803 16.853 

Relief 0-0.1m -5.135 41.329 0.000 19.892 45.949 

Relief 0.1-1 m 3.981 41.352 0.000 60.619 42.704 

Relief 1-2 m 5.880 61.369 0.000 12.796 4.781 

Relief >2 m 0.280 37.188 0.781 7.115 6.103 

sand -1.899 40.277 0.065 10.278 15.080 

sediment -1.761 37.310 0.086 0.532 1.827 

shell hash -1.104 39.486 0.277 2.040 2.891 

deepest survey 2.145 45.717 0.037 19.451 17.531 

slope 1.620 46.001 0.112 6.008 4.148 

reef area -0.716 41.829 0.478 9834745 11632635 

littoral drift -4.164 40.253 0.000 1.660 4.708 

settlement 1 -3.238 43.988 0.002 217.529 309.904 

settlement 2 -2.999 48.922 0.004 322.114 419.603 

mean SST -0.002 43.278 0.999 16.179 16.179 

SST 0.287 43.120 0.775 16.162 16.095 

SST1 0.669 44.522 0.507 15.752 15.896 

SST2 -0.798 42.417 0.429 15.985 16.181 

ENSO 1.016 48.041 0.315 -0.275 -0.369 

ENSO1 -1.406 49.505 0.166 -0.408 -0.299 

ENSO2 -1.787 53.653 0.080 0.137 0.245 

WQ Index 1.4944 65.012 0.140 0.537 0.436 

TSS -0.4349 48.845 0.666 1739.608 2092.972 

Copper 0.3844 72.382 0.702 0.712 0.593 

Nitrate 1.7692 255.242 0.078 96.637 19.006 

log Fishery -2.3996 38.974 0.021 4.957 5.221 
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Table 7.  Results of multiple linear regression of stressors and habitat variables versus reef index 
scores.  

 Estimate StandardError t Pr(>│t│) 

Intercept 1.464 0.127 11.567 <0.001 

Barerock -3.175x10-3 1.324x10-3 -2.397 0.017 

Baresand 0.633x10-3 21.152x10-3 2.285 0.023 

Bedrock 1.526x10-3 5.998x10-4 2.544 0.012 

LittoralDrift -8.410x10-3 2.974x10-3 -2.828 0.005 

Relief0-0.1m -2.595x10-3 4.404x10-4 -5.892 <0.001 

LogFishery -0.104 2.365x10-2 -4.392 <0.001 

Cobble 2.237x10-3 1.239x10-3 1.806 0.072 

TSS 3.812x10-6 1.863x10-6 2.046 0.042 

 

  

 
Table SI1.  ANOVA results for relationships between individual species (species with high capture 
probabilities and significant differneces in abundance above and below the index performance 
threshold) abuandance with fishing pressure and TSS as random factors. 

Common Name Scientific Name Factor 
D
f Sum Sq Mean Sq 

F 
value Pr(>F) 

Fishes        

Black perch 
Embiotoca jacksoni 

log_fishery 
1 0.003662 

0.003661
5 

9.399
9 

0.00237
2 

 
 

TSS 
1 0.000146 

0.000145
8 

0.374
2 

0.54119
3 

 
 

log_fishery:T
SS 1 0.001692 

0.001692
4 

4.344
7 

0.03798
8 

Striped perch 
Embiotoca lateralis 

log_fishery 
1 0.000125 

0.000124
6 

0.329
9 

0.56618
4 

 
 

TSS 
1 0.002769 0.002769 

7.330
4 

0.00717
7 

 
 

log_fishery:T
SS 1 0 

0.000000
33 

0.000
9 

0.97660
9 

Opaleye 
Girella nigricans 

log_fishery 
1 0.00557 

0.005570  
2 0.769 0.09717 

 
 

TSS 
1 0.00159 

0.001593  
0 

0.792
1 0.37418 

 
 

log_fishery:T
SS 1 0.03221 

0.032211 
16 

.0125 
7. 

9.71E-
03 

Garibaldi 
Hypsypops rubicundus 

log_fishery 
1 0.005473 

0.005473
2 

8.505
5 

0.00381
4 

 
 

TSS 
1 0.000196 

0.000196
2 0.305 0.5812 
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Common Name Scientific Name Factor 
D
f Sum Sq Mean Sq 

F 
value Pr(>F) 

 
 

log_fishery:T
SS 1 0 0 0 

0.99488
3 

Halfmoon 
Medialuna californiensis 

log_fishery 
1 0.000487 

0.000487
01 

1.349
8 0.24625 

 
 

TSS 
1 0.001122 

0.001121
86 

3.109
4 0.07888 

 
 

log_fishery:T
SS 1 0.000566 

0.000565
62 

1.567
7 0.21154 

Painted greenling Oxylebius pictus 
log_fishery 

1 0.000754 
0.000753

66 
5.114

8 
0.02445

2 

  
TSS 

1 0.002082 
0.002082

27 
14.13

15 
0.00020

5 

  
log_fishery:T
SS 1 0.00008 

0.000080
44 

0.545
9 

0.46057
2 

Kelp bass Paralabrax clathratus 
log_fishery 

1 0.03859 0.038594 
17.19

96 
4.41E-

05 

  
TSS 

1 0.00019 0.000185 
0.082

5 0.7742 

  
log_fishery:T
SS 1 0.00319 0.00319 

1.421
8 0.2341 

Rubberlip Rhacochilus toxotes 
log_fishery 

1 0.000506 
0.000505

59 
1.203

4 0.27353 

  
TSS 

1 0.001145 
0.001145

48 
2.726

6 0.09976 

  
log_fishery:T
SS 1 0 

0.000000
04 

0.000
1 0.9919 

Blackeye goby Rhinogobiops nicholsii log_fishery 1 0.00001 1.03E-05 0.093 0.7606 

  
TSS 

1 0.000243 2.43E-04 
2.184

8 0.1404 

  
log_fishery:T
SS 1 0.000072 7.25E-05 

0.651
4 0.4203 

Kelp rockfish Sebastes atrovirens 
log_fishery 

1 0.001772 
0.001772

4 
3.513

8 0.06185 

  
TSS 

1 0.003262 
0.003262

1 6.467 0.0115 

  
log_fishery:T
SS 1 0.00038 

0.000379
9 

0.753
2 0.38618 

Copper rockfish Sebastes caurinus 
log_fishery 

1 
0.000001

79 
1.79E-06 

0.949
2 

0.33073
6 

  
TSS 

1 
0.000018

09 
1.81E-05 

9.619
1 

0.00211
3 

  
log_fishery:T
SS 1 

0.000001
2 

1.20E-06 
0.639

2 
0.42465

9 

Black & yellow 
rockfish Sebastes chrysomelas 

log_fishery 
1 0.000006 

6.43E-06 
3.26 

0.07174
2 

  
TSS 

1 0.000017 
1.75E-05 

8.86 
0.00314

2 

  
log_fishery:T
SS 1 0 

4.67E-07 
0.23 

0.62658
3 

Blue rockfish Sebastes mystinus 
log_fishery 

1 0.00148 
0.001482

7 
0.923

2 0.3374 

  
TSS 

1 0.00914 
0.009136

8 
5.689

3 0.0177 

  
log_fishery:T
SS 1 0.00094 

0.000942
7 0.587 0.4442 

Juvenile rockfish Sebastes YOY 
log_fishery 

1 0.000087 
5 8.753e-
05 

1.023
8 

0.31244
5 

  
TSS 

1 0.000603 
3 6.033e-
04 

7.056
5 

0.00832
9 
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Common Name Scientific Name Factor 
D
f Sum Sq Mean Sq 

F 
value Pr(>F) 

  
log_fishery:T
SS 1 0.000002 

5 2.470e-
06 

0.028
9 

0.86516
5 

Invertebrates        

Sunburst anenome Anthopleura sola 
log_fishery 

1 16404 16404.2 
2.465

2 0.1175 

  
TSS 

1 12773 12773.4 
1.919

6 0.1669 

  
log_fishery:T
SS 1 2870 2869.5 

0.431
2 0.5119 

Understory kelp Eisenia arborea 
log_fishery 

1 5192 5191.8 7.174 
0.00781

3 

  
TSS 

1 3435 3434.5 
4.745

8 
0.03016

4 

  
log_fishery:T
SS 1 154 154.4 

0.213
3 

0.64454
4 

White urchin Lytechinus anamesus 
log_fishery 

1 117.5 117.524 
1.713

7 0.1915 

  
TSS 

1 99.7 99.721 
1.454

1 0.2288 

  
log_fishery:T
SS 1 10.1 10.071 

0.146
9 0.7018 

Giant kelp Macrocystis pyrifera 
log_fishery 

1 1101 1101.31 
7.215

5 
0.00763

9 

  
TSS 

1 98 98.05 
0.642

4 
0.42348

5 

  
log_fishery:T
SS 1 0 0.02 

0.000
1 

0.99090
7 

Giant keyhole 
limpet Megathura crenulata 

log_fishery 
1 19.2 19.189 

1.512
4 0.21975 

  
TSS 

1 84.3 84.304 
6.644

6 0.01043 

  
log_fishery:T
SS 1 1.1 1.097 

0.086
5 0.76893 

Tube dwelling 
anemone 

Pachycerianthus 
fimbriatus 

log_fishery 
1 1533 1533.25 

10.87
75 

0.00109
3 

  
TSS 

1 450 450.36 
3.195

1 
0.07489

1 

  
log_fishery:T
SS 1 305 305.06 

2.164
2 

0.14232
6 

California spiny 
lobster Panulirus interruptus 

log_fishery 
1 17.74 17.7393 

3.796
1 0.05232 

  
TSS 

1 0.46 0.4637 
0.099

2 0.75297 

  
log_fishery:T
SS 1 2.34 2.3379 

0.500
3 0.47993 

Warty sea 
cucumber 

Parastichopus 
parvimensis 

log_fishery 
1 64.1 64.1 

0.726
6 

0.39468
6 

  
TSS 

1 783.7 783.7 
8.883

3 
0.00311

8 

  
log_fishery:T
SS 1 0.5 0.45 

0.005
1 0.94293 

Bat star Patiria miniata 
log_fishery 

1 2914 2914.4 
1.566

5 
0.21170

68 

  
TSS 

1 27010 27009.5 
14.51

82 
0.00016

91 

  
log_fishery:T
SS 1 1053 1052.8 

0.565
9 

0.45248
4 

Giant spined star Pisaster giganteus 
log_fishery 

1 82.4 82.41 
1.378

8 0.24125 
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Common Name Scientific Name Factor 
D
f Sum Sq Mean Sq 

F 
value Pr(>F) 

  TSS 1 340.2 340.24 5.693 0.01767 

  
log_fishery:T
SS 1 146.5 146.48 2.451 0.11853 

Understory kelp Pterygophora californica 
log_fishery 

1 1374 1374.3 
0.416

9 0.519 

  
TSS 

1 3125 3124.9 
0.947

9 0.3311 

  
log_fishery:T
SS 1 4118 4117.9 

1.249
1 0.2646 

Sunflower star Pycnopodia helianthoides 
log_fishery 

1 0.01 0.008 
0.002

2 
0.96229

5 

  
TSS 

1 32.71 32.707 
9.467

8 
0.00228

8 

  
log_fishery:T
SS 1 0.38 0.375 

0.108
7 

0.74189
2 

Red urchin 

Strongylocentrotus 
franciscanus 

log_fishery 
1 1508 1508 

0.109
2 0.7413 

  
TSS 

1 373540 373540 
27.05

74 
3.71E-

07 

  
log_fishery:T
SS 1 3359 3359 

0.243
3 0.6222 

Purple urchin 
Strongylocentrotus 
purpuratus 

log_fishery 
1 98261 98261 

0.930
3 

0.33556
59 

  
TSS 

1 1564631 1564631 
14.81

41 
0.00014

56 

  
log_fishery:T
SS 1 3887 3887 

0.036
8 

0.84799
76 

Orange puffball 
sponge Tethya californiana 

log_fishery 
1 1.4 1.363 

0.062
7 0.80251 

  
TSS 

1 183.3 183.27 
8.425

6 0.00398 

  
log_fishery:T
SS 1 7.5 7.502 

0.344
9 0.55748 
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